Что такое базисные условия в электротехнике
Система относительных единиц. Приближённое и точное приведение сопротивлений элементов к базисным условиям в ОЕ.
Ответ:Относительные единицы широко используются в электротехнических расчетах, так как позволяют значительно упростить выкладки и придают им более общий характер. Любые физические величины могут быть представлены не в обычных для них соответствующих именованных единицах, а в относительных, безразмерных единицах. В практических расчетах такое представление физических величин придает результатам большую наглядность и позволяет быстрее ориентироваться в порядке определяемых значений. Под относительным значением какой-либо величины следует понимать ее отношение к другой одноименной величине, выбранной за единицу измерения. Следовательно, чтобы выразить отдельные величины в относительных единицах, нужно выбрать те величины, которые должны служить соответственными единицами измерения, т. е. установить базисные единицы или условия. Электрические величины могут быть заданы следующими параметрами: ток I – в амперах (А), напряжение U – в вольтах (В), сопротивление Z – в омах (Ом) и т. д., а также в процентах (%) и относительных единицах (ОЕ), т. е. в долях от некоторых одноименных величин, называемых в дальнейшем базисными. Пусть за базисный ток и базисное междуфазное напряжение
приняты величины Iб и Uб. Тогда базисная мощность трехфазной системы
а базисное сопротивление
Как видно, из четырех базисных единиц Sб, Uб, Iб и Zб две могут быть выбраны произвольно, а две другие получаются из соотношений
Следовательно, для составления эквивалентной схемы замещения в относительных единицах нужно, прежде всего, на одной из ступеней напряжения заданной схемы выбрать базисные единицы. После этого по формулам
следует подсчитать все величины в относительных единицах при базисных условиях, имея в виду, что в каждом из указанных выражений под Uб, Iб и Zб всегда надо понимать базисное напряжение, ток и сопротивление той ступени трансформации, на которой находятся подлежащие приведению величины. При такой последовательности приведения магнитосвязанной схемы коэффициенты трансформации промежуточных трансформаторов учтены в базисных единицах каждой ступени напряжения заданной схемы. Приближенное приведение в относительных единицах. Когда приведение схемы производится приближенно, пересчет к базисным условиям значительно упрощается, если за Uб принимать значение Uср соответствующей ступени. В этом случае можно использовать соотношения
помня, что в последнем из них Iб и Iн должны быть отнесены к одной
ступени напряжения. Что касается ЭДС и напряжений, то при этих условиях их относительные номинальные и базисные значения совпадают. Следовательно, при приближенном приведении выражения (2.45)–(2.47) принимают более простой вид:
— для трансформаторов: — для реакторов:
— для генераторов, синхронных компенсаторов:
Выражение для приближенного приведения сопротивлений воздушных и кабельных ЛЭП остается неизменным (2.47), только Uб = Uср. Формулой приближенного приведения для реакторов следует пользоваться с некоторой осторожностью, так как реактор одного номинального напряжения может быть установлен на стороне меньшего напряжения. Точность расчета не зависит от того, в какой системе единиц выражены параметры схемы замещения. Если схема замещения составлена в системе относительных единиц, то для получения значений токов и напряжений в именованных единицах нужно полученные относительные величины умножить на соответствующие базисные единицы данной ступени трансформации.
Формулы для приведения сопротивлений элементов ЭЭС в относительные единицы при принятых базисных условиях сведены в табл. 2.8.
Расчет токов короткого замыкания (КЗ), пример, методические пособия
В этой статье мы ниже рассмотривает пример расчет из курсового проекта тока КЗ. Скажем сразу, расчетов токов КЗ целое исскуство, и если Вам необходимо рассчитать токи КЗ для реальных электроустановок, то лучше скачать следующие методические пособия разработанные Петербурским энергетическим университетом повышения квалификации и всё сделать по ним.
1. И.Л. Небрат. Расчеты токов короткого замыкания в сетях 0,4 кв — скачать;
2.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 1 — скачать;
3.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 2 — скачать.
Так же полезно будет иметь под рукой программы, которые помогут Вам точно расчитать токи КЗ. Данных программ в настоящее время много и Вы можете найти большое количество различного софта в интернете, на который Вы можете потратить от часа до нескольких дней, чтобы разобраться как в нём работать. Ниже я выложу перечень программ в файле ворд, в котором указаны производители программ и как и где их можно получить (ссылок на скачивание в файле нет). А также выложу одну программу для расчета токов КЗ в сетях 0.4кВ. Данная программа очень древняя, но и такая же надежная как весь совеский аэрофлот. Работает из под DOSa. Эмулятор в файле скачивания. И так:
1. Переченьпрограмм расчетов ТКЗ и уставок РЗ (если Вы знаете какие-то другие программы, то пишите на pue8(г а в)mail.ru). Мы их включим в перечень.;
2. Программа для расчета токов КЗ в сетях 0.4 кВ.
Если Вам необходим расчет для курсового проекта или учебного задания, то ниже приведен не большой расчет, который в этом Вам поможет.
Расчет ведется по среднеэксплуатационным напряжениям, равным в зависимости от номинального напряжения 1150; 750; 515; 340; 230; 154; 115; 37; 24; 20; 18; 15,75; 13,8; 10,5; 6,3; 3,15; 0,66; 0,525; 0,4; 0,23, и среднеэксплуатационным коэффициентам трансформации. В учебном пособии расчеты по определению токов КЗ в относительных (базисных) единицах применительно к схеме Ленинградской АЭС с тремя системами напряжения (750, 330, 110 кВ) и напряжением 6,3 кВ проводились с учетом как действительных, так и среднеэксплуатационных коэффициентов трансформации трансформаторов и автотрансформаторов.
Показано, что расчет по среднеэксплуатационным напряжениям не вносит существенных корректировок в уровни токов КЗ. В то же время требуется серьезная вычислительная работа методом последовательных приближений, чтобы связать уровни напряжения генераторов, значения их реактивных мощностей с учетом коэффициента трансформации АТ связи, рабочих и резервных ТСН и напряжений на приёмных концах линий. При сокращении числа переключений трансформаторов и АТ связи с РПН из соображений надежности работы блоков задача выбора отпаек РПН становится менее актуальной.
Схемы замещения для точек КЗ на напряжениях 6,3 и 0,4 кВ приведены на рис.2.2.
Все сопротивления приводятся к базисным условиям и выражаются либо в относительных единицах (о.е.) либо в именованных (Ом). В начале расчета необходимо определиться, в каких единицах будут производиться вычисления, и сохранять данную систему единиц до конца расчетов. Методики определения токов КЗ с использованием относительных и именованных единиц равноправны.
В работе приводятся методики расчетов в относительных и в именованных единицах, как с учетом действительных коэффициентов трансформации, так и по среднеэксплуатационным напряжениям.
В работе приводятся расчеты как в относительных, так и в именованных единицах для простейших схем 0,4 кВ, где нужно учесть не только индуктивное, но и активное сопротивления.
Рис.2.2. Схема замещения в случае наличия реактора при питании секций 6(10) кВ СН: а – от рабочего ТСН; б – от резервного ТСН Для расчета в относительных единицах задают базисную мощность Sбаз, базисное напряжение Uбаз и вычисляют базисные токи Iбаз. В качестве базисной целесообразно принять номинальную мощность трансформатора СН: Sбаз = SТСН, МВА. Базисное напряжение принимают, как правило, равным для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ. Заметим, что при расчете в относительных единицах можно выбрать любые другие значения Sбаз, Uбаз.
Базисные токи в точках короткого замыкания К1 – К4, кА:
При расчетах в именованных единицах задают только базисное напряжение Uбаз – напряжение той точки, для которой рассчитываются токи КЗ: для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ.
Сопротивления сети в точках включения рабочего хсист1 и резервного хсист2 трансформаторов СН приводятся к базисным условиям по формулам:
в относительных единицах:
где uкв-н – напряжение короткого замыкания ТСН между обмоткой ВН и обмотками НН, включенными параллельно, о.е.;
uкн-н – напряжение короткого замыкания ТСН между обмотками НН, приведенное к половинной мощности ТСН, о.е.;
SТСН – номинальная мощность ТСН, МВА.
При использовании справочников для определения напряжения короткого замыкания uкн-н следует обращать внимание на указанный в примечаниях смысл каталожных обозначений. Если напряжение короткого замыкания uк НН1-НН2 отнесено в каталоге к номинальной мощности трансформатора, то данное uк НН1-НН2 необходимо пересчитать для половинной мощности, разделив на 2. В случае неверной подстановки в формулы (2.5), (2.5′) зачастую сопротивление хв получается отрицательным. Например, для ТСН марки ТРДНС-63000/35 в табл.3.5 справочника uкв-н = 12,7% и uкн-н = 40% отнесены к полной мощности трансформатора – см. примечание к таблице.
В этом случае в скобках формул (2.5), (2.5′) должно стоять выражение (0,127 – 20,2 ). Например, для РТСН марки ТРДН-32000/150 в табл.3.7 справочника uкв-н = 10,5% и uкн-н = 16,5% отнесены к половинной мощности трансформатора. При этом в скобках формул (2.5), (2.5′) должно быть (0,105 – 20,165 ). На блоках мощностью до 120 МВт используются двухобмоточные трансформаторы собственных нужд без расщепления. В этом случае сопротивление ТСН или РТСН вычисляется по формулам:
в относительных единицах:
где uкв-н – напряжение короткого замыкания трансформатора между обмотками высшего и низшего напряжений, о.е.;
Sбаз, SТСН, SРТСН имеют тот же смысл, что и в формулах (2.5), (2.5′), (2.6),(2.6′).
Сопротивление участка магистрали резервного питания:
в относительных единицах:
где Худ – удельное сопротивление МРП, Ом/км;
МРП – длина МРП, км;
Uср – среднеэксплуатационное напряжение на первой ступени трансформации, кВ.
Сопротивление трансформатора собственных нужд 6/0,4 кВ:
в относительных единицах:
где SТ 6/0,4 – номинальная мощность трансформатора, МВА.
Аналогично рассчитывается сопротивление трансформатора 10,5/0,69 кВ.
Сопротивление одинарных токоограничивающих реакторов Хр задается в Омах и для приведения к базисным условиям используют формулы:
в относительных единицах:
В некоторых каталогах сопротивление токоограничивающих реакторов Хр приводится в процентах и для приведения к базисным условиям используют формулы:
в относительных единицах:
где Iрн – номинальный ток реактора, кА, определяемый по мощности тех электродвигателей, которые предполагается включить за реактором.
Индуктивное сопротивление реактора Хр определяют по допустимому току КЗ за реактором Iп0доп. Значение Iп0доп связано с номинальным током отключения предполагаемых к установке за реактором выключателей (Iп0доп — Iоткл.н).
Одновременно происходит и снижение теплового импульса тока КЗ за реактором Вдоп, что благоприятно для выбора сечения кабелей по условиям термической стойкости и невозгорания. При определении Iп0доп и Вдоп следует учитывать, что реактор не в состоянии ограничить подпитку точки КЗ от двигателей за реактором Iпд0 и ухудшает условия их пуска и самозапуска, т.е.
где Iпс – периодическая составляющая тока подпитки точки КЗ от ветви, в которую предполагается включить реактор;
Iпд0 – ток подпитки от двигателей за реактором.
Потеря напряжения U в одинарном реакторе при протекании токов рабочего режима I:
Сопротивление эквивалентного двигателя на каждой секции определяется через его мощность или через коэффициент загрузки Кзгр и номинальную мощность трансформатора СН. При отсутствии токоограничивающего секционного реактора и использовании на первой ступени трансформатора с расщепленными обмотками имеем:
В случае различия расчетных мощностей двигательной нагрузки Sд1, Sд2, в дальнейшем расчете сопротивления эквивалентного двигателя будет участвовать максимальная из них, вне зависимости от способа питания секций 6,3 кВ (от рабочего и резервного ТСН).
При использовании секционного токоограничивающего реактора определяется его проходная мощность Sр по формуле (2.12) и далее – мощности двигателей:
при использовании РТСН для замены рабочего ТСН энергоблока, работающего на мощности. Наличие предварительной нагрузки РТСН характерно для блоков генератор-трансформатор без генераторных выключателей. При наличии выключателя в цепи генераторного токопровода, что предусмотрено действующими нормами технологического проектирования, пуск и останов энергоблока обычно осуществляется от рабочего ТСН и надобности в использовании РТСН в этих режимах не возникает. Поэтому для схем с генераторными выключателями можно принимать ТСН згр к = РТСН згр к = 0,7. При отсутствии выключателей в цепи генераторного токопровода РТСН згр к возрастает.
Наличие секционного токоограничивающего реактора приводит к изменению распределения двигателей по сравнению с вариантом без реактора и к изменению доли подпитки ими точек КЗ до и после реактора. При КЗ в точке К2 не следует учитывать подпитку от двигателей, включенных до реактора, а при КЗ в точке К1 не следует учитывать подпитку от двигателей, включенных за реактором.
По вычисленным мощностям двигателей Sд определяют приведенные сопротивления двигательной нагрузки в вариантах при отсутствии реактора и при его наличии:
Система относительных единиц при расчетах КЗ
Выражение электрических величин в относительных единицах широко применяется в теории электрических машин. Это обусловлено тем, что представление любой величины не в именованных, а относительных единицах существенно упрощает теоретические выкладки и придает результатам расчета большую наглядность. Достоинства системы относительных единиц:
1) не нужно следить за обозначениями;
2) позволяет выбрать удобные для расчета числа;
3) основа теории подобия позволяет связать задачи поля с задачами расчета цепей:
;
;
;
, где
,
Тогда: ;
;
.
Под относительным значением какой-либо величины следует понимать ее отношение к другой одноименной величине, принятой за базисную:
. (4.10)
Следовательно, перед тем как представить какие-либо величины в относительных единицах, надо выбрать базисные единицы.
За базисный ток и базисное линейное напряжение принимаются произвольные величины Iб, Uб. Тогда базисная мощность трехфазной цепи будет определяться формулой:
, (4.11)
а базисное сопротивление:
. (4.12)
единицах при выбранных базисных условиях будут вычисляться по формулам:
;
;
; (4.13)
;
;
; (4.14)
. (4.15)
Здесь U, I, S, Z − параметры в именованных единицах. При расчетах токов КЗ приняты размерности расчетных параметров кВ, кА, МВ·А, МВт, Мвар, Ом. При этом все формулы не требуют дополнительных согласующих коэффициентов.
При задании паспортных данных оборудования в относительных единицах их параметры относят к номинальным параметрам элементов:
;
;
;
;
. (4.16)
Так, относительное сопротивление при номинальных условиях показывает относительное падение напряжения на элементе при протекании номинального тока, что придает физическую наглядность параметру:
.
При расчетах в системе относительных единиц исходные параметры обычно задаются либо в именованных единицах (и.е.) либо в относительных единицах (о.е.) при номинальных условиях элемента. При построении расчетных схем замещения требуется их перевод в относительные единицы при базисных условиях с обязательным приведением параметров на основную ступень.
При этом для построения расчетных формул требуется решение двух задач:
1) заданы параметры в и.е. − требуется их перевод в о.е. при базисных условиях с приведением на основную ступень;
2) заданы параметры в о.е. при номинальных условиях − требуется их перевод в о.е. при базисных условиях с приведением на основную ступень.
Рассмотрим порядок построения расчетных формул на примере сопротивлений и ЭДС.
1) Заданы ,
.
(4.17)
Здесь: − базисное напряжение, приведенное на расчетную ступень.
(4.18)
Формулы (4.17) и (4.18) являются формулами точного приведения. При приближенном приведении
; (4.19)
, (4.20)
где − номинальное напряжение ступени, где установлен элемент.
При обычно используемом условии формулы принимают вид:
;
. (4.21)
2) Заданы ,
.
(4.22)
. (4.23)
Здесь − номинальное паспортное напряжение элемента.
Формулы (4.22) и (4.23) являются формулами точного приведения. При приближенном приведении
(4.24)
(4.25)
При обычно используемых условиях и
формулы принимают вид:
. (4.26)
В дальнейшем индекс приведения будет опускаться.
4.4. Определение сопротивления элементов электрических систем и их схемы замещения
Формулы определения сопротивлений приведены в относительных единицах при приближенном приведении к базисным условиям.
Генераторы. У генераторов практически никогда не учитывается активное сопротивление, так как оно пренебрежительно мало по сравнению с индуктивным. Номинальное сопротивление генератора в относительных единицах может быть определено из паспортных данных:
− ,
− синхронные сопротивления по продольной и поперечной оси, которые характеризуют установившийся режим.
− и
,
и
− переходные и сверхпереходные сопротивления в момент времени t = 0.
− ,
− сопротивления обратной и нулевой последовательностей.
Номинальное сопротивление генератора в относительных единицах при базисных условиях определяется формулой: .
Двигатели. Параметры синхронных электродвигателей определяются аналогично генераторам.
Реакторы. Токоограничивающие реакторы могут иметь различное устройство и конструктивное исполнение, а также технические и технико-экономические характеристики и параметры.
Линейные реакторы, включаемые последовательно в соответствующую линию, ограничивают ток КЗ и поддерживают относительно высокий уровень остаточного напряжения. Сопротивление линейного реактора можно определить по формуле:
, где
лежит в пределах 0,1…0,4 Ом.
Сдвоенный реактор обладает лучшими характеристиками. Между ветвями реактора существует магнитная связь, которая в сквозном режиме позволяет уменьшить потери напряжения в реакторе. Коэффициент магнитной связи идентичных ветвей обмотки реактора равен:
.
Сдвоенный реактор имеет 3 режима работы (рис. 4.11)
Одноцепный режим (рис. 4.11а). В одноцепном режиме общее сопротивление реактора определятся как сопротивление одной его ветви:
Рис. 4.11. Режимы работы сдвоенного реактора
Двухцепный (сквозной) режим (рис. 4.11б). Двухцепный режим – это нормальный режим работы реактора. В таком режиме магнитные потокиветвейнаправлены встречно, что вызывает уменьшение индуктивного сопротивления одной ветви.
Индуктивное сопротивление одной ветви: .
Общее индуктивное сопротивление: .
Продольный режим (рис. 4.11в). В продольном режиме магнитные потоки ветвейнаправлены согласно и индуктивность ветви увеличивается.
.
Каждый режим работы реактора может быть представлен своей схемой замещения. Активное сопротивление обычно не учитывается, но оно может быть найдено по потерям активной мощности в реакторе. На рисунке 3 приведена общая схема замещения сдвоенного реактора.
Рис. 4.12. Обозначение сдвоенного реактора и его схема замещения
Рассмотрим пример. Используя схему замещения (рис. 4.12), определим сопротивление реактора в одноцепном, сквозном и продольном режимах. Коэффициент связи равен 0,5.
В режиме КЗ (одноцепном):
.
В нормальном (сквозном) режиме:
.
В продольном режиме:
.
Двухобмоточный трансформатор. Схема замещения двухобмоточного трансформатора приведена на рисунке 4.13.
Рис. 4.13. Условное обозначение и схема замещения двухобмоточного трансформатора
Параметры схемы замещения производятся по данным опытов холостого хода и короткого замыкания.
Опыт холостого хода (рис. 4.14) позволяет определить ток холостого хода
, потери в ветви намагничивания
и сопротивление холостого хода.
Потери холостого хода:
Сопротивление холостого хода:
;
.
Рис. 4.14. Опыт холостого хода
Опыт короткого замыкания (рис. 4.15) позволяет определить напряжение короткого замыкания и потери короткого замыкания:
, следовательно, индуктивное сопротивление рассеивания определяется как
.
Напряжение короткого замыкания .
Рис. 4.15. Опыт короткого замыкания
Потери короткого замыкания:
Активное сопротивление трансформатора:
Пренебрегая ветвью намагничивания , получим упрощенную схему замещения (рис. 4.16):
Рис. 4.16. Схема замещения
Активное сопротивление трансформатора в относительных единицах, приведенное к базисным условиям:
,
где − номинальное активное сопротивление в относительных единицах.
Трехобмоточный трансформатор
Рис. 4.17. Условное обозначение и схема замещения трёхобмоточного трансформатора
В относительных единицах напряжения короткого замыкания обмоток будут равняться их сопротивлениям рассеивания и их значения для обмоток высшего, среднего и низшего напряжений трехобмоточного трансформатора могут быть определены по формулам:
,где
;
Данные формулы справедливы и для автотрансформатора,обычно в расчеты не вводится.
Трансформатор с расщепленной обмоткой. На электростанциях и подстанциях применяются силовые трансформаторы и автотрансформаторы с расщепленной обмоткой низшего напряжения, так как это позволяет существенно снизить ток КЗ в сетях низшего напряжения. Повышающие трансформаторы и автотрансформаторы с расщепленной обмоткой используются для формирования укрупненных блоков электростанций, особенно на ГЭС.
Рис. 4.18 Условное обозначение трансформатора с расщепленной обмоткой:
а) обмотка низшего напряжения расщеплена на 2 части;
б) обмотки низшего напряжения расщеплена на 3 части
Сопротивление трансформатора с расщепленной обмоткой характеризуется следующими параметрами:
− сопротивление расщепления , равное сопротивлению между выводами двух произвольных частей расщепленной обмотки;
− сквозное сопротивление , равное сопротивлению между выводами обмотки высшего напряжения и объединенными выводами частей расщепленной обмотки низшего напряжения;
− коэффициент расщепления , равный отношению сопротивления расщепления к сквозному сопротивлению:
При расщеплении обмотки на две части
(рис. 4.18а), а при расщеплении на три части
(рис. 4.18б). Коэффициент расщепления также зависит от исполнения трансформатора, например, для трансформатора броневого исполнения (рис. 4.18а) при отсутствии других данных следует принимать
. Для группы однофазных трансформаторов
.
Рис. 4.19 Схемы замещения трансформатора с расщепленной обмоткой
Сопротивление рассеивания обмоток трансформатора:
При расщеплении низшей обмотки на 2 части (рис. 4.19а) сопротивление обмоток низшего напряжения:
Сопротивление обмотки высшего напряжения:
Для трансформатора стрежневого типа и схемы замещения для активных и индуктивных сопротивлений приведены на рис. 4.19б, в.
При расщеплении низшей обмотки на 3 части (рис. 4.19г) сопротивление обмотки высшего напряжения: .
Сопротивление обмоток низшего напряжения:
Пример. Автотрансформатор с расщепленной обмоткой низшего напряжения на 2 части (рис. 4.20).
Сопротивление расщепленных обмоток низшего напряжения:
Сопротивления обмоток высшего, среднего и низшего напряжений:
Рис. 4.20. Автотрансформатор с расщепленной обмоткой и его схема замещения