Для чего используют углеводород
Природные источники углеводородов, их переработка
Содержание:
Углеводороды – это органические соединения, состоящие из атомов водорода и углерода. Основными источниками данных веществ являются горючие полезные ископаемые – нефть, природный и попутный газ, уголь.
Природные источники углеводородов
Нефть
Нефть – это природная маслянистая горючая жидкость, обладающая специфическим запахом, темно-коричневого (черного, красного, синего, белого) цвета или бесцветная, состоящая из сложной смеси углеводородов различной молекулярной массы (алканов, циклоалканов, аренов) и ряда других химических соединений.
Различают два вида нефти, в зависимости от плотности и содержания серы:
К преимуществам применения топлива можно отнести – простоту, дешевизну добычи и беспроблемность транспортировки.
К недостаткам – низкую ресурсообеспеченность, то есть соотношение между количеством ресурсов и размерами их использования.
Природные источники углеводородов
Характеристики
Нефть
Смесь состоящая из большого количества компонентов, основными из которых являются алканы, циклоалканы и арены.
Попутный нефтяной газ
Смесь состоящая в основном из алканов. Большая часть состоит из пропана.
Природный газ
Каменный уголь
Смесь, состоящая из разного соотношения соединений углерода, водорода, серы. Неорганические вещества состоят наибольшую часть каменного угля.
Природный газ
Преимущества данного вида топлива – простота добычи и транспортировки, экономичность.
Недостатки – сложность межконтинентальной транспортировки с помощью дорогостоящих танкеров.
Природный газ не имеет запаха, но для обнаружения протечек вещества в быту, в него добавляют специальные компоненты – меркаптаны. Это связано с тем, что смесь метана с воздухом взрывоопасна, небольшая искра способна спровоцировать происшествие.
Попутный нефтяной газ
Попутный нефтяной газ – это смесь газообразных углеводородов, содержащихся в нефти и выделяющихся при ее добыче и подготовке. Чем ниже молекулярная масса алкана, тем выше его концентрация в природном ресурсе.
Смесь бутана и пропана образует сжиженный газ, который применяется в качестве бытового топлива.
В зависимости от содержания углеводорода попутный газ делится на следующие группы:
Каменный уголь
Образование данного вида горючего ископаемого проходит в два этапа:
Данный вид топлива является достаточно перспективным для получения ряда химических продуктов и энергии.
Их переработка
Полезные ископаемые требуют переработки для дальнейшего использования и получения необходимых продуктов.
Переработка нефти
В сыром виде данный ресурс не применяется. Переработка может быть первичной и вторичной.
1. Первичная переработка – заключается в ректификации нефти, путем ее нагревания, не приводящая к химическим изменениям вещества. В процессе повышения температуры улетучиваются сначала легкокипящие элементы, затем требующие более высокой температуры.
Схема ректификационной колонны
На подготовительном этапе требуется очитка нефти от воды, солей и твердых механических частиц. Далее вещество поступает в трубчатую печь, где подвергается нагреванию до 350 °С. Горячий состав перемещается в нижнюю часть ректификационной колонны, в которой осуществляется испарение отдельных фракций на разные уровни, в зависимости отих температуры кипения:
2. Вторичная: крекинг и риформинг – необходимы для повышения выхода после переработки более дорогих и качественных фракций.
Крекинг – способ обработки мазута путем нагревания с совместным воздействием катализатора, для увеличения выхода бензиновой фракции.
Риформинг – направлен на улучшение качественных характеристик бензиновой фракции путем реакций дегидроциклизации.
Переработка природного газа
Содержание примесей в природном газе затрудняет его дальнейшую транспортировку и использование. В связи с этим он подвергается переработке:
В результате процессов образуются вещества: источники энергии и химические продукты (аммиак, уксусная кислота, метонол и др.).
Обработка попутного нефтяного газа
Концентрация продуктов нефтепереработки негативно влияет на экологию и здоровье населения. В связи с этим возникла необходимость в переработке ПНГ и практическом применении.
Существуют несколько способов утилизации и переработки:
Переработка каменного угля
Переработка данного вида ресурса называется коксованием, которое осуществляется путем накаливания угля до 900-1100°С без доступа воздуха.
В результате получаются следующие продукты:
Более 90% всей энергии, потребляемой человечеством в настоящее время, добывается из ископаемых природных органических соединений. ПО своим свойствам газ превосходит нефть.
Что такое углеводородное сырье: определение
Прогнозы, разведка
Современные тенденции
Состав нефти
около 1 % кислорода;
около 1 % металлов (ванадия, никеля, железа кобальта, хрома, молибдена);
около 1 % солей (хлоридов магния, кальция, натрия).
Месторождения углеводородного сырья отличаются по глубине залегания и способам добычи. К примеру, на глубинах до 5-6 километров находится нефть и углеводородный газ, на больших глубинах можно обнаружить только газ, у поверхности — только нефть. Бо́льшая часть продуктивных пластов располагается между 1 и 6 километром, здесь газ и нефть могут встречаться в разных сочетаниях.
Происхождение нефти
Интересные факты
Использование углеводородного сырья уходит корнями в глубокую древность. Есть сведения о том, что больше 6500 лет назад жители территории, на которой сегодня находится Ирак, добывали цементирующий и строительный материал при возведении домов, защищая свои жилища от попадания влаги. В Древнем Египте собирали нефть с поверхности воды, применяли ее для освещения и в качестве строительного материала. Уникальное углеводородное сырье применялось для герметизации лодок и в качестве мумифицирующего вещества.
На Ближнем Востоке во время существования древнего Вавилона осуществлялась полноценная торговля «черным золотом».
Переработка углеводородного сырья в России началась только в XV веке. Ее собирали на реке Ухта с поверхности воды и применяли не только для хозяйственных нужд, но и в качестве лекарственного средства.
Лишь в 1864 году в Кубанской области перешли к механическому бурению скважин с помощью паровой машины. Мировая нефтедобыча началась с августа 1859 года на территории США. Благодаря бурению скважин появился дешевый доступ к требуемому сырью, стала активно развиваться нефтяная отрасль.
Востребованным углеводородным сырьем являются попутный и природный газы. Они могут находиться в трех типах залежей: газонефтяных, газовых, газоконденсатных. Для газовых залежей характерно естественное подземное скопление алканов, которое не имеет прямой связи с нефтяными месторождениями. Газонефтяные залежи характеризуются одновременным присутствием нефти и газа.
Газоконденсатные виды характеризуются высоким давлением и повышенными температурами в пласте. В таких условиях углеводороды переходят в газ, при понижении давления идет обратная конденсация.
Природные газы в большей части состоят из метана. Также в их составе есть пропан, этан, бутан, несущественное количество пентана и иных компонентов: азота, углекислого газа, инертных газов, сероводорода. На долю природного газа приходится 99,3 % метана, а гомологи составляют не больше 5 %.
Попутный газ — это газ, который растворен в нефти либо выделяется из нее в процессе добычи. По выходу из скважины нефть и попутный газ проходят через газогенераторы, здесь и начинается их разделение. Именно попутный газ является ценнейшим сырьем для нефтехимического промышленного синтеза.
Области применения
Среди основных областей использования углеводородного сырья необходимо упомянуть применение в виде топлива. Высокая температура сгорания, экономичность применения, все это сделало газ самым востребованным видом энергетических ресурсов. Кроме природного и попутного газа, прекрасным углеводородным сырьем является нефть. От рациональности добычи, комплексности переработки природных ресурсов, соблюдения мер безопасности, напрямую зависит экономическая и политическая мощь государства.
Углеводороды и их роль в жизни человека
Углеводороды
Этот класс веществ объединяет самые разные соединения, большинство из которых давно и успешно используются для своих целей человеком. Это объясняется тем, что углерод очень легко образует химические связи, особенно с водородом, поэтому и наблюдается такое разнообразие. Без этого была бы невозможна жизнь в том виде, в котором мы ее знаем. Углеводороды – это вещества, состоящие из двух элементов: углерода и водорода. Их молекулы могут быть не только линейными, но и разветвленными, а также образовывать замкнутые циклы.
Классификация углеводородов
Углерод образует четыре связи, а водород – одну. Но это не значит, что их соотношение всегда равно 1 к 4. Дело в том, что между атомами углерода могут быть не только одинарные, но и двойные, а также тройные связи. По этому критерию различают классы углеводородов. В первом случае эти вещества называются предельными (или алканами), а во втором – ненасыщенными или непредельными (алкенами и алкинами для двух и трех связей соответственно).
Еще одна классификация предусматривает рассмотрение молекулы. В этом случае различают алифатические углеводороды, структура которых линейна, и карбоциклические, в виде замкнутой цепи. Последние в свою очередь делятся на алициклические и ароматические.
Помимо этого, углеводороды часто подвергаются полимеризации – процессу присоединения одинаковых молекул одна к другой. В результате получается совершенно новый материал, не похожий на базовый. Примером может служить полиэтилен, получающийся из просто этилена. Это возможно только когда речь идет о ненасыщенных углеводородах.
Структуры, которые также относятся к классу непредельных, могут с помощью своих свободных радикалов присоединять и новые атомы, отличные от водорода. В этом случае получаются другие органические вещества: спирты, амины, кетоны, эфиры, белки и т. д. Но это уже совершенно отдельные темы в химии.
Примеры углеводородных соединений
Углеводороды – это огромное разнообразие веществ даже с учетом классификации. Но все же стоит кратко перечислить наименования соединений, входящих в этот многочисленный класс.
Свойства углеводородов
Как уже было упомянуто выше, углеводороды – это огромное количество самых разных веществ. Поэтому говорить об их общих свойствах несколько странно, ведь таковых просто нет.
Одинаковой чертой у всех углеводородов может считаться разве что состав. А также тот факт, что в начале каждого ряда, по мере увеличения количества атомов углерода, происходит переход от газообразной и жидкой формы к твердой.
Есть и еще одна схожесть: все углеводороды обладают хорошей горючестью. При этом выделяется много тепла, образуются углекислый газ и вода.
Природные источники углеводородов
Другие источники углеводородов – лаборатории. Те вещества, которые не встречаются в природе, могут быть синтезированы из других соединений с помощью химических реакций.
Использование углеводородов
Углеводороды играют огромную роль в современной жизни человечества. Нефть и газ стали очень ценными ресурсами, ведь они служат в качестве топлива и энергоносителей. Но это не единственные способы применения соединений из данного класса. Углеводороды – это буквально все, что окружает людей в быту. С помощью полимеризации удалось получить новые материалы, из которых изготавливаются разные виды пластмасс, тканей и т. д. Керосин, растворители, лакокрасочные изделия, парафины, асфальт, гудрон, битум, и это не считая основных продуктов нефтепереработки – бензина и дизельного топлива.
Значение этих веществ огромно. Как непредельные, так и предельные углеводороды – это сотни и тысячи вещей, к которым каждый человек привык и не может без них обходиться в самых простых ситуациях. Отказаться от их использования крайне сложно даже с учетом того, что запасы нефти и газа иссякнут, как предрекают аналитики. Уже сейчас человечество ведет активный поиск альтернативных источников энергии, но ни один из вариантов пока не показал такой же эффективности и универсальности, как углеводороды.
Роль углеводородов в организме человека
По характеру воздействия на организм человека различают две группы углеводородов: раздражающие и канцерогенные.
Раздражающие углеводороды оказывают наркотическое воздействие на центральную нервную систему и влияют на слизистые оболочки. К ним относятся альдегиды, все непредельные и предельные соединения углерода с водородом, не относящиеся к ароматическим соединениям.
Наибольшую опасность для человека представляют углеводородные соединения канцерогенной группы: 1,2-бензантрацен, 3,4-бензпирен (С20Н12), 1,2-бензпирен (C2oHi2), 3,4-бензфлуорантен (С2оН14). Особо опасен 3,4-бензпирен, являющийся своего рода индикатором присутствия в смеси других канцерогенов.
Читайте также:
Влияние кофе на печень
Влияние пчелиного подмора на поджелудочную железу
Влияние пива на поджелудочную железу
Влияние алкоголя на печень и поджелудочную железу
Влияние антибиотиков на поджелудочную железу
§ 21. Природные источники углеводородов и их использование
Сайт: | Профильное обучение |
Курс: | Химия. 10 класс |
Книга: | § 21. Природные источники углеводородов и их использование |
Напечатано:: | Гость |
Дата: | Пятница, 17 Декабрь 2021, 01:40 |
Оглавление
Природные источники углеводородов и их использование
Изученные нами углеводороды имеют большое практическое значение, так как широко используются в качестве топлива, а также служат сырьём для получения множества органических веществ.
Наиболее важные источники углеводородов — природный газ и нефть.
Природный газ
Таблица 21.1. Примерный состав природного газа
Содержание в % по объёму
Природный газ используется в основном в качестве топлива. Он имеет ряд преимуществ над твёрдым и жидким топливом: при его сгорании выделяется больше тепла, он не оставляет золы, продукты его сгорания более экологически чистые. Природный газ используется на тепловых электростанциях, в качестве горючего для газовых плит, топлива для автомобилей и т. д.
Нефть
Физические свойства и состав нефти
Нефть представляет собой маслянистую жидкость обычно тёмного цвета со своеобразным запахом (рис. 21.1). Она легче воды и в воде не растворяется. Основными компонентами нефти являются жидкие и растворённые в них твёрдые углеводороды. То есть нефть является смесью углеводородов. В основном это алканы, циклоалканы и ароматические углеводороды. Соотношение этих углеводородов в нефти различных месторождений может существенно различаться.
Для того чтобы выделить из нефти полезные для нужд человека продукты, её подвергают переработке.
Первичная переработка нефти
Нефть не имеет определённой температуры кипения, так как является смесью углеводородов, имеющих различные температуры кипения. В процессе нагревания нефти из неё выделяют сначала наиболее лёгкие углеводороды (они имеют низкие температуры кипения), а затем более тяжёлые.
Смесь углеводородов, собранных в процессе перегонки нефти в определённом интервале температур, называется фракцией.
Рассмотрим некоторые фракции нефти.
Бензиновая фракция перегоняется в интервале температур от 40 до 200 °С и содержит углеводороды C5 — C11. Как следует из названия, эта фракция используется для получения бензина.
Лигроин перегоняется при температуре от 120 до 240 °С и содержит углеводороды C8 — C14. Лигроин применяется для получения бензина и дизельного топлива, а также в качестве растворителя.
Керосин — перегоняется в интервале температур от 180 до 300 °С и содержит углеводороды C12 — C18. Он применяется как горючее для реактивных двигателей (авиационный керосин), для бытовых нагревательных приборов, в качестве растворителя и для получения дизельного топлива.
Процесс перегонки нефти не сопровождается изменением структуры образующих её углеводородов, а заключаются только в разделении на отдельные компоненты, то есть являются физическим процессом. Такой процесс называют первичной переработкой нефти.
Октановое число бензина
Одной из важнейших характеристик бензина является его детонационная стойкость. Детонационная стойкость показывает способность бензина «сопротивляться» самовоспламенению при сжатии в цилиндре двигателя. Чтобы понять это, рассмотрим, как работает двигатель автомобиля (рис. 21.2).
Смесь паров бензина с воздухом поступает в цилиндр двигателя. Когда поршень цилиндра достигает верхней точки, то есть максимально сжимает смесь, искра свечи зажигания её воспламеняет. Образовавшиеся газы толкают поршень вниз, он совершает работу, в результате которой автомобиль движется. Это описание касается нормальной работы двигателя. Но возможна ситуация, когда бензиново-воздушная смесь воспламенится в цилиндре до поджигания за счёт повышения её температуры при сжатии. Этот процесс называется детонацией. Детонация очень вредна для двигателя, она снижает мощность и приводит к преждевременному износу деталей и даже к поломке двигателя.
Для характеристики детонационной стойкости бензинов используется октановое число. Октановое число изооктана (2,2,4-триметилпентана), обладающего высокой детонационной стойкостью, принято за 100. Октановое число н-гептана, чрезвычайно легко детонирующего, принято за 0. Смесь н-гептана и изооктана имеет октановое число, равное содержанию в ней изооктана (в процентах по объёму). Например, смесь, содержащая 92 % по объёму изооктана и 8 % н-гептана, имеет октановое число равное 92. Если бензин имеет октановое число, равное 92, то это значит, что он допускает такое же сжатие в цилиндре без детонации, как смесь из 92 % изооктана и 8 % н-гептана. Октановые числа фигурируют в названии марки бензина, например АИ-92, АИ-95 и др. Проезжая мимо автозаправочной станции, можно убедиться, что чем выше октановое число, тем дороже бензин.
Оказывается, что наиболее стойкими к детонации являются ароматические углеводороды и углеводороды разветвлённого строения. Эти углеводороды характеризуются высокими октановыми числами, иногда больше 100. Октановые числа неразветвлённых углеводородов, наоборот, низкие (табл. 21.2).
Таблица 21.2. Октановые числа некоторых углеводородов
В нефти преобладают углеводороды неразветвлённого строения. Поэтому бензин, получаемый в процессе перегонки нефти, имеет низкое октановое число (обычно ниже 65) и не может использоваться в двигателях современных автомобилей. В связи с этим, фракции нефти, полученные при перегонке, подвергают дальнейшей переработке, связанной с изменением структуры входящих в них углеводородов. Эти процессы называются вторичной переработкой нефти.
Вторичная переработка нефти
Крекинг
Бензиновая фракция составляет лишь небольшую долю от всей добываемой нефти, и получаемый в процессе перегонки бензин не может удовлетворить спрос на него. Поэтому одной из задач вторичной переработки нефти является превращение тяжёлых углеводородов в углеводороды бензиновой фракции. Для этого молекулы с большим числом атомов углерода расщепляются на более мелкие. Этот процесс называется крекингом.
При высоких температурах происходит расщепление химических связей углерод-углерод, в результате чего молекулы углеводородов с длинной цепью атомов углерода превращаются в углеводороды с более короткой цепью, например:
Как видно из приведённого примера, из углеводорода состава C12H26 образовалась смесь алкана и алкена с числом атомов углерода в молекулах, равным 6, что соответствует бензиновой фракции. Следует отметить, что расщепление молекулы исходного вещества может происходить по любой связи углерод-углерод, например:
В результате образуется смесь предельных и непредельных углеводородов преимущественно неразветвлённого строения. Описанный процесс называется термическим крекингом. Термический крекинг проводится при температурах до 800 °С. Чем выше температура крекинга, тем сильнее дробятся молекулы исходных веществ. Так, при температурах около 800 °С образуется большое количество газообразных алкенов (этена, пропена и бутенов), которые используются для получения полимеров.
Недостатком термического крекинга является большое содержание в его продуктах углеводородов неразветвлённого строения. Поэтому полученный таким способом бензин имеет невысокое октановое число (обычно не выше 70). Бензин с более высоким октановым числом можно получить в результате каталитического крекинга. Каталитический крекинг осуществляется при более низких температурах (400–500 °С) в присутствии катализаторов. В этих условиях, наряду с расщеплением молекул, происходит изомеризация получающихся углеводородов (§ 10), то есть образуются углеводороды разветвлённого строения.
Риформинг
Ещё более эффективным способом получения бензина с высоким октановым числом является риформинг — процесс превращения алканов в ароматические углеводороды при нагревании на катализаторе. Например, при нагревании гексана на платиновом катализаторе он превращается в бензол:
Как видно, в ходе описанных реакций от молекул алканов отщепляются четыре молекулы водорода и образуются циклические ароматические углеводороды, поэтому данные процессы называют дегидроциклизацией, или ароматизацией, алканов. Дегидроциклизация алканов используется не только для повышения октанового числа бензина, но и с целью получения бензола и его гомологов.
Использование процессов вторичной переработки нефти позволяет довести выход бензина с 15 % (первичная переработка) до примерно 60 %. Кроме этого, в процессах вторичной переработки образуется большое число ценных веществ, которые являются сырьём для получения полимеров и других продуктов.
Защита окружающей среды
Описанные процессы связаны с переработкой гигантских объёмов нефти, которые составляют несколько миллиардов тонн в год. В связи с этим первостепенное значение имеет защита окружающей среды при добыче нефти и её переработке.
Попадание нефти и нефтепродуктов в окружающую среду чрезвычайно опасно. Это связано как с пожаро- и взрывоопасностью углеводородов, таки с токсичностью компонентов нефти и продуктов их превращений. Загрязнение нефтью может достигать очень больших масштабов. Так, одна тонна нефти способна покрыть тонкой плёнкой участок поверхности моря площадью до тысячи гектаров. Поэтому в настоящее время актуальны вопросы, связанные не только с эффективностью добычи и переработки нефти, но и с безопасностью этих процессов. Кроме этого, большое внимание приходится уделять проблемам безопасности при транспортировке и использовании нефти и нефтепродуктов, а также разработке методов ликвидации последствий аварийных ситуаций, связанных с попаданием этих веществ в окружающую среду.
Как видно, проблем очень много, поэтому охрана окружающей среды должна обеспечиваться в целом ряде отраслей промышленности, связанных как с добычей нефти, так и с её транспортировкой, переработкой и использованием. На стадии добычи в настоящее время актуальна задача повышения эффективности использования существующих месторождений с целью наиболее полного извлечения нефти из недр. Чтобы повысить нефтеотдачу, применяются методы подачи в нефтяные пласты воды и различных растворов.
Это позволяет обеспечивать высокий уровень добычи без необходимости освоения новых месторождений.
Экологически безопасная переработка нефти должна быть безотходной. Это касается в первую очередь глубокой переработки всех компонентов нефти в необходимые продукты. Данную проблему во многом решает совершенствование технологии производства. Кроме этого, нефтеперерабатывающие предприятия оснащаются системами очистки (отстаивание, фильтрация, микробиологическая и химическая очистка сточных вод и др.).
Охрана окружающей среды на стадии транспортировки нефти связана с совершенствованием правил техники безопасности и разработкой методов очистки нефтяных ёмкостей (в основном, танкеров) от остатков нефти во избежание попадания её в окружающую среду. Ликвидация последствий чрезвычайных ситуаций в случае загрязнения нефтью осуществляется с применением новейших научно-технических достижений (локализация зон загрязнения и последующий сбор нефти).
Большое значение для охраны окружающей среды имеет также разработка прогрессивных энергосберегающих технологий, позволяющих сократить потребление нефтепродуктов и тем самым снизить опасность и ущерб для окружающей среды.
В последние годы наметилась тенденция постепенного перехода от автомобилей, работающих на углеводородном топливе, к электромобилям. Это, несомненно, будет способствовать улучшению состояния окружающей среды.
Каждый из нас может внести свою лепту в эту деятельность, просто не забыв выключить свет, отменив неактуальную поездку на автомобиле и т. д. Осознавая масштабы деятельности человека, в том числе в использовании нефти, важно понять, что сохранение нашей замечательной планеты — дело каждого из нас.
С основными предприятиями нефтехимической промышленности нашей страны вы можете познакомиться, перейдя по ссылке в QR-коде.
Основные природные источники углеводородов — природный газ и нефть.
Вся добываемая нефть подвергается переработке. Переработка бывает первичная и вторичная.
В процессе первичной переработки нефть путём перегонки разделяют на отдельные фракции, которые в дальнейшем используются как топливо, сырьё для химической промышленности и для вторичной переработки.
Вторичная переработка нефти заключается в изменении строения молекул углеводородов, входящих в её состав. В результате увеличивается выход бензина и повышается его октановое число. В процессе вторичной переработки нефти также получают многие ценные продукты для химической промышленности.
Одна из важнейших проблем переработки нефти — защита окружающей среды.
*Предприятия нефтехимии Республики Беларусь
В нашей стране действуют два крупнейших нефтеперерабатывающих завода — в Новополоцке (ОАО «Нафтан») и Мозыре (ОАО «Мозырский нефтеперерабатывающий завод»). Основные продукты переработки нефти — автобензины, дизельное топливо, авиационные бензины, смазочные масла, ароматические углеводороды.
В Новополоцке, кроме продуктов нефтепереработки, из нефти получают много другой ценной продукции: полиэтилен и изделия из него (полиэтиленовая плёнка, трубы, электроизоляционные материалы и др.); продукты органического синтеза (компоненты для получения синтетических волокон и пластмасс), отдельные углеводороды и многое другое.
Выпускаемая на белорусских заводах продукция отвечает современным экологическим требованиям. Промышленные стоки предприятий проходят полный цикл глубокой очистки.
Важнейшими задачами, стоящими перед предприятиями нефтехимического комплекса нашей страны, является увеличение глубины переработки нефти, повышение качества получаемых продуктов, в том числе с точки зрения повышения их экологической чистоты, улучшение экологичности производств за счёт утилизации отходов и получения из них новых видов продукции.
Вопросы и задания
1. Что такое природный газ и нефть? Какие углеводороды входят в их состав? Какое значение имеют природный газ и нефть в нашей жизни?
2. В чём заключается первичная переработка нефти? Почему у нефти нет определённой температуры кипения? Что такое нефтяные фракции?
3. В процессе перегонки нефти получен бензин, детонационные свойства которого такие же, как у смеси одинаковых объёмов изооктана и н-гептана. Чему равно октановое число полученного бензина?
4. Что такое вторичная переработка нефти? С какой целью она осуществляется?
5. В результате крекинга н-нонана получена смесь углеводородов, среди которых были вещества А и Б. Известно, что вещество А не обесцвечивает бромную воду, но вступает в реакцию дегидроциклизации с образованием толуола. Вещество Б обесцвечивает бромную воду и раствор KMnO4. В присутствии серной кислоты вещество Б присоединяет воду, при этом образуется этанол. Установите формулы веществ А и Б. Напишите уравнения всех описанных в задаче реакций и укажите условия их протекания.
7. Каковы основные направления охраны окружающей среды при нефтепереработке?
8*. Качество топлива для двигателей внутреннего сгорания характеризуется при помощи октанового числа.
а) Приведите структурную формулу изооктана.
б) Приведите структурные формулы и названия двух изомеров н-гептана, содержащих пять атомов углерода в главной цепи.
в) Смешали 20 дм 3 изооктана и 5 дм 3 н-гептана. Укажите октановое число полученной смеси.
г) Массовая доля углерода в углеводороде А неразветвлённого строения, октановое число которого равно 25, составляет 83,72 %. Установите молекулярную формулу углеводорода А.
9*. Назовите основные нефтеперерабатывающие предприятия Республики Беларусь. Предложите способ получения полиэтилена из жидких алканов, содержащихся в нефти. Напишите соответствующие уравнения реакций.