Что такое высокочастотный ток
Токи высокой частоты
Что такое токи высокой частоты?
Токи с частотой выше 10000 гц называют токами высокой частоты (ТВЧ). Их получают с помощью электронных устройств.
Если поместить проводник внутрь катушки, по которой течет ток высокой частоты, то в проводнике возникнут вихревые токи. Вихревые токи нагревают проводник. Скорость нагрева и температуру легко регулировать, меняя ток в катушке.
В индукционной печи можно плавить самые тугоплавкие металлы. Для получения особо чистых веществ плавку можно вести в вакууме и даже без тигля, подвесив расплавленный металл в магнитном поле. Высокая скорость нагрева очень удобна при прокатке и ковке металла. Подбирая форму катушек, можно вести пайку и сварку деталей при наилучшем температурном режиме.
Индукционная плавильная печь
Влияние поля Е усиливает ток на поверхности проводника и ослабляет в середине. При достаточно большой частоте ток течет только в поверхностном слое проводника.
Метод поверхностной закалки стальных изделий придумал и предложил российский ученый В. П. Вологдин. На высокой частоте индукционный ток нагревает только поверхностный слой детали. После быстрого охлаждения получается нехрупкое изделие с твердой поверхностью.
Действие токов высокой частоты на диэлектрики
На диэлектрики действуют высокочастотным электрическим полем, помещая их между пластинами конденсатора. Часть энергии электрического поля расходуется при этом на нагрев диэлектрика. Нагрев с помощью ТВЧ особенно хорош, если теплопроводность вещества мала.
Высокочастотный нагрев диэлектриков (диэлектрический нагрев) широко применяется для сушки и склейки древесины, для производства резины и пластмасс.
Токи высокой частоты в медицине
Прочие применения токов высокой частоты
Зерно, обработанное перед посевом ТВЧ, заметно повышает урожайность.
Индукционный нагрев газовой плазмы позволяет получить высокие температуры.
Поле частотой 2400 МГц в микроволновой электропечи варит суп прямо в тарелке за 2-3 минуты.
На изменении параметров колебательного контура при поднесении катушки к металлическому предмету основано действие миноискателя.
Токи высокой частоты применяются также для радиосвязи, телевидения и радиолокации.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Токи высокой частоты. Резонансный трансформатор. Безопасен ли электрический ток? Лекция Теслы о токах высокой частоты.
Токи высокой частоты
— переменный ток (начиная с частоты приблизительно в десятки кГц), для которого становятся значимыми такие явления, как излучение электромагнитных волн, и скин-эффект. Кроме того, если размеры элементов электрической цепи становятся сравнимыми с длиной волны переменного тока, то нарушается принцип квазистационарности[1], что требует особых подходов к расчёту и проектированию таких цепей.
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его. |
Получение
Для получения токов с частотой до нескольких десятков килогерц применяют электромашинные генераторы, состоящие из двух основных частей: ротора и статора. Их обращённые друг к другу поверхности имеют зубцы, взаимное перемещение которых вызывает пульсацию магнитного поля. Частота получаемого таким образом тока равна произведению числа зубцов ротора на частоту его вращения. До 1950-х годов электромашинные радиопередатчики использовались в радиовещании и радиосвязи (см. Радиостанция Гриметон).
Более распространнёный способ получения ТВЧ — применение колебательных контуров. Это может быть электрическая цепь, имеющая в своём составе ёмкость и индуктивность. (См. Генератор сигналов).
Для получения сантиметровых и миллиметровых волн (то есть тока с частотой в миллиарды герц), используют приборы с объёмным резонатором (клистрон, магнетрон, ЛБВ, ЛОВ). В безвоздушном пространстве вблизи раскалённого катода помещают электрод, в котором сделаны одна или несколько полостей, в которые направляется поток электронов. При правильном подборе напряжения электрического поля, направления и мощности потока электронов он группируется в отдельные сгустки. Длина электромагнитной волны, получаемой в полости резонатора, приблизительно равна удвоенной длине этой полости.[2]
Выбор температуры
Для правильного прохождения процесса закалки очень важен правильный подбор температуры, которая зависит от используемого материала.
Стали по содержанию углерода подразделяются на доэвтектоидные — меньше 0,8% и заэвтектоидные — больше 0,8%. Сталь с углеродом меньше 0,4% не закаливают из-за получаемой низкой твердости. Доэвтектоидные стали нагревают немного выше температуры фазового превращения перлита и феррита в аустенит. Это происходит в интервале 800-850°С. Затем заготовку быстро охлаждают. При резком остывании аустенит превращается в мартенсит, который обладает высокой твердостью и прочностью. Малое время выдержки позволяет получить мелкозернистый аустенит и мелкоигольчатый мартенсит, зерна не успевают вырасти и остаются маленькими. Такая структура стали обладает высокой твердостью и одновременно низкой хрупкостью.
Заэвтектоидные стали нагревают чуть ниже, чем доэвтектоидные, до температуры 750-800°С, то есть производят неполную закалку. Это связано с тем, что при нагреве до этой температуры кроме образования аустенита в расплаве металла остается нерастворенным небольшое количество цементита, обладающего твердостью высшей, чем у мартенсита. После резкого охлаждения аустенит превращается в мартенсит, а цементит остается в виде мелких включений. Также в этой зоне не успевший полностью раствориться углерод образует твердые карбиды.
В переходной зоне при закалке ТВЧ температура близка к переходной, образуется аустенит с остатками феррита. Но, так как переходная зона не остывает так быстро, как поверхность, а остывает медленно, как при нормализации. При этом в этой зоне происходит улучшение структуры, она становится мелкозернистой и равномерной.
После охлаждения на поверхности металла остаются высокие сжимающие напряжения, которые повышают эксплуатационные свойства детали. Внутренние напряжения между поверхностным слоем и серединой необходимо устранить. Это делается с помощью низкотемпературного отпуска — выдержкой при температуре около 200°С в печи. Чтобы избежать появления на поверхности микротрещин, нужно свести к минимуму время между закалкой и отпуском.
Также можно проводить так называемый самоотпуск — охлаждать деталь не полностью, а до температуры 200°С, при этом в ее сердцевине будет оставаться тепло. Дальше деталь должна остывать медленно. Так произойдет выравнивание внутренних напряжений.
Применение
Токи высокой частоты применяются в машиностроении для термообработки поверхностей деталей и сварки (см. Скин-эффект), в металлургии для плавки металлов, а также для получения электромагнитных волн необходимой частоты (радиосвязь, радиолокация).
Индукционный нагрев
Основная статья: Индукционный нагрев
Заготовка помещается внутрь установки, создающей за счёт обмотки переменное электромагнитное поле с частотой до 3 ГГцК:Википедия:Статьи без источников (тип: не указан)[источник не указан 2299 дней
], которое, в свою очередь, заставляет двигаться свободные электроны в металлах, порождая тем самым переменный электрический ток внутри заготовок; у диэлектриков же электромагнитное поле заставляет вращаться молекулы в зависимости от величины их дипольного момента.
Газопламенная закалка
Метод применяют при обработке крупных металлоконструкций: деталей станков, узлов электрических машин, прокатных роликов, валов, выполненных из чугуна, углеродистых, низколегированных сталей, материалов с низким содержанием углерода. Преимущества технологии — сохранение чистоты поверхности (на ней отсутствуют следы окислительных процессов) и сравнительно небольшая деформация с сохранением начальной геометрии заготовки.
Газопламенной закалкой могут обрабатываться все углеродистые стали.
Технология
Газоплазменная закалка выполняется в ацетилено-кислородном пламени. Во время нагрева специальной горелкой температура поверхности растет с высокой скоростью. За счет этого сердцевина детали не меняет своих свойств. Толщину поверхностной обработки регулируют изменением скорости перемещения факела и интенсивности подачи газовой смеси. Охлаждение металла производится погружением в быстроохлаждающую жидкость или обработкой под душем.
Параметры процесса
Технология предусматривает использование ацетилено-кислородного пламени температурой +2400…+3100 °С. Глубина закалки чаще всего составляет 2‑4 мм. Твердость сформированного после термической обработки слоя составляет 56 HRC.
Примечания
Таблица №1
Отрывок, характеризующий Токи высокой частоты
– А вам должно казаться, – говорил Борис, слегка краснея, но не изменяя голоса и позы, – вам должно казаться, что все заняты только тем, чтобы получить что нибудь от богача. «Так и есть», подумал Пьер. – А я именно хочу сказать вам, чтоб избежать недоразумений, что вы очень ошибетесь, ежели причтете меня и мою мать к числу этих людей. Мы очень бедны, но я, по крайней мере, за себя говорю: именно потому, что отец ваш богат, я не считаю себя его родственником, и ни я, ни мать никогда ничего не будем просить и не примем от него. Пьер долго не мог понять, но когда понял, вскочил с дивана, ухватил Бориса за руку снизу с свойственною ему быстротой и неловкостью и, раскрасневшись гораздо более, чем Борис, начал говорить с смешанным чувством стыда и досады. – Вот это странно! Я разве… да и кто ж мог думать… Я очень знаю… Но Борис опять перебил его: – Я рад, что высказал всё. Может быть, вам неприятно, вы меня извините, – сказал он, успокоивая Пьера, вместо того чтоб быть успокоиваемым им, – но я надеюсь, что не оскорбил вас. Я имею правило говорить всё прямо… Как же мне передать? Вы приедете обедать к Ростовым? И Борис, видимо свалив с себя тяжелую обязанность, сам выйдя из неловкого положения и поставив в него другого, сделался опять совершенно приятен. – Нет, послушайте, – сказал Пьер, успокоиваясь. – Вы удивительный человек. То, что вы сейчас сказали, очень хорошо, очень хорошо. Разумеется, вы меня не знаете. Мы так давно не видались…детьми еще… Вы можете предполагать во мне… Я вас понимаю, очень понимаю. Я бы этого не сделал, у меня недостало бы духу, но это прекрасно. Я очень рад, что познакомился с вами. Странно, – прибавил он, помолчав и улыбаясь, – что вы во мне предполагали! – Он засмеялся. – Ну, да что ж? Мы познакомимся с вами лучше. Пожалуйста. – Он пожал руку Борису. – Вы знаете ли, я ни разу не был у графа. Он меня не звал… Мне его жалко, как человека… Но что же делать? – И вы думаете, что Наполеон успеет переправить армию? – спросил Борис, улыбаясь. Пьер понял, что Борис хотел переменить разговор, и, соглашаясь с ним, начал излагать выгоды и невыгоды булонского предприятия. Лакей пришел вызвать Бориса к княгине. Княгиня уезжала. Пьер обещался приехать обедать затем, чтобы ближе сойтись с Борисом, крепко жал его руку, ласково глядя ему в глаза через очки… По уходе его Пьер долго еще ходил по комнате, уже не пронзая невидимого врага шпагой, а улыбаясь при воспоминании об этом милом, умном и твердом молодом человеке. Как это бывает в первой молодости и особенно в одиноком положении, он почувствовал беспричинную нежность к этому молодому человеку и обещал себе непременно подружиться с ним. Князь Василий провожал княгиню. Княгиня держала платок у глаз, и лицо ее было в слезах. – Это ужасно! ужасно! – говорила она, – но чего бы мне ни стоило, я исполню свой долг. Я приеду ночевать. Его нельзя так оставить. Каждая минута дорога. Я не понимаю, чего мешкают княжны. Может, Бог поможет мне найти средство его приготовить!… Adieu, mon prince, que le bon Dieu vous soutienne… [Прощайте, князь, да поддержит вас Бог.] – Adieu, ma bonne, [Прощайте, моя милая,] – отвечал князь Василий, повертываясь от нее. – Ах, он в ужасном положении, – сказала мать сыну, когда они опять садились в карету. – Он почти никого не узнает. – Я не понимаю, маменька, какие его отношения к Пьеру? – спросил сын. – Всё скажет завещание, мой друг; от него и наша судьба зависит…
Выбор температуры
Для правильного прохождения процесса закалки очень важен правильный подбор температуры, которая зависит от используемого материала.
Стали по содержанию углерода подразделяются на доэвтектоидные — меньше 0,8% и заэвтектоидные — больше 0,8%. Сталь с углеродом меньше 0,4% не закаливают из-за получаемой низкой твердости. Доэвтектоидные стали нагревают немного выше температуры фазового превращения перлита и феррита в аустенит. Это происходит в интервале 800—850°С. Затем заготовку быстро охлаждают. При резком остывании аустенит превращается в мартенсит, который обладает высокой твердостью и прочностью. Малое время выдержки позволяет получить мелкозернистый аустенит и мелкоигольчатый мартенсит, зерна не успевают вырасти и остаются маленькими. Такая структура стали обладает высокой твердостью и одновременно низкой хрупкостью.
Высокочастотный ток
Высокочастотный ток употребляется в радиотелеграфии и радиотелефонии, при передаче изображений на расстояние, телемеханике и вообще во всех тех случаях, когда необходимо передать на расстояние электромагнитную энергию без помощи проводов. Диапазон частот токов в указанных областях техники заключается в настоящее время в пределах от 15000 пер/сек. (длина волны 20000 м) до 300000000 пер/сек. (длина волны 1 м).
Высокочастотный ток обладает при движении по проводам следующими особенностями, отличающими его от переменных электрических токов низкой частоты: 1) Высокочастотный ток в проводах распределяется в слоях, ближайших к поверхности; 2) наименьшее сопротивление для высокочастотного тока представляют, поэтому, провода, не с наибольшей площадью сечения, а с наибольшим периметром сечения; 3) сопротивление проводов растет вместе с частотой токов; 4) самоиндукция проводов при высокочастотном токе ниже, чем при переменных токах низкой частоты;
5) индуктивное сопротивление проводов при высокочастотном токе значительно выше, чем в случае низких частот: оно растет вместе с частотой; 6) физиологическое действие высокочастотного тока значительно отличается от такого же низкочастотного тока; в частности, высокочастотные токи нежизнеопасны. В силу сказанного в п. 1, провода для высокочастотных токов делаются или в виде полых трубок, или в виде лент, или же составляются из подразделенных тонких проводников. Высокочастотные токи производятся следующими способами: 1) посредством повторных разрядов конденсаторов через искровой промежуток в искровых передатчиках; 2) посредством вольтовой дуги в дуговых передатчиках; 3) посредством машин высокой частоты; 4) посредством электронных генераторных ламп. Высокочастотные токи, получающиеся при разрядах конденсаторов, характеризуются затухающими колебаниями; высокочастотные токи, производимые дуговыми передатчиками, машинами высокой частоты и электронными лампами, характеризуются незатухающими колебаниями.
Токи высокой частоты. Резонансный трансформатор. Безопасен ли электрический ток? Лекция Теслы о токах высокой частоты.
Токи высокой частоты
— переменный ток (начиная с частоты приблизительно в десятки кГц), для которого становятся значимыми такие явления, как излучение электромагнитных волн, и скин-эффект. Кроме того, если размеры элементов электрической цепи становятся сравнимыми с длиной волны переменного тока, то нарушается принцип квазистационарности[1], что требует особых подходов к расчёту и проектированию таких цепей.
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его. |
Получение
Для получения токов с частотой до нескольких десятков килогерц применяют электромашинные генераторы, состоящие из двух основных частей: ротора и статора. Их обращённые друг к другу поверхности имеют зубцы, взаимное перемещение которых вызывает пульсацию магнитного поля. Частота получаемого таким образом тока равна произведению числа зубцов ротора на частоту его вращения. До 1950-х годов электромашинные радиопередатчики использовались в радиовещании и радиосвязи (см. Радиостанция Гриметон).
Более распространнёный способ получения ТВЧ — применение колебательных контуров. Это может быть электрическая цепь, имеющая в своём составе ёмкость и индуктивность. (См. Генератор сигналов).
Для получения сантиметровых и миллиметровых волн (то есть тока с частотой в миллиарды герц), используют приборы с объёмным резонатором (клистрон, магнетрон, ЛБВ, ЛОВ). В безвоздушном пространстве вблизи раскалённого катода помещают электрод, в котором сделаны одна или несколько полостей, в которые направляется поток электронов. При правильном подборе напряжения электрического поля, направления и мощности потока электронов он группируется в отдельные сгустки. Длина электромагнитной волны, получаемой в полости резонатора, приблизительно равна удвоенной длине этой полости.[2]
Достоинства и недостатки
Закалка деталей с помощью ТВЧ обладает как достоинствами, так и недостатками. К достоинствам можно отнести следующее:
Но индукционные установки экономически целесообразно применять только при серийном производстве, а для единичного производства покупка или изготовление индуктора невыгодно. Для некоторых деталей сложной формы производство индукционной установки очень сложно или невозможно получить равномерность закаленного слоя. В таких случаях применяют другие виды поверхностных закалок, например, газопламенную или объемную закалку.
Применение
Токи высокой частоты применяются в машиностроении для термообработки поверхностей деталей и сварки (см. Скин-эффект), в металлургии для плавки металлов, а также для получения электромагнитных волн необходимой частоты (радиосвязь, радиолокация).
Индукционный нагрев
Основная статья: Индукционный нагрев
Заготовка помещается внутрь установки, создающей за счёт обмотки переменное электромагнитное поле с частотой до 3 ГГцК:Википедия:Статьи без источников (тип: не указан)[источник не указан 2288 дней
], которое, в свою очередь, заставляет двигаться свободные электроны в металлах, порождая тем самым переменный электрический ток внутри заготовок; у диэлектриков же электромагнитное поле заставляет вращаться молекулы в зависимости от величины их дипольного момента.
Газопламенная закалка
Метод применяют при обработке крупных металлоконструкций: деталей станков, узлов электрических машин, прокатных роликов, валов, выполненных из чугуна, углеродистых, низколегированных сталей, материалов с низким содержанием углерода. Преимущества технологии — сохранение чистоты поверхности (на ней отсутствуют следы окислительных процессов) и сравнительно небольшая деформация с сохранением начальной геометрии заготовки.
Газопламенной закалкой могут обрабатываться все углеродистые стали.
Технология
Газоплазменная закалка выполняется в ацетилено-кислородном пламени. Во время нагрева специальной горелкой температура поверхности растет с высокой скоростью. За счет этого сердцевина детали не меняет своих свойств. Толщину поверхностной обработки регулируют изменением скорости перемещения факела и интенсивности подачи газовой смеси. Охлаждение металла производится погружением в быстроохлаждающую жидкость или обработкой под душем.
Параметры процесса
Технология предусматривает использование ацетилено-кислородного пламени температурой +2400…+3100 °С. Глубина закалки чаще всего составляет 2‑4 мм. Твердость сформированного после термической обработки слоя составляет 56 HRC.
Примечания
Выбор температуры
Для правильного прохождения процесса закалки очень важен правильный подбор температуры, которая зависит от используемого материала.
Стали по содержанию углерода подразделяются на доэвтектоидные — меньше 0,8% и заэвтектоидные — больше 0,8%. Сталь с углеродом меньше 0,4% не закаливают из-за получаемой низкой твердости. Доэвтектоидные стали нагревают немного выше температуры фазового превращения перлита и феррита в аустенит. Это происходит в интервале 800-850°С. Затем заготовку быстро охлаждают. При резком остывании аустенит превращается в мартенсит, который обладает высокой твердостью и прочностью. Малое время выдержки позволяет получить мелкозернистый аустенит и мелкоигольчатый мартенсит, зерна не успевают вырасти и остаются маленькими. Такая структура стали обладает высокой твердостью и одновременно низкой хрупкостью.
Заэвтектоидные стали нагревают чуть ниже, чем доэвтектоидные, до температуры 750-800°С, то есть производят неполную закалку. Это связано с тем, что при нагреве до этой температуры кроме образования аустенита в расплаве металла остается нерастворенным небольшое количество цементита, обладающего твердостью высшей, чем у мартенсита. После резкого охлаждения аустенит превращается в мартенсит, а цементит остается в виде мелких включений. Также в этой зоне не успевший полностью раствориться углерод образует твердые карбиды.
В переходной зоне при закалке ТВЧ температура близка к переходной, образуется аустенит с остатками феррита. Но, так как переходная зона не остывает так быстро, как поверхность, а остывает медленно, как при нормализации. При этом в этой зоне происходит улучшение структуры, она становится мелкозернистой и равномерной.
После охлаждения на поверхности металла остаются высокие сжимающие напряжения, которые повышают эксплуатационные свойства детали. Внутренние напряжения между поверхностным слоем и серединой необходимо устранить. Это делается с помощью низкотемпературного отпуска — выдержкой при температуре около 200°С в печи. Чтобы избежать появления на поверхности микротрещин, нужно свести к минимуму время между закалкой и отпуском.
Также можно проводить так называемый самоотпуск — охлаждать деталь не полностью, а до температуры 200°С, при этом в ее сердцевине будет оставаться тепло. Дальше деталь должна остывать медленно. Так произойдет выравнивание внутренних напряжений.
Отрывок, характеризующий Токи высокой частоты
– А вам должно казаться, – говорил Борис, слегка краснея, но не изменяя голоса и позы, – вам должно казаться, что все заняты только тем, чтобы получить что нибудь от богача. «Так и есть», подумал Пьер. – А я именно хочу сказать вам, чтоб избежать недоразумений, что вы очень ошибетесь, ежели причтете меня и мою мать к числу этих людей. Мы очень бедны, но я, по крайней мере, за себя говорю: именно потому, что отец ваш богат, я не считаю себя его родственником, и ни я, ни мать никогда ничего не будем просить и не примем от него. Пьер долго не мог понять, но когда понял, вскочил с дивана, ухватил Бориса за руку снизу с свойственною ему быстротой и неловкостью и, раскрасневшись гораздо более, чем Борис, начал говорить с смешанным чувством стыда и досады. – Вот это странно! Я разве… да и кто ж мог думать… Я очень знаю… Но Борис опять перебил его: – Я рад, что высказал всё. Может быть, вам неприятно, вы меня извините, – сказал он, успокоивая Пьера, вместо того чтоб быть успокоиваемым им, – но я надеюсь, что не оскорбил вас. Я имею правило говорить всё прямо… Как же мне передать? Вы приедете обедать к Ростовым? И Борис, видимо свалив с себя тяжелую обязанность, сам выйдя из неловкого положения и поставив в него другого, сделался опять совершенно приятен. – Нет, послушайте, – сказал Пьер, успокоиваясь. – Вы удивительный человек. То, что вы сейчас сказали, очень хорошо, очень хорошо. Разумеется, вы меня не знаете. Мы так давно не видались…детьми еще… Вы можете предполагать во мне… Я вас понимаю, очень понимаю. Я бы этого не сделал, у меня недостало бы духу, но это прекрасно. Я очень рад, что познакомился с вами. Странно, – прибавил он, помолчав и улыбаясь, – что вы во мне предполагали! – Он засмеялся. – Ну, да что ж? Мы познакомимся с вами лучше. Пожалуйста. – Он пожал руку Борису. – Вы знаете ли, я ни разу не был у графа. Он меня не звал… Мне его жалко, как человека… Но что же делать? – И вы думаете, что Наполеон успеет переправить армию? – спросил Борис, улыбаясь. Пьер понял, что Борис хотел переменить разговор, и, соглашаясь с ним, начал излагать выгоды и невыгоды булонского предприятия. Лакей пришел вызвать Бориса к княгине. Княгиня уезжала. Пьер обещался приехать обедать затем, чтобы ближе сойтись с Борисом, крепко жал его руку, ласково глядя ему в глаза через очки… По уходе его Пьер долго еще ходил по комнате, уже не пронзая невидимого врага шпагой, а улыбаясь при воспоминании об этом милом, умном и твердом молодом человеке. Как это бывает в первой молодости и особенно в одиноком положении, он почувствовал беспричинную нежность к этому молодому человеку и обещал себе непременно подружиться с ним. Князь Василий провожал княгиню. Княгиня держала платок у глаз, и лицо ее было в слезах. – Это ужасно! ужасно! – говорила она, – но чего бы мне ни стоило, я исполню свой долг. Я приеду ночевать. Его нельзя так оставить. Каждая минута дорога. Я не понимаю, чего мешкают княжны. Может, Бог поможет мне найти средство его приготовить!… Adieu, mon prince, que le bon Dieu vous soutienne… [Прощайте, князь, да поддержит вас Бог.] – Adieu, ma bonne, [Прощайте, моя милая,] – отвечал князь Василий, повертываясь от нее. – Ах, он в ужасном положении, – сказала мать сыну, когда они опять садились в карету. – Он почти никого не узнает. – Я не понимаю, маменька, какие его отношения к Пьеру? – спросил сын. – Всё скажет завещание, мой друг; от него и наша судьба зависит…
Как выбирается температура
Чтобы провести качественную закалку стальной заготовки, нужно выбрать температурный режим обработки, который зависит от вида обрабатываемого материала:
Особенности индукционного воздействия на металлические поверхности не позволяют обрабатывать стали, процентное содержание углерода в которых не превышает 0.5%. Для завершения технологического процесса нужно устранить возникшее напряжение между сердцевиной и поверхностью изделия. Чтобы сделать это, проводится низкотемпературный отпуск. Заготовка помещается в печь, разогретую до температуры 200 градусов по Цельсию. Когда температура упадёт, изделию дают остыть при комнатной температуре.
Закалка стали (Фото: Instagram / redventru)
Использование ТВЧ
Использование токов высокой частоты, например индукционная пайка ТВЧ, вывело такие отрасли как машиностроение и металлургию на новый уровень. Термообработка ТВЧ деталей, проведенная при помощи токов высокого напряжения, увеличивает срок их эксплуатации, увеличивает износостойкость, прочность и твердость металла. Работа с токами высокой частоты не только делает работу более эффективной, но и значительно улучшает уровень качества получаемых изделий.
Высокочастотный ток
, переменный электрический ток высокой частоты; при наличии соответствующего излучателя — антенны излучает в пространство на значительные расстояния энергию в виде волн электромагнитных, которые, в свою очередь, вызывают токи той же частоты в приемных устройствах, расположенных вдали от источников высокочастотного тока.
Высокочастотный ток употребляется в радиотелеграфии и радиотелефонии, при передаче изображений на расстояние, телемеханике и вообще во всех тех случаях, когда необходимо передать на расстояние электромагнитную энергию без помощи проводов. Диапазон частот токов в указанных областях техники заключается в настоящее время в пределах от 15000 пер/сек. (длина волны 20000 м) до 300000000 пер/сек. (длина волны 1 м).
Высокочастотный ток обладает при движении по проводам следующими особенностями, отличающими его от переменных электрических токов низкой частоты: 1) Высокочастотный ток в проводах распределяется в слоях, ближайших к поверхности; 2) наименьшее сопротивление для высокочастотного тока представляют, поэтому, провода, не с наибольшей площадью сечения, а с наибольшим периметром сечения; 3) сопротивление проводов растет вместе с частотой токов; 4) самоиндукция проводов при высокочастотном токе ниже, чем при переменных токах низкой частоты;
5) индуктивное сопротивление проводов при высокочастотном токе значительно выше, чем в случае низких частот: оно растет вместе с частотой; 6) физиологическое действие высокочастотного тока значительно отличается от такого же низкочастотного тока; в частности, высокочастотные токи нежизнеопасны. В силу сказанного в п. 1, провода для высокочастотных токов делаются или в виде полых трубок, или в виде лент, или же составляются из подразделенных тонких проводников. Высокочастотные токи производятся следующими способами: 1) посредством повторных разрядов конденсаторов через искровой промежуток в искровых передатчиках; 2) посредством вольтовой дуги в дуговых передатчиках; 3) посредством машин высокой частоты; 4) посредством электронных генераторных ламп. Высокочастотные токи, получающиеся при разрядах конденсаторов, характеризуются затухающими колебаниями; высокочастотные токи, производимые дуговыми передатчиками, машинами высокой частоты и электронными лампами, характеризуются незатухающими колебаниями.