Для чего на коленвале противовесы

Для чего на коленвале противовесы. Смотреть фото Для чего на коленвале противовесы. Смотреть картинку Для чего на коленвале противовесы. Картинка про Для чего на коленвале противовесы. Фото Для чего на коленвале противовесы
В двигателе нет «главных» и «неглавных» деталей — все части мотора одинаково важны, и выход из строя любой из них сразу сказывается на работоспособности силовой установки. Но есть одна деталь, которая делает двигатель двигателем — это коленчатый вал, преобразующий возвратно-поступательное движение поршней и шатунов во вращательное движение. О коленчатом вале, его устройстве и роли в двигателе читайте в этой статье.

Одна из самых серьезных проблем техники — преобразование возвратно-поступательного движения во вращательное, и наоборот. Человек решил эту проблему еще 2,5 тысячи лет назад, и созданное тогда решение практически в неизменном виде используется и по сей день. Это — кривошип.

В современных двигателях внутреннего сгорания также необходимо преобразование возвратно-поступательного движения поршней и шатунов во вращательное движение вала, маховика и, в конечном итоге — колес. С этой задачей справляется все тот же кривошип, а точнее — кривошипно-шатунный механизм, главной деталью которого является коленчатый вал.

Устройство коленчатого вала

Для чего на коленвале противовесы. Смотреть фото Для чего на коленвале противовесы. Смотреть картинку Для чего на коленвале противовесы. Картинка про Для чего на коленвале противовесы. Фото Для чего на коленвале противовесы
Коленвал имеет довольно-таки простое устройство: он состоит из колен, содержащих коренные и шатунные шейки, разделенные щеками. Коренные шейки — это ось коленвала, поэтому они проходят точно по его центру. Шатунные шейки, как понятно из названия, служат для крепления и приема усилий от шатунов. Так как коленчатый вал — это кривошип, то шатунные шейки смещены относительно оси вала и удерживаются с помощью щек.

Количество шатунных шеек равно количеству цилиндров, однако в большинстве V-образных двигателей на одну шейку опираются сразу два цилиндра. С другой стороны, на современных V-образных двигателях можно встретить коленвалы, в которых на каждый шатун приходится одна шейка, но спаренные шейки при этом сдвинуты относительно друг друга на 18 градусов. Коренные шейки имеют больший диаметр, чем шатунные.

Щеки выполняют несколько функций. Они не только соединяют шейки в единую конструкцию, но также играют роль противовесов для уравновешивания шатунных шеек и шатунов. Отсутствие противовесов грозит возникновением значительных вибраций, что в высокооборотных двигателях может привести к разрушению двигателя.

Наибольшие нагрузки в коленвале приходятся на места соединения шеек и щек, поэтому для равномерно распределения нагрузок на эти участки они выполняются галтелью, то есть — переход от шейки к щеке выполнен с радиусом закругления.

В целом, положение шеек и щек в коленчатом валу должно обеспечивать наиболее эффективное преобразование возвратно-поступательного движения во вращательное, предотвращать возникновение вибрации и колебаний, уравновешивать двигатель и, наконец, надежно противостоять изгибающим нагрузкам.

Полноопорные и неполноопорные коленчатые валы

Коренные шейки коленвала служат не только осью, но также и опорой всего кривошипно-шатунного механизма. Нагрузки от коленчатого вала передаются двигателю через коренные шейки, которые опираются на коренные подшипники, заделанные в картер мотора.

Существует два вида коленчатых валов, отличающихся по типу опоры:

— Полноопорные. В таких валах коренных шеек больше, чем шатунных, при этом коренные шейки расположены по обеим сторонам шатунных шеек, чередуясь с ними (и коренных шеек на одну больше, чем шатунных);
— Неполноопорные. В таких коленчатых валах коренных шеек меньше, чем шатунных, при этом с обеих сторон щеки может быть две смещенных на определенный угол шатунных шейки.

Неполноопорные коленвалы имеют более простую конструкцию, однако они из-за меньшего количества точек опоры на картер двигателя должны быть более жесткими и прочными, а значит — и более тяжелыми. Поэтому сегодня большее распространение получили полноопорные коленчатые валы, которые при более сложном производстве получаются более легкими и надежными.

Подшипники

Коленчатый вал опирается на подшипники скольжения (также называемые вкладышами), заделанные в картер двигателя. Также подшипники скольжения предусмотрены для опоры шатунов на коленчатый вал. Эти подшипники выполнены из стальной ленты, покрытой специальным антифрикционным сплавом, снижающим силы трения между подшипником и валом.

Смазка коленвала и деталей КШМ

Особый вопрос — смазка частей коленчатого вала и всего кривошипно-шатунного механизма. Вопрос этот действительно очень важен, так как для опоры коренных шеек на картер и шатунов на шатунные шейки используются подшипники скольжения, которые могут нормально работать только при постоянном наличии смазки.

Для подачи масла к трущимся частям и деталям внутри коленвала во всех его шейках и щеках предусмотрены каналы. А чтобы обеспечить надежное поступление масла к подшипникам, его подача осуществляется под давлением.

Взаимодействие коленчатого вала с другими деталями

Как было сказано, коленвал принимает нагрузки от шатунов, преобразуя их в крутящий момент. Этот момент передается через хвостовик (заднюю выходную часть вала) маховику и далее — трансмиссии. Через другую часть вала — переднюю, или носок — крутящий момент передается на вал газораспределительного механизма и вспомогательные системы двигателя.

Также на носке часто монтируется гаситель крутильных колебаний — несложное устройство из двух дисков, соединенных через пружины, резиновую прокладку, силиконовую жидкость или иной упругий материал. Гаситель сводит к минимуму возникающие во время работы двигателя крутильные колебания вала, снижая риск его повреждения.

Производство коленчатых валов

Коленчатый вал во время работы испытывает большие нагрузки, поэтому данная деталь даже для мощных дизельных двигателей изготавливается цельной. Сборные коленвалы показали свою несостоятельность в высокооборотных двигателях, и в автомобильных моторах сейчас они практически не используются.

Для изготовления валов применяются сталь или чугун. Коленчатые валы из чугуна производятся методом отливки, валы из стали — ковкой или штамповкой. В дальнейшем оба вида коленвалов подвергаются разнообразной механической обработке для достижения необходимых параметров — чистоты поверхности шеек, балансировки и т.д.

Если Вы заметили ошибку, неточность или хотите дополнить материал, напишите об этом в комментариях, и мы исправим статью!

Источник

Коленчатый вал двигателя внутреннего сгорания: устройство, назначение, принцип работы

Для чего на коленвале противовесы. Смотреть фото Для чего на коленвале противовесы. Смотреть картинку Для чего на коленвале противовесы. Картинка про Для чего на коленвале противовесы. Фото Для чего на коленвале противовесы

Коленчатый вал (коленвал) двигателя – это одна из важных деталей КШМ, расположенная в цилиндровом блоке. Вал преобразует поступательные движения поршней во вращательный момент, который через трансмиссию передается на колеса автомобиля.

Устройство коленчатого вала

Сложная конструкция коленвала представлена в виде расположенных по одной оси колен – шатунных шеек, соединенных специальными щеками. При этом количество колен зависит от числа, формы и месторасположения цилиндров, а также тактности двигателя автомобиля. С помощью шатунов шейки соединяются с поршнями, совершающими поступательно-возвратные движения.

В зависимости от расположения коренных шеек коленвал может быть:

В большинстве современных автомобильных двигателей применяются полноопорные коленвалы.

Итак, основными элементами коленвала являются:

Для чего на коленвале противовесы. Смотреть фото Для чего на коленвале противовесы. Смотреть картинку Для чего на коленвале противовесы. Картинка про Для чего на коленвале противовесы. Фото Для чего на коленвале противовесы

Фронтальная и тыльная сторона коленчатого вала уплотняется защитными сальниками, которые препятствуют протеканию масла там, где выступающие части маховика выходят за пределы блока цилиндров.

Вращательные движения всего механизма коленвала обеспечивают подшипники скольжения – тонкие стальные вкладыши, с защитным слоем антифрикционного вещества. Для предотвращения осевого смещения вала, применяется упорный подшипник, установленный на коренной шейке (крайней или средней).

Коленвал двигателя изготавливается из износостойкой стали (легированной или углеродистой) или модифицированного чугуна, методом штамповки или литья.

Принцип действия коленчатого вала

Несмотря на сложность самого устройства, принцип работы коленвала достаточно прост.

В камерах сгорания происходит процесс сжигания поступившего туда топлива и выделения газов. Расширяясь, газы воздействуют на поршни, совершающие поступательные движения. Поршни передают механическую энергию шатунам, соединенным с ними втулкой или поршневым пальцем.

Шатун в свою очередь соединен с шейкой коленвала подшипником, вследствие чего каждое поступательное поршневое движение преобразуется во вращательное движение вала. После того как происходит разворот на 180˚, шатунная шейка движется уже в обратном направлении, обеспечивая возвратное движение поршня. Затем циклы повторяются.

Процесс смазки коленчатого вала

Смазка коленвала обеспечивается за счет шатунных и коренных шеек. Важно помнить, что смазка коленчатого вала всегда происходит под давлением. Каждая коренная шейка обеспечена индивидуальным подводом масла от общей смазочной системы. Поступившее масло попадает на шатунные шейки по специальным каналам, расположенным в коренных шейках.

Источник

Большая Энциклопедия Нефти и Газа

Противовесы коленчатого вала сортируют на группы через 5 г. Какие дополнительные усилия возникнут в подшипниках коленчатого вала с радиусом кривошипа 60 мм, вращающегося с числом оборотов 4000 в минуту, в результате постановки противовеса соседней большей весовой группы. [1]

На первом противовесе коленчатого вала должны быть выбиты товарный знак ремонтного предприятия, номер ремонтного воздействия и дата ремонта. [5]

Для облегчения поршня и свободного прохода противовесов коленчатого вала при нижних положениях поршней нерабочая часть юбки вырезается. [6]

Для облегчения поршня и свободного прохода противовесов коленчатого вала при нижних положениях поршней нерабочая часть юбки вырезается. Чтобы при нагреве поршни меньше расширялись, в поршни двигателя ЗИЛ-Ill при их изготовлении заделаны пластины из малорасширяющейся стали. [7]

Два типа специальной подвески маятникового гасителя на противовесе коленчатого вала показаны на рис. 25; в обоих случаях обеспечивается весьма малое значение расчетной длины маятника. [8]

Для гашения колебаний коленчатого вала авиационного мотора в противовесе коленчатого вала делается желоб в форме дуги окружности радиуса г с центром, смещенным на АВ 1 от оси вращения; но желобу может свободно двигаться дополнительный противовес, схематизируемый в виде материальной точки. Угловая скорость вращения вала равна и. [9]

Для гашения колебаний коленчатого вала авиа ционного мотора в противовесе коленчатого вала делается желоб в форме дуги окружности радиуса г с центром, смещенным на АВ I от оси вращения; по желобу может свободно двигаться дополнительный противовес, схематизируемый в виде материальной точки. Угловая скорость вращения вала равна а. [10]

Источник

Содержание

Коленчатый вал состоит из кривошипов (колен) 2 (рис. 10.1а), передней шейки 1, шейки 4 отбора мощности и жесткого соединительного фланца 3.

Условия работы, нагрузки

Коленчатый вал передает крутящий момент потребителю энергии и воспринимает нагрузки, создаваемые силами давления газов и инерции поступательно движущихся и вращающихся масс. Эти силы определяют наличие в валах циклически действующих сжимающих и растягивающих нагрузок и переменных скручивающих и изгибающих моментов. Составляющие силы Рш (рис. 10.1 в), производной от суммы сил давления газов и инерции, тангенциальная Т и радиальная Z и их реакции на рамовых подшипниках изгибают шатунную шейку (опасное сечение I-I), щеки кривошипа (опасное сечение II-II) и рамовые шейки (опасное сечение III-III).

Для чего на коленвале противовесы. Смотреть фото Для чего на коленвале противовесы. Смотреть картинку Для чего на коленвале противовесы. Картинка про Для чего на коленвале противовесы. Фото Для чего на коленвале противовесы

Для чего на коленвале противовесы. Смотреть фото Для чего на коленвале противовесы. Смотреть картинку Для чего на коленвале противовесы. Картинка про Для чего на коленвале противовесы. Фото Для чего на коленвале противовесы

Помимо рассмотренных сил на коленчатый вал действуют неуравновешенные силы инерции поступательно движущихся и вращающихся масс и их моменты.

Особое место в нагружении вала и его поломках вызывают крутильные и осевые колебания вала, создаваемые переменным крутящим моментом. Наиболее опасную величину напряжения кручения приобретают при резонансе вынужденных и собственных колебаний вала (работа двигателя в зоне критических оборотов). Опасными местами, где чаще всего действуют концентраторы напряжения, являются галтели перехода шеек к щекам (см. рис. 10.3), испытывающие попеременные напряжения сжатия и расширения. Концентраторами напряжений могут быть также глубокие царапины и надрезы на шейках вала, а также дефекты материала, наличие в нем посторонних включений, нарушения технологии ковки и термической обработки.

Учитывая циклический характер всех рассмотренных сил и моментов, поломки вала обычно носят усталостный характер.

К конструкции коленчатого вала предъявляют следующие основные требования: возможно большая жесткость и прочность при наименьшей массе; высокая износостойкость шеек; динамическая уравновешенность (все массы должны быть расположены так, чтобы не было неуравновешенных пар).

Материал коленчатых валов: углеродистая сталь 35, 40, 45, 50, 35Г, 45Г (для МОД и СОД средней мощности), легированная сталь 40ХН, 40ХНВА и др. (для ВОД и мощных СОД). Легированная сталь не увеличивает жесткости вала, но повышает его усталостную прочность и износостойкость.

Валы дизелей малой и средней мощности иногда изготавливают из высокопрочного модифицированного чугуна со сферическим графитом ВЧ45-5, ВЧ50-2 и др. Преимущества чугунных валов: меньшая стоимость изготовления; возможность использования более рациональных конструктивных форм (с точки зрения снижения концентрации напряжений); меньшая чувствительность к концентраторам напряжений (рискам, царапинам и т.п.); повышенная износостойкость шеек (за счет наличия в чугуне графита и хорошей смачиваемости шеек маслом). Недостатки чугунных валов: пониженная жесткость и прочность и трудность обнаружения внутренних литейных пороков.

Для чего на коленвале противовесы. Смотреть фото Для чего на коленвале противовесы. Смотреть картинку Для чего на коленвале противовесы. Картинка про Для чего на коленвале противовесы. Фото Для чего на коленвале противовесы

Кривошипы (колена) вала изготавливают цельными (рис. 10.4а), полусоставными (рис. 10.46) и составными (рис. 10.4е). В полусоставных и составных кривошипах соединение отдельных частей обеспечивается горячей посадкой или холодом (без шпонок или стопоров). Достаточное обжатие достигается натягом 1/800-1/1000 при нагреве до 200-250°С.

Полусоставные и составные кривошипы применяют в МОД, главным образом для валов с большими диаметрами шеек.

Угол заклинки кривошипов и порядок вспышек в цилиндрах выбирают из условий наибольшей равномерности вращающего момента, наиболее полного уравновешивания, равномерной нагрузки на рамовые подшипники, наименьших дополнительных напряжений от крутильных колебаний.

Рамовые и шатунные шейки обычно имеют одинаковый диаметр; у СОД и ВОД для обеспечения демонтажа шатуна через цилиндр диаметр шатунной шейки иногда уменьшают на 10-15%. Места переходов шеек к щекам для уменьшения концентрации напряжений выполняют плавными с возможно большими радиусами закруглений. Сверления в шейках могут иметь разное назначение: для уменьшения массы вала (сверления в рамовых и шатунных шейках); для уменьшения центробежных сил инерции неуравновешенных вращающихся масс (сверления в шатунных шейках); для подвода смазки к кривошипным подшипникам и контроля качества поковки вала; для искусственного уравновешивания без применения противовесов (сверления различного диаметра только в некоторых шатунных шейках). В современных МОД сверления часто не делают, так как они являются концентраторами напряжений и существенно снижают прочность вала.

У некоторых ВОД вследствие больших центробежных сил нагруженной оказывается вся поверхность рамового подшипника. В этом случае масло подводят не через подшипники, а через торец коленчатого вала.

При использовании для канализации масла облегчающих осевых сверлений в шейках (такие сверления делают большего диаметра) их торцы уплотняют заглушками 5 (рис. 10.4д). Однако заглушки и большой объем масла в облегчающих сверлениях увеличивают вращающиеся массы, а на заполнение больших объемов требуется время. Для устранения этого недостатка в косых сверлениях кривошипа иногда развальцовывают латунные трубки 7 (рис. 10.4в). Для ускорения подачи масла в пусковой период в ряде случаев в осевых сверлениях рамовых (или рамовых и шатунных) шеек устанавливают вытеснители 9 (рис. 10.ж). В ВОД в радиальные сверления шатунных шеек часто завальцовывают короткие сепарационные трубки 8 (рис. 10.4.ж ).

При вращении вала механические примеси центробежной силой отбрасываются к периферии и откладываются на поверхности осевого сверления шейки, а в трубку поступает чистое масло (иногда для этого радиальное сверление в шейке располагают в плоскости, перпендикулярной плоскости колена вала).

Радиальные сверления в шейках стремятся расположить в области минимальных давлений на шейку; в реверсивных дизелях предусматривают обычно два сверления в шатунной шейке.

Щеки кривошипа могут иметь различную конструктивную форму. Прямоугольные щеки (рис. 10.4з) просты в изготовлении; однако нерациональное использование материала (опасным является сечение х-х, а ширина щеки одинакова по всей длине) увеличивает неуравновешенные вращающиеся массы, центробежные силы которых дополнительно нагружают рамовые подшипники. Для устранения этого недостатка и уменьшения общей массы вала углы щек часто срезают (рис. 10.4а, б, г, ж).

Овальные щеки (рис. 10.4u) являются наиболее рациональными в отношении прочности, массы и равномерного распределения напряжений, но сложны в изготовлении.

Круглые щеки (рис. 10.4к) менее рациональны в сравнении с овальными, но проще в изготовлении.

Фигурные щеки (рис. 10.46, в) применяют в полусоставных и составных кривошипах. Их форма обусловлена необходимостью создания «кольца» для надежного обжатия шеек.

Для повышения усталостной прочности коленчатого вала тщательно обрабатывают и полируют напряженные места (особенно галтели и выходы радиальных сверлений в шейках), а галтели сопряжения шеек и щек выполняют с возможно большими радиусами; радиальные сверления в кривошипной шейке располагают не в плоскости кривошипа, а под углом 90 или 270°. Применяют «перекрытие» рамовых и кривошипной шеек, «подвнутрение» галтелей в щеку или в шейку. Осевые сверления в кривошипных шейках растачивают эксцентрично; внутренние полости шеек чугунных валов выполняют бочкообразной формы.

Противовесы на коленчатом валу устанавливают для уравновешивания свободных сил инерции (неуравновешенных путем заклинки кривошипов) и их моментов; разгрузки рамовых подшипников (за счет уравновешивания центробежных сил инерции неуравновешенных вращающихся масс) и уравновешивания внутренних моментов центробежных сил и передающихся через рамовые подшипники на остов дизеля. К щекам кривошипа противовесы чаще всего крепят болтами, для разгрузки которых от срезающей силы применяют замки различных типов или шпонки (рис. 10.5а, б). Для МОД противовесы часто отковывают или отливают заодно со щеками (рис. 10.5в). Для уменьшения массы противовеса его центр тяжести должен быть расположен возможно дальше от оси вала.

Для чего на коленвале противовесы. Смотреть фото Для чего на коленвале противовесы. Смотреть картинку Для чего на коленвале противовесы. Картинка про Для чего на коленвале противовесы. Фото Для чего на коленвале противовесы

Шейки коленчатого вала при выходе из картера во избежание утечки масла уплотняют специальными маслоотбойными гребнями в комбинации с лабиринтным или сальниковым уплотнением (резинопластик, фетр) или предусматривают маслосгонную резьбу (при малых диаметрах вала у нереверсивных дизелей).

Свободный конец вала обычно используют для монтажа шестерни 1 (см. рис. 10.16), привода навешенных на дизель насосов (масляного, водяного, топливоподкачивающего) и других вспомогательных механизмов.

При больших размерах коленчатого вала и гребного винта осевые колебания вала могут достигать значительной величины. Для снижения амплитуды осевых колебаний в ряде случаев на свободном конце вала устанавливают демпфер осевых колебаний. Для уменьшения амплитуды крутильных колебаний на свободном конце вала (участке наибольших амплитуд колебаний) в ВОД и СОД иногда устанавливают гасители крутильных колебаний: антивибраторы и демпферы.

Конец вала со стороны отбора мощности обычно имеет фланец для соединения с упорным валом, маховиком или фланцем генератора и шестерню 8 (рис. 10.16) привода распределительного вала. Привод длинных распределительных валов иногда располагают в средней части коленчатого вала, что уменьшает погрешности распределения от скручивания распределительного вала.

Маховик служит для уменьшения колебаний угловой скорости коленчатого вала и обеспечения равномерного его вращения за счет аккумулирования и отдачи кинетической энергии массой маховика. В МОД равномерность вращения вала обычно обеспечивается маховыми массами самого дизеля, и установка маховика не требуется. Вместо него устанавливают диск валоповоротного устройства с зубчатым венцом. На ободе диска (или маховика) обычно наносят отметки ВМТ всех цилиндров и риски от нуля до 360°, которые используют при проверке и регулировке фаз газораспределения и топливоподачи.

Повреждения и поломки

Происходящие в эксплуатации повреждения валов могут быть приведены к следующим видам:

Для чего на коленвале противовесы. Смотреть фото Для чего на коленвале противовесы. Смотреть картинку Для чего на коленвале противовесы. Картинка про Для чего на коленвале противовесы. Фото Для чего на коленвале противовесы

Износам подвержены шейки валов, работающие в подшипниках.

Абразивный износ чаще всего является следствием попадания грязи при небрежно проведенных работах по очистке двигателя после его переборки и ремонта. К другой причине относится попадание в циркулирующее в подшипниках масло твердых частиц кокса и продуктов износа, под воздействием которых на шейках и рабочей поверхности вкладышей подшипников появляются риски, царапины, а иногда и глубокие борозды. В последнем случае поверхности выглядят так, как это происходит при задирах из-за недостатка масла, чрезмерно высоких нагрузок и перегрева. Появление в масле абразивных частиц обусловливается прорывом из цилиндров газов, несущих в себе сажу и отколовшиеся частицы нагара (более мелкие частицы вдавливаются в мягкий поверхностный слой подшипника и благодаря этому не приводят к заметному повреждению шеек). Большая часть механических примесей должна задерживаться в сепараторе и фильтре, но при неудовлетворительной работе сепаратора и фильтра этого не происходит. Следует помнить, что при загрязнении фильтра открывается байпасный клапан и в двигатель поступает нефильтрованое масло, несущее в себе крупные частицы.

Адгезионный износ возникает при недостаточном поступлении масла в подшипники, чаще всего возникающем при загрязнении масляных каналов. Причинами также могут быть падение давления масла и существенное снижение несущей способности масляного клина из-за разжижения масла топливом или образования водомасляной эмульсии, а также увеличение масляного зазора при большом износе или подплавке подшипника.

Отмеченные явления приводят к контактному изнашиванию «металл по металлу», при котором сначала происходит заполировывание поверхностного слоя, сопровождающееся ростом температур в зоне трения, затем размягчение антифрикционных сплавов, их утонение вследствие выдавливания, их оплавление и наволакивание на шейки вала.

Фреттинг-коррозия выражается в выкрашивании частиц металла в зоне контакта под действием усталостных разрушений, вызываемых вибрациями и микроперемещениями контактирующих поверхностей. Одновременно с фреттингом возникает коррозия.

Фреттинг происходит при достаточно малых скоростях скольжения, когда элементы длительное время находятся в контакте, что затрудняет унос продуктов износа из зоны контакта и тем самым способствует абразивному изнашиванию.

Большинство аварийных повреждений двигателей вызывается потерей прочности деталей или узлов и их поломкой. При этом в ряде случаев видимых причин поломки не обнаруживается, а действовавшие в поврежденной детали напряжения обычно значительно ниже напряжений, при которых в данном металле происходит разрушение или появляется остаточная деформация. В подобных случаях обычно утверждают, что поломка вызвана «усталостью металла». Объясняется это часто бытующим неправильным представлением о природе «усталого металла». Одни полагают, что металл, длительное время находившийся в напряженном состоянии, будто бы изменяет свои свойства. Другие считают, что под действием большого числа переменных нагрузок во всей массе металла он становится слабым и хрупким. Оба представления неверны. Только в результате нахождения металла под нагрузкой свойства его не меняются, сколько бы времени оно ни продолжалось, если нагрузка не превышает предела упругости материала (не вызывает остаточной деформации).

Усталость металла объясняется образованием в наиболее «слабом» месте микроскопической трещины, которая под действием знакопеременной нагрузки растет и достигает видимых простым глазом размеров. В вершине трещины резко повышаются напряжения. Это вызывает ее дальнейшее распространение и прогрессирующий рост напряжений. В конечном итоге, когда напряжения превысят предел прочности металла, деталь быстро разрушается. Появлению усталостной трещины предшествует накопление сдвигов в структуре металла, вызванных действием циклической нагрузки. В дальнейшем развитие и распространение линий сдвига в детали приостанавливаются, за исключением одного наиболее слабого места, где действующие напряжения достигают определенного значения. Здесь линии сдвига непрерывно множатся, растут и, наконец, сливаются в трещину. Вся энергия внешней силы устремляется в это место, вследствие чего остальная масса металла остается в неизменном состоянии. Чтобы в наиболее слабом месте детали образовалась трещина, действующие в нем напряжения должны достигнуть или превысить предел усталости металла.

Под пределом усталости подразумевается то максимальное напряжение, при котором образец не разрушается под воздействием очень большого числа циклов нагружения (10-20 миллионов).

Следовательно, если напряжения, возникающие в образце металла при циклической нагрузке, не превышают предела усталости, то этот образец может выдержать бесконечно большое число циклов нагружения. Это в полной мере оправдывается для лабораторного образца. В действительности детали машин редко служат в таких идеальных условиях. Обычно в деталях имеются понизители циклической прочности, значительно снижающие их предел усталости. К таким понизителям относятся различные концентраторы напряжения и в первую очередь всевозможные резкие изменения формы. Известно, что в местах перелома поверхности (на дне входящих углов галтелей, по краям отверстий) местные напряжения в несколько раз превышают средние расчетные напряжения. Не менее опасны разного рода случайные повреждения поверхностей детали, возникшие при ее изготовлении или при сборке (риски, царапины, надрезы).

Причинами могут быть также наличие флокенов, неметаллических включений в стали, микротрещины, образовавшиеся при термической обработке, коррозионные повреждения при эксплуатации и т.д.

Поэтому при среднем напряжении, не превышающем предела усталости, в месте расположения понизителя прочности напряжение может оказаться весьма большим и с течением времени под влиянием циклической нагрузки деталь разрушится.

В условиях эксплуатации усталостные поломки деталей двигателей чаще всего происходят при изменении условий работы, когда возникающие дополнительные напряжения в сумме с номинальными превышают предел усталости материала детали. Такими дополнительными напряжениями могут быть напряжения крутильных резонансных колебаний (работа двигателя в зоне критических оборотов), напряжения изгиба коленчатого вала при неравномерном износе или неправильной укладке вала на рамовых подшипниках, деформация корпуса судна и фундаментной рамы, напряжения изгиба в стержне шатуна при заклинивании головного соединения и пр.

Практика показывает, что во всех случаях усталостное разрушение деталей двигателей вызывается действием одного из перечисленных выше факторов. При определении причины поломки большую помощь может оказать изучение структуры поверхности излома, обращая внимание на следующие признаки:

Место возникновения усталостной трещины (рис. 10.6) обычно удается определить легко и безошибочно, около него видны расходящиеся в различных направлениях линии.

Для этой стадии усталостного излома (зона 1) характерно наличие волнообразных полос, представляющих собой ряд границ ее последовательного распространения.

Геометрические оси этих полос направлены к месту возникновения трещины. По мере распространения трещины по поперечному сечению ее поверхности становятся все менее и менее гладкими, что является признаком перехода ко второй фазе развития (см. зону 2). В этой стадии поломки наступает момент, когда оставшееся сечение детали не может более противостоять действующим повторяющимся нагрузкам и деталь разрушается. Поверхность разрыва остаточного сечения имеет вид типичной поломки от приложенной нагрузки и в противоположность первой фазе характеризуется признаками хрупкого излома. Скорость развития усталостной трещины определяется величиной действующего в детали напряжения. Чем меньше действующее напряжение, тем дальше будет развиваться усталостная трещина (рис. 10.76) и тем меньшей будет площадь зоны статического напряжения. На поверхности зоны усталостного излома образуется наклеп.

Если зона 1 невелика и наклеп отчетливо выражен на границе зон, то это свидетельствует о большой циклической перегрузке. Если же номинальное напряжение невелико, то трещина развивается медленно и максимальный наклеп получается у наружной поверхности, там, где образуются первые очаги усталостной трещины.

Для чего на коленвале противовесы. Смотреть фото Для чего на коленвале противовесы. Смотреть картинку Для чего на коленвале противовесы. Картинка про Для чего на коленвале противовесы. Фото Для чего на коленвале противовесы

Для чего на коленвале противовесы. Смотреть фото Для чего на коленвале противовесы. Смотреть картинку Для чего на коленвале противовесы. Картинка про Для чего на коленвале противовесы. Фото Для чего на коленвале противовесы

Литература

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *