Что такое дифференциальное уравнение гармонических колебаний
Дифференциальное уравнение гармонических колебаний и его решение
Гармонические колебания
МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ
Колебаниями называют движения или изменения состояния, повторяющиеся через определенные промежутки времени.
Простейшим видом колебательного движения являются гармонические колебания, когда колеблющаяся величина изменяется со временем по закону синуса или косинуса.
Знак “минус” указывает на противоположность направлений смещения и действия силы упругости.
Чтобы установить характер движения, т.е. зависимость х = f(t), запишем для этого случая дифференциальное уравнение, считая что в рассматриваемой системе движение определяется только наличием силы упругости:
. (1)
Разделим левую и правую части уравнения (1) на mи обозначим отношение положительных величин k и m через w0 2 :
или
. (2)
Решение дифференциального уравнения (2) имеет вид:
Зависимость скорости (v) движения материальной точки от времени при гармоническом колебаниинайдем, взяв производную по времени от формулы (3):
(4)
Из сравнения выражений (3) и (4) видно, что смещение и скорость гармонического колебания различаются по фазе на p /2: скорость максимальна при прохождении точкой положения равновесия (смещение равно нулю), наоборот, при максимальном смещении (равном амплитуде) скорость равна нулю.
Выражение для ускорения получается дифференцированием формулы (4):
(5)
Из формул (3) и (5) следует, что смещение и ускорение изменяются в противофазе.
Лекция №7. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ
5.1. Свободные гармонические колебания и их характеристики.
Колебания − это движения или процессы, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебания, повторяются через равные промежутки времени. Наиболее важными характеристиками колебания являются: смещение, амплитуда, период, частота, циклическая частота, фаза.
Простейший вид периодических колебаний − это гармонические колебания. Гармонические колебания − это периодическое изменение во времени физической величины, происходящее по закону косинуса или синуса. Уравнение гармонических колебаний имеет вид
1) Смещение x − это величина, характеризующая колебания и равная отклонению тела от положения равновесия в данный момент времени.
2) Амплитуда колебаний А − это величина, равная максимальному отклонению тела от положения равновесия.
За период система совершает одно полное колебание.
6) Фаза колебаний ωt + φ0 − фаза указывает местоположение колеблющейся точки в данный момент времени.
5.2. Сложение одинаково направленных и взаимно перпендикулярных гармонических колебаний.
Сложение нескольких колебаний одинакового направления можно изображать графически с помощью метода векторной диаграммы.
1. Сложение одинаково направленных гармонических колебаний.
Определим начальную фазу результирующего колебания.
Из рисунка видно, что начальная фаза результирующего колебания
Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, также совершает гармонические колебания в том же направлении и с той же частотой.
2. Сложение взаимно перпендикулярных гармонических колебаний.
где φ − разность фаз обоих колебаний.
Перепишем это уравнение в следующем виде
После преобразования, получим
Это есть уравнение эллипса, оси которого ориентированы относительно координатных осей произвольно. Ориентация эллипса и величина его полуосей зависят от амплитуд колебаний и разности фаз.
Рассмотрим несколько частных случаев и определим форму траектории для них:
a) разность фаз равна нулю [φ=0]
Рассмотренные три частных случая представлены на рис. 5.2.3, а, б, в. Рис
На рис. 5.2.4 показаны фигуры Лиссажу, которые получаются при соотношении частот 1:2 и различной разности фаз колебаний.
По виду фигур можно определить неизвестную частоту по известной частоте или определить соотношение частот складываемых колебаний.
5.3. Дифференциальное уравнение гармонических колебаний и его решение.
Продифференцируем по времени уравнение гармонических колебаний
и получим выражение для скорости
Продифференцировав уравнение (2) еще раз по времени, получим выражение для ускорения
Как следует из уравнения (5.3.3), ускорение и смещение находятся в противофазе. Это означает, что в тот момент времени, когда смещение достигает наибольшего, положительного значения, ускорение достигает наибольшего по величине отрицательного значения, и наоборот. Амплитуда ускорения равна Аω 2 (рис. 5.3.1).
Из выражения (5.3.3) следует дифференциальное уравнение гармонических колебаний
ω0 − собственная частота осциллятора.
5.4. Энергия гармонических колебаний.
В процессе колебаний происходит превращение кинетической энергии в потенциальную энергию и обратно (рис. 5.4.1). В момент наибольшего отклонения от положения равновесия полная энергия состоит только из потенциальной энергии, которая достигает своего наибольшего значения. Далее при движении к положению равновесия потенциальная энергия уменьшается, при этом кинетическая энергия возрастает. При прохождении через положение равновесия полная энергия состоит лишь из кинетической энергии, которая в этот момент достигает своего наибольшего значения. Далее при движении к точке наибольшего отклонения происходит уменьшение кинетической и увеличение потенциальной энергии. И при наибольшем отклонении потенциальная опять максимальная, а кинетическая энергия рана нулю. И т. д.
Потенциальная энергия тела, совершающего гармонические колебания равна
Кинетическая энергия тела, совершающего гармонические колебания равна
Таким образом, полная энергия гармонического колебания, состоящая из суммы кинетической и потенциальной энергий, определяется следующим образом
Следовательно, полная энергия гармонического колебания
оказывается постоянной в случае гармонических колебаний.
Найдем среднее значение потенциальной энергии за период колебания
Аналогично получается для среднего значение кинетической энергии
Таким образом, и потенциальная, и кинетическая энергии изменяются относительно своих средних значений по гармоническому закону с частотой 2ω и амплитудой ωt kA 2
5.5. Пружинный, математический и физический маятники.
Рассмотрим несколько простейших систем, совершающих свободные гармонические колебания.
Сравнивая уравнения (5.3.7) и (5.5.2) получаем, что пружинный маятник совершает гармонические колебания с частотой
То есть при малых колебаниях угловое отклонение математического маятника изменяется по гармоническому закону с частотой
Период колебаний математического маятника
Согласно основному уравнению динамики вращательного движения получаем
где I − момент инерции маятника относительно оси, проходящей через точку подвеса.
То есть при малых колебаниях угловое отклонение математического маятника изменяется по гармоническому закону с частотой
Период колебаний математического маятника
будет иметь такой же период колебаний, что и данный физический маятник.
Величина lпр (отрезок OO′) называется приведенной длиной физического маятника − это длина такого математического маятника, период колебаний которого совпадает с периодом данного физического маятника. Точка на прямой, соединяющей точку подвеса с центром масс, и лежащая на расстоянии приведенной длины от оси вращения, называется центром качания (О′) физического маятника. Точка подвеса О и центр качания обладают свойством взаимности: при переносе точки подвеса в центр качания прежняя точка подвеса становится новым центром качания.
Гармонические колебания
9 класс, 11 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Механические колебания
Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.
Колебания делятся на два вида: свободные и вынужденные.
Свободные колебания
Это колебания, которые происходят под действием внутренних сил в колебательной системе.
Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.
Вынужденные колебания
А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.
Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.
Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.
Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.
Автоколебания
Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.
У автоколебательной системы есть три важных составляющих:
Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.
Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.
Характеристики колебаний
Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение характеризуется величинами: период, частота, амплитуда, фаза колебаний.
Формула периода колебаний
T = t/N
N — количество колебаний [-]
Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.
Формула частоты
ν = N/t = 1/T
N — количество колебаний [-]
Она используется в уравнении гармонических колебаний:
Гармонические колебания
Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:
Уравнение гармонических колебаний
x — координата в момент времени t [м]
t — момент времени [с]
2πνtв этом уравнении — это фаза. Ее обозначают греческой буквой φ
Фаза колебаний
t — момент времени [с]
Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.
На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.
Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.
На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.
Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.
Математический маятник
Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.
Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.
Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).
Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:
Формула периода колебания математического маятника
g — ускорение свободного падения [м/с^2]
На планете Земля g = 9,8 м/с2
Пружинный маятник
Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.
В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.
|
Знак “минус” указывает на противоположность направлений смещения и действия силы упругости.
Чтобы установить характер движения, т.е. зависимость
х = f(t), запишем для этого случая дифференциальное уравнение, считая что в рассматриваемой системе движение определяется только наличием силы упругости:
Разделим левую и правую части уравнения (1) на mи обозначим отношение положительных величин к и m через w0 2 :
или
. (2)
Решение дифференциального уравнения (2) имеет вид:
Зависимость скорости (v) движения материальной точки от времени при гармоническом колебании найдем, взяв производную по времени от формулы (3):
(4)
Из сравнения выражений (3) и (4) видно, что смещение и скорость гармонического колебания различаются по фазе на p /2: скорость максимальна при прохождении точкой положения равновесия (смещение равно нулю), наоборот, при максимальном смещении (равном амплитуде) скорость равна нулю.
Выражение для ускорения получается дифференцированием формулы (4):
(5)
Из формулы (3) следует, что смещение и ускорение изменяются в противофазе.
Гармонические колебания. Дифференциальное уравнение гармонических колебаний, его решения. Превращение энергии при колебаниях. Векторная диаграмма.
Гармонические колебания. Дифференциальное уравнение гармонических колебаний, его решения. Превращение энергии при колебаниях. Векторная диаграмма.
Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости (качание маятника часов, колебания струны или ножек камертона, напряжение между обкладками конденсатора в контуре радиоприемника, работа сердца).
Простейшими являются гармонические колебания, т.е. такие колебания, при которых колеблющаяся величина (например, отклонение маятника) изменяется со временем по закону синуса или косинуса.
В этом случае упругая сила F1 уравновешивает силу тяжести mg. Если сместить шарик на расстояние х, то на него будет действовать большая упругая сила (F1 +F). Изменение упругой силы по закону Гука пропорционально изменению длины пружины или смещению шарика х:
где k — жесткость пружины. Знак «-» отражает то обстоятельство, что смещение и сила имеют противоположные направления.
Сила F обладает следующими свойствами: 1) она пропорциональна смещению шарика из положения равновесия; 2) она всегда направлена к положению равновесия.
Уравнение второго закона Ньютона для шарика имеет вид:
, или
.
Так как k и m — обе величины положительные, то их отношение можно приравнять квадрату
некоторой величины w0, т.е. мы можем ввести обозначение . Тогда получим
Таким образом, движение шарика под действием силы вида (1) описывается линейным однородным дифференциальным уравнением второго порядка.
Легко убедиться подстановкой, что решение уравнения имеет вид:
где (w0 t + a0) = a — фаза колебаний; a0 — начальная фаза при t = 0; w0 — круговая частота колебаний; A — их амплитуда.
Итак, смещение x изменяется со временем по закону косинуса.
Выясним, как изменяется со временем кинетическая Еk и потенциальная Еп энергия гармонического колебания. Кинетическая энергия равна:
,
Потенциальную энергию находим из формулы потенциальной энергии для упругой деформации и используя (3):
EП.
Складывая (4) и (5), с учетом соотношения , получим:
E = EK + EП = .
Итак, смещение x изменяется со временем по закону косинуса.
График гармонического колебания показан на рисунке. Период этих колебаний находится из формулы:
Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).
Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания
Резонансная частота контура определяется так называемой формулой Томсона:
Уравнение свободных затухающих колебаний можно получить, исходя из того, что в отсутствии внешнего источника напряжения, сумма падений напряжений на индуктивности, емкости и сопротивлении равна нулю для любого момента времени:
Полная энергия колебательного контура
;
;
где We — энергия электрического поля колебательного контура в данный момент времени, С — электроемкость конденсатора, u — значение напряжения на конденсаторе в данный момент времени, q — значение заряда конденсатора в данный момент времени, Wm — энергия магнитного поля колебательного контура в данный момент времени, L — индуктивность катушки, i —значение силы тока в катушке в данный момент времени.
Вынужденные колебания осциллятора при гармоническом воздействии. Дифференциальное уравнение вынужденных колебаний и его решение. Время установления колебаний. Явление резонанса. Связь параметров резонансных кривых с добротностью.
Чтобы в реальной колебательной системе осуществлять незатухающие колебания, надо компенсировать каким-либо потери энергии. Такая компенсация возможна, если использовать какой-либо периодически действующего фактора X(t), который изменяется по гармоническому закону:
При рассмотрении механических колебаний, то роль X(t) играет внешняя вынуждающая сила
Закон движения для пружинного маятника (формула (9) предыдущего раздела) запишется как
Используя формулу для циклической частоты свободных незатухающих колебаний прижинного маятника и (10) предыдущего раздела, получим уравнение
При рассмотрении электрического колебательный контура роль X(t) играет подводимая к контуру внешняя соответсвующим образом периодически изменяющаяся по гармоническому закону э.д.с. или переменное напряжение
Тогда дифференциальное уравнение колебаний заряда Q в простейшем контуре, используя (3), можно записать как
Зная формулу циклической частоты свободных колебаний колебательного контура и формулу предыдущего раздела (11), придем к дифференциальному уравнению
Колебания, которые возникают под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями.
Отражение
Отраже́ние — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными оптическими свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).
Законы отражения. Формулы Френеля
Закон отражения света — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. «угол падения равен углу отражения»
Сдвиг Фёдорова — явление бокового смещения луча света при отражении. Отражённый луч не лежит в одной плоскости с падающим лучом.
В классической электродинамике, свет рассматривается как электромагнитная волна, которая описывается уравнениями Максвелла. Световые волны, падающие на диэлектрик вызывают малые колебания диэлектрической поляризации в отдельных атомах, в результате чего каждая частица излучает вторичные волны во всех направлениях.
16. Условия необходимые для получения интерференционной картины. Когерентность и монохроматичность световых волн. Время и длина когерентности. Радиус когерентности.
Интерференцию света можно объяснить, рассматривая интерференцию волн Необходимым условием интерференции волн является их когерентность, т. е. согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.
Потенциальную энергию находим из формулы потенциальной энергии для упругой деформации и используя (3):
EП.
Складывая (4) и (5), с учетом соотношения , получим:
E = EK + EП = .
Итак, смещение x изменяется со временем по закону косинуса.
График гармонического колебания показан на рисунке. Период этих колебаний находится из формулы:
- Что такое дифференциальное сопротивление
- Что такое дифференциальное уравнение определение