Что такое диссоциация воды в биологии
Диссоциация воды. Водородный показатель. Среды водных растворов электролитов
Вода — слабый амфотерный электролит.
Уравнение ионизации воды с учетом гидратации ионов водорода Н + таково:
Без учета гидратации ионов Н + уравнение диссоциации воды имеет вид:
Произведение концентраций ионов водорода и гидроксид-ионов называется ионным произведением воды (KH2O).
KH2O — величина постоянная, и при температуре 25 о С
В водных растворах различают три типа сред: нейтральную, щелочную и кислую.
Нейтральная среда — это среда, в которой концентрация ионов водорода равна концентрации гидроксид-ионов:
Кислая среда — это среда, в которой концентрация ионов водорода больше концентрации гидроксид-ионов:
Щелочная среда — это среда, в которой концентрация ионов водорода меньше концентрации гидроксид-ионов:
Для характеристики сред растворов удобно использовать так называемый водородный показатель рН (пэ-аш).
Чем рН меньше 7, тем больше кислотность раствора. Чем рН больше 7, тем больше щелочность раствора.
Существуют различные методы измерения рН. Качественно характер среды водных растворов электролитов определяют с помощью индикаторов.
Индикаторами называются вещества, которые обратимо изменяют свой цвет в зависимости от среды растворов, т. е. рН раствора.
На практике применяют индикаторы лакмус, метиловый оранжевый (метилоранж) и фенолфталеин. Они изменяют свою окраску в малом интервале рН: лакмус — в интервале рН от 5,0 до 8,0; метилоранж — от 3,1 до 4,4 и фенолфталеин — от 8,2 до 10,0.
Изменение цвета индикаторов показано на схеме:
Заштрихованные области показывают интервал изменения окраски индикатора.
Изменение цвета окраски индикатора метилоранж в зависимости от кислотности среды
Кроме указанных выше индикаторов, применяют также универсальный индикатор, который можно использовать для приблизительного определения рН в широком интервале от 0 до 14.
Величина рН имеет большое значение в химических и биологических процессах, так как в зависимости от характера среды эти процессы могут протекать с разными скоростями и в разных направлениях.
Поэтому определение рН растворов очень важно в медицине, науке, технике, сельском хозяйстве. Изменение рН крови или желудочного сока является диагностическим тестом в медицине. Отклонения рН от нормальных, величин даже на 0,01 единицы свидетельствуют о патологических процессах в организме. Постоянство концентраций ионов водорода Н + является одной из важных констант внутренней среды живых организмов.
Так, при нормальной кислотности желудочный сок имеет рН 1,7; рН крови человека равен 7,4; слюны — 6,9. Каждый фермент функционирует при определенном значении рН: каталаза крови при рН 7 пепсин желудочного сока — при рН 1,5—2; и т. д.
Диссоциация воды
Химически чистая вода обладает хотя и ничтожной, но измеримой электропроводностью, так как вода в незначительной степени диссоциирует на ионы. Так при комнатной температуре лишь примерно одна из 10 8 молекул воды находится в диссоциированной форме. Процесс электролитической диссоциации воды возможен благодаря достаточно высокой полярности связей О-Н и наличию между молекулами воды системы водородных связей. Уравнение диссоциации воды записывается так:
Уравнение диссоциации воды можно записать в более простой форме:
Присутствие в воде ионов водорода и гидроксида придают ей специфические свойства амфолита, т.е. способность выполнять функции слабой кислоты и слабого основания. Константа диссоциации воды при температуре 22 0 С:
, (1)
. (2)
Теперь выражение (1) можно записать в следующем виде:
, (3)
1.2. Водородный показатель – рН
Индикаторы | Реакция среды раствора | ||
Кислая рН 7 | |||
Лакмус | Красный | Синий | Синий |
Фенолфталеин | Бесцветный | Бесцветный | Малиновый |
Метиловый оранжевый | Розовый | Оранжевый | Желтый |
Однако индикаторы дают не точное определение значения рН, поэтому современные измерения рН производятся при использовании электрохимических методов, точность которых составляет ±0,01 единицы рН.
Диссоциация воды и pH
Диссоциация воды
В состоянии равновесия υ1 = υ2, следовательно:
Проведем нехитрые математические действия и получим:
Вследствие очень малого количества продиссоциированных молекул концентрацию [H2O] можно принять равной общей концентрации воды, а общую концентрацию воды в разбавленных растворах как величину постоянную: [H2O]=1000(г/л)/18(г/моль)=55,6 моль/л.
pH воды
Получившаяся сумма pH и pOH, также как и произведение, которое логарифмировали, является постоянной и равна 14, так если pH=3 то pOH=11 (pH и pOH могут быть и отрицательными, и если pH=-1 тогда pOH=15).
Ион гидроксония (H3O + )
Оба процесса вызывают миграцию электрического заряда, а при наличии приложенного поля приводят к появлению электрического тока. Согласно Эйгену и Де Мэйеру, подвижность иона H3O + в воде меньше, чем во льду, из-за того, что система водородных связей в жидкой фазе несовершенна.
Когда выше говорилось о концентрациях, было сделано упрощение, правильнее использовать «активность ионов».
Диссоциация воды
Диссоциация воды является эндотермической реакцией (см.эндотермическая реакция), т.е. идущей с поглощением теплоты из окружающей среды.
Известные способы диссоциации воды:
Водоро́дный показа́тель, pH (произносится «пэ аш», английское произношение англ. pH — piː’eɪtʃ «Пи эйч») — мера активности (в очень разбавленных растворах она эквивалентна концентрации)ионов водорода в растворе, и количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на литр:
Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания — наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда [H + ] > [OH − ] говорят, что раствор является кислым, а при [OH − ] > [H + ] — щелочным.
Для удобства представления, чтобы избавиться от отрицательного показателя степени, вместо концентраций ионов водорода пользуются их десятичным логарифмом, взятым с обратным знаком, который собственно и является водородным показателем — pH.
Несколько меньшее распространение получила обратная pH величина — показатель основности раствора, pOH, равная отрицательному десятичному логарифму концентрации в растворе ионов OH − :
как в любом водном растворе при 22 °C , очевидно, что при этой температуре:
Электролитическая диссоциация воды. Водородный показатель
Важной особенностью жидкой воды является ее способность к самопроизвольной диссоциации по реакции:
воды к другим. Обычно в уравнениях для простоты используют только катион состава Н3О + (Н + ×H2O), называемый ионом гидроксония.
Вода – слабый электролит, степень диссоциации которого
Поскольку à Сравн(Н2О)» Сисх(Н2О) или [Н2О]равн ≈ [Н2О]исх
– количество молей содержащееся в одном литре воды. Сисх(Н2О) в разбавленном растворе остается постоянной. Это обстоятельство позволяет включить Сравн(Н2О) в константу равновесия.
Таким образом, произведение двух постоянных величин дает новую постоянную, которую называют ионным произведением воды
. При температуре 298 К
.
¾- В чистой воде концентрации водородных и гидроксильных ионов равны и при нормальных условиях составляют:
На практике для удобства используют водородный показатель (рН) и гидроксильный показатель (рОН) среды.
В водных растворах рН + рОН = 14.
Растворы | ||
Нейтральные | Кислые | Щелочные |
рН = 7 | рН 7 |
Kw зависит от температуры (т.к. диссоциация воды – эндотермический процесс)
Измерение рН используется чрезвычайно широко. В биологии и медицине величина рН биологических жидкостей служит для определения патологий. Например, в норме рН сыворотки крови состовляет 7,4±0,05; слюны – 6,35..6,85; желудочного сока – 0,9..1,1; слез – 7,4±0,1. В сельском хозяйстве рН характеризует кислотность почв, экологическое состояние природных вод и т.д.
Кислотно-основными индикаторами называются химические соединения, изменяющие свою окраску в зависимости от рН среды, в которой они находятся. Вы, наверное, обращали внимание на то, как меняется цвет чая, если в него положить лимон – это пример действия кислотно-основного индикатора.
Индикаторы, как правило, представляют собой слабые органические кислоты или основания и могут существовать в растворах в виде двух таутомерных форм:
Поведение индикатора подобно поведению слабого электролита в присутствии более сильного с одноименным ионом. Чем больше [H + ] следовательно равновесие смещается в сторону существования кислотной формы HInd и наоборот (принцип Ле-Шателье).
Опыт показывает наглядно возможность использования некоторых индикаторов:
Индикатор | рН 7 | ||
Метилоранж | красный | оранжевый | желтый |
Фенолфталеин | бесцветный | бесцветный | малиновый |
Лакмус | красный | Фиолетовый | синий |
Специальные приборы – рН-метры позволяют измерять рН с точностью до 0,01 в интервале от 0 до 14. Определение основано на измерении ЭДС гальванического элемента, один из электродов которого является, например, стеклянным.
Наиболее точно концентрацию водородных ионов можно определить методом кислотно-основного титрования. Титрование – это процесс постепенного добавления небольшими порциями раствора известной концентрации (титранта) к титрируемому раствору, концентрацию которого хотим определить.
Буферные растворы – это системы, рН которых относительно мало изменяется при разбавлении или добавлении к ним небольших количеств кислот или щелочей. Чаще всего они представляют собой растворы, содержащие:
a) а)Слабую кислоту и ее соль(СН3СООН + СН3СООNa) – ацетатный буфер
в)Слабое основание и его соль(NH4OH + NH4Cl) – аммиачно-аммонийный буфер
с)Две кислые соли с разными Kд (Na2HPO4 + NaH2PO4) – фосфатный буфер
Регулирующий механизм буферных растворов рассмотрим на примере ацетатного буферного раствора.
1. 1)если добавить небольшое количество щелочи к буферной смеси:
NaOH нейтрализуется уксусной кислотой с образованием более слабого электролита H2O. Избыток натрия ацетата смещает равновесие в сторону образовавшейся кислоты.
2. 2)если добавить небольшое количество кислоты:
CH3COONa + HCl « CH3COOH + NaCl
Найдем концентрацию ионов водорода в буферном ацетатном растворе:
Таким образом, рН буферных систем определяется соотношением концентраций соли и кислоты. При разбавлении это соотношение не меняется и рН буфера не меняется при разбавлении, это отличает буферные системы от раствора чистого электролита, для которого справедлив закон разведения Оствальда.
Существует две характеристики буферных систем:
1.Буферная сила. Абсолютная величина буферной силы зависит от
общей концентрации компонентов буферной системы, т.е. чем больше концентрация буферной системы, тем больше требуется щелочи (кислоты) для одного и того же изменения рН.
2.Буферная емкость (В). Буферная емкость – это предел, в котором проявляется буферное действие. Буферная смесь поддерживает рН постоянным только при условии, что количество прибавляемых к раствору сильной кислоты или основания не превышает определенной предельной величины – В. Буферная емкость определяется числом г/экв сильной кислоты (основания), которое необходимо прибавить к одному литру буферной смеси, чтобы изменить значение рН на единицу, т.е. . Вывод: Свойства буферных систем:
1. 1.[H + ] мало зависит от разбавления.
2. 2.Прибавление сильных кислот (оснований) мало изменяет [H + ] в пределах буферной емкости В.
3. 3.Буферная емкость зависит от буферной силы (от концентрации компонентов).
4. 4.Максимальное действие проявляет буфер в случае, когда кислота и соль присутствуют в растворе в эквивалентных количествах:
Гидролиз – это химическое взаимодействие воды с солями. Гидролиз солей сводиться к процессу передачи протонов. В результате его протекания появляется некоторый избыток водородных или гидроксильных ионов, сообщающих раствору кислотные или щелочные свойства. Таким образом, гидролиз обратен процессу нейтрализации.
Гидролиз солей включает 2 стадии:
акцептор – катионы с вакантными орбиталями)
с) Гидролиз по катиону. K + + HOH à KOH +
Гидролизу подвергаются все соли, образованные с участием слабых
1.Соль, образованная анионом слабых кислот и катионом сильных оснований [CH3COONa, NaClO, KNO2, Na2CO3, Na3PO4]
CH3COONa + HOH « CH3COOH + NaOH
Глубина протекания гидролиза определяется: степенью гидролиза aг:
,
– концентрация соли, подвергшейся гидролизу
– концентрация исходной соли
При гидролизе в системе устанавливается равновесие, характеризующееся Кр
Следовательно, чем меньше константа диссоциации, тем больше константа гидролиза. Степень гидролиза с константой гидролиза связана уравнением:
.
С увеличением разбавления, т.е. уменьшением С0, степень гидролиза увеличивается.
2. 2.Соль, образованная катионом слабых оснований и анионом сильных кислот [NH4Cl, AgNO3, ZnCl2, Fe2(SO4)3]
Равновесная концентрация ионов водорода может быть вычислена: [Н + ]равн = aг × С0 (исходная концентрация соли), где
;
Кислотность среды зависит от исходной концентрации солей подобного вида.
Для определения рН среды раствора сравнивают КД,к и КД,осн
КД,к > КД,осн à среда слабо кислая
рН раствора также не зависит от концентраций соли в растворе.
Соли, образованные многозарядным анионом и однозарядным катионом (сульфиды, карбонаты, фосфаты аммония) практически полностью гидролизуются по первой ступени, т.е. находятся в растворе в виде смеси слабого основания NH4OH и его соли NH4HS, т.е. в виде аммонийного буфера.
Для солей, образованных многозарядным катионом и однозарядным анионом (ацетаты, формиаты Al, Mg, Fe, Cu) гидролиз усиливается при нагревании и приводит к образованию основных солей.
Гидролиз нитратов, гипохлоритов, гипобромитов Al, Mg, Fe, Cu протекает полностью и необратимо, т.е. соли не выделены из растворов.
Соли: ZnS, AlPO4, FeCO3 и др. в воде малорастворимы, тем не менее часть их ионов принимает участие в процессе гидролиза, это приводит к некоторому возрастанию их растворимости.
Сульфиды хрома и алюминия гидролизуются полностью и необратимо с образованием соответствующих гидроксидов.
4. 4.Соли, образованные анионом сильных кислот и сильных оснований гидролизу не подвергаются [KCl, Na2SO4, Ba(NO3)2].
Чаще всего гидролиз ‑ вредное явление, вызывающее различные осложнения. Так при синтезе неорганических веществ из водных растворов в получаемом веществе появляются примеси – продукты его гидролиза. Некоторые соединения из-за необратимо протекающего гидролиза вообще не удается синтезировать.
·-если гидролиз протекает по аниону, то в раствор добавляют избыток щелочи
·-если гидролиз протекает по катиону, то в раствор добавляют избыток кислоты
Итак, первая качественная теория растворов электролитов была высказана Аррениусом (1883 – 1887 г.). По этой теории:
1. 1.Молекулы электролита диссоциируют на противоположные ионы
2. 2.Между процессами диссоциации и рекомбинации устанавливается динамическое равновесие, которое характеризуется КД. Это равновесие подчиняется закону действия масс. Долю распавшихся молекул характеризует степень диссоциации a. КД и a связывает закон Оствальда.
3. 3.Раствор электролита (по Аррениусу) – это смесь молекул электролита, его ионов и молекул растворителя, между которыми отсутствует взаимодействие.
Вывод: теория Аррениуса позволила объяснить многие свойства растворов слабых электролитов при небольшой концентрации.
Однако, теория Аррениуса носила только физический характер, т.е. не рассматривала вопросы:
· По какой причине вещества в растворах распадаются на ионы?
· Что происходит с ионами в растворах?
Дальнейшее развитие теория Аррениуса получила в работах Оствальда, Писаржевского, Каблукова, Нернста и т.д. Например, на важное значение гидратации впервые указал Каблуков (1891), положив начало развитию теории электролитов в направлении, которое указывал Менделеев (т.е. ему впервые удалось объединить сольватную теорию Менделеева с физической теорией Аррениуса). Сольватация – это процесс взаимодействия электролита
молекулами растворителя с образованием комплексных соединений сольватов. Если растворителем является вода, следовательно, процесс взаимодействия электролита с молекулами воды называется гидратацией, а аквакомплексы – кристаллогидратами.
Рассмотрим пример диссоциации электролитов, находящихся в кристаллическом состоянии. Этот процесс возможно представить в две стадии:
1. 1.разрушение кристаллической решетки вещества DН 0 кр > 0, процесс образования молекул (эндотермический)
2. 2.образование сольватированных молекул, DН 0 сольв 0 раств = DН 0 кр + DН 0 сольв и может быть как отрицательной, так и положительной. Например, энергия кристаллической решетки KCl = 170 ккал/моль.
А вот ситуация, когда присутствует только одна из двух названных стадий:
1.растворение газов – нет первой стадии разрушения кристаллической решетки, остается экзотермическая сольватация, следовательно растворение газов, как правило, экзотермично.
2.при растворении кристаллогидратов отсутствует стадия сольватации, остается лишь эндотермическое разрушение кристаллической решетки. Например, раствор кристаллогидрата: CuSO4 × 5H2O (т) à CuSO4 × 5H2O (р)
Раствор безводной соли: CuSO4 (т) à CuSO4 (р) à CuSO4 × 5H2O (р)