Статья находится на проверке у методистов Skysmart. Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Основные понятия
Во всем мире принято использовать эти десять цифр для записи чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С их помощью создается любое натуральное число.
Название числа напрямую зависит от количества знаков. Однозначное — состоит из одного знака. Двузначное — из двух. Трехзначное — из трех и так далее.
Разряд — это позиция, на которой стоит цифра в записи. Их принято отсчитываются с конца.
Вычитание — это арифметическое действие, в котором отнимают меньшее число от большего. Большее число называется уменьшаемым, меньшее — вычитаемым. Результат их вычитания — разностью.
Свойства вычитания
Алгоритм вычитания в столбик
Вычитать столбиком проще, чем считать в уме, особенно при действиях с большими числами. Этот способ наглядный — помогает держать во внимании каждый шаг.
Шаг 1. При вычитании столбиком самое главное — правильно записать исходные данные, чтобы самая правая цифра первого числа была под правой цифрой второго числа.
Большее число (уменьшаемое) записываем сверху. Слева между числами ставим знак минус. Вот так:
Шаг 2. Вычитание столбиком начинаем с самой правой цифры. Вычитаем по цифре (знаку). Результат записываем под чертой.
Шаг 3. Далее вычитаем из второй цифры справа: из «1» ноль.
Шаг 4. Теперь нам нужно вычесть из «3» девять. Это сделать невозможно. Поэтому займем десятку у соседа слева от тройки. Это цифра «4». Поставим над четверкой точку. Занятый десяток прибавим к «3»: 10 + 3 = 13.
Из «13» вычтем девять: 13 − 9 = 4.
Так как мы заняли десяток у «4», значит четверка уменьшилось на единицу. Об этом нам напоминает точка над «4»: 4 − 1 = 3. Вот, как это выглядит:
Шаг 1. Запишем числа в столбик. Большее число ставим сверху.
Вычитаем справа налево по одной цифре.
Шаг 2. Так как из нуля нельзя вычесть «2», занимаем у соседней цифры слева (ноль). Поставим над «0» точку. У нуля занять нельзя, поэтому смотрим на следующую цифру. Занимаем у «1» и ставим над ней точку. Теперь вычитаем не из нуля двойку, а из «10». Вот так:
Шаг 3. Над нулем стоит точка, поэтому нуль превращается в «9». Вычитаем из «9» четыре: 9 − 4 = 5.
Над «1» стоит точка. Единица уменьшается на «1»: 1 − 1 = 0. Если в результате разности левее всех цифр стоит ноль, то его записывать не надо.
Так выглядит алгоритм вычитания в столбик. Во 2 классе школьники могут сделать себе подсказку в виде таблички. А позже алгоритм запомнится и будет срабатывать автоматически, как «дважды два четыре».
Чтобы найти разность методом «вычитание столбиком» (другими словами, как считать в столбик или столбиком вычитание), необходимо следовать таким шагам:
Ниже рассмотренные примеры покажут вам как происходит вычитание двухзначных, трехзначных и любых многозначных чисел столбиком.
Вычитание чисел в столбик очень помогает при вычитании больших чисел (как и сложение в столбик). Лучше всего научиться на примере.
Необходимо записать числа одно под другим таким образом, чтобы крайняя правая цифра 1-го числа стала под крайней правой цифрой 2-го числа. Число, которое больше (уменьшаемое) записываем сверху. Слева между числами ставим знак действия, здесь это «-» (вычитание).
Вычитать нужно с крайней правой цифры. Вычитаем по одной цифре (знаку).
Далее необходимо вычесть из тройки 9. Это невозможно. Значит нужно занять десяток у цифры слева от тройки. Это четыре. Ставим над 4 точку. Занятый десяток прибавим к тройке.
Из 13 вычтем девять.
Так как мы заняли десяток у четверки, то она уменьшилось на 1. Для того, чтобы не забыть об этом у нас и стоит точка.
Вычитание столбиком из чисел, содержащих нули.
Опять же, разберем на примере:
Из нуля вычесть 2 не получится, тогда опять занимаем у цифры слева. Это нуль. Ставим над нулем точку. И снова, у нуля занять не получится, тогда двигаемся дальше к следующей цифре. Занимаем у единицы. Ставим над ней точку.
Обратите внимание: когда в вычитании столбиком над 0 есть точка, нуль становится девяткой.
Статья находится на проверке у методистов Skysmart. Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Как правильно делить в столбик
Делить столбиком проще, чем высчитывать в уме. Этот способ наглядный, помогает держать во внимании каждый шаг и запомнить алгоритм, который впоследствии будет срабатывать автоматически.
Рассмотрим пример деления трехзначного числа на однозначное 322 : 7. Для начала определимся с терминами:
Шаг 1. Слева размещаем делимое 322, справа делитель 7, между ставим уголок, а частное посчитаем и запишем под делителем.
Шаг 2. Смотрим на делимое слева направо и находим ту часть, которая больше делителя. 3, 32 или 322? Нам подходит 32. Теперь нужно определить сколько раз наш делитель 7 содержится в числе 32. Похоже, что четыре раза.
Проверяем: 4 × 7 = 28, а 28
Шаг 3. Остаток равен 4. Для продолжения решения его нужно увеличить. Мы сделаем это за счет следующей цифры делимого. Приписываем к четверке оставшуюся двойку и продолжаем размышлять.
Шаг 4. Сколько раз делитель 7 содержится в числе 42? Кажется, шесть раз. Проверяем: 7 × 6 = 42, 42 = 42 — все верно. Записываем полученное число к четверке справа — это вторая цифра частного. Делаем вычитание в столбик 42 из 42, в остатке получаем 0. Значит, числа разделились нацело.
Мы закончили решать пример и в результате получили целое число 46.
Как выглядит деление в столбик с остатком
Это такое же деление, только в результате получается неровное число, как получилось в примере выше.
Примеры на деление в столбик
Давайте закрепим знания на практике. Для этого разделите столбиком примеры ниже, а после проверьте полученные цифры — чур, не подглядывать!
Столбиком можно проводить как деление натуральных чисел без остатка, так и деление натуральных чисел с остатком.
Правила записи при делении столбиком.
Начнем с изучения правил записи делимого, делителя, всех промежуточных выкладок и результатов при делении натуральных чисел столбиком. Сразу скажем, что письменно выполнять деление столбиком удобнее всего на бумаге с клетчатой разлиновкой – так меньше шансов сбиться с нужной строки и столбца.
Сначала в одной строке слева направо записываются делимое и делитель, после чего между записанными числами изображается символ вида .
Например, если делимым является число 6105, а делителем 55, то их правильная запись при делении в столбик будет такой:
Посмотрите на следующую схему, иллюстрирующую места для записи делимого, делителя, частного, остатка и промежуточных вычислений при делении столбиком:
Из приведенной схемы видно, что искомое частное (или неполное частное при делении с остатком) будет записано ниже делителя под горизонтальной чертой. А промежуточные вычисления будут вестись ниже делимого, и нужно заранее позаботиться о наличии места на странице. При этом следует руководствоваться правилом: чем больше разница в количестве знаков в записях делимого и делителя, тем больше потребуется места.
Деление столбиком натурального числа на однозначное натуральное число,алгоритм деления столбиком.
Как делить в столбик лучше всего объяснить на примере. Вычислить :
Для начала запишем делимое и делитель в столбик. Выглядеть это будет так:
Их частное (результат) будем записывать под делителем. У нас это цифра 8.
1. Определяем неполное частное. Сначала мы смотрим на первую слева цифру в записи делимого. Если число, определяемое этой цифрой, больше делителя, то в следующем пункте нам предстоит работать с этим числом. Если же это число меньше, чем делитель, то нам нужно добавить к рассмотрению следующую слева цифру в записи делимого, и работать дальше с числом, определяемым двумя рассматриваемыми цифрами. Для удобства выделим в нашей записи число, с которым мы будем работать.
2. Берём 5. Цифра 5 меньше 8, значит нужно взять еще одну цифру из делимого. 51 больше 8. Значит. это неполное частное. Ставим точку в частном (под уголком делителя).
После 51 стоит только одно цифра 2. Значит и добавляем в результат ещё одну точку.
3. Теперь, вспоминая таблицу умножения на 8, находим ближайшее к 51 произведение → 6 х 8 = 48 → записываем цифру 6 в частное:
Записываем 48 под 51 (если умножить 6 из частного на 8 из делителя, получим 48).
4. Между 51 и 48 слева поставим «-» (минус). Вычтем по правилам вычитания в столбик 48 и под чертой запишем результат.
Однако, если результатом вычитания является нуль, то его не нужно записывать (если только вычитание в этом пункте не является самым последним действием, полностью завершающим процесс деления столбиком).
В остатке получилось 3. Сравним остаток с делителем. 3 меньше 8.
Внимание! Если остаток получился больше делителя, значит мы ошиблись в расчете и есть произведение более близкое, чем то, которое взяли мы.
5. Теперь под горизонтальной чертой справа от находящихся там цифр (или справа от места, где мы не стали записывать нуль) записываем цифру, расположенную в том же столбце в записи делимого. Если же в записи делимого в этом столбце нет цифр, то деление столбиком на этом заканчивается.
Число 32 больше 8. И опять по таблице умножения на 8, найдем ближайшее произведение → 8 x 4 = 32:
В остатке получился ноль. Значит, числа разделились нацело (без остатка). Если после последнего вычитания получается ноль, а цифр больше не осталось, то это остаток. Его дописываем к частному в скобках (например, 64(2) ).
Деление столбиком многозначных натуральных чисел.
Деление на натуральное многозначное число производится аналогично. При этом, в первое «промежуточное» делимое включается столько старших разрядов, чтобы оно получилось больше делителя.
Значит, 1976 : 26 = 76.
Если на каком-то шаге деления «промежуточное» делимое оказалось меньше делителя, то в частном записывается 0, а число из данного разряда переводится в следующий, более младший разряд.
Деление с десятичной дробью в частном.
Десятичные дроби онлайн. Перевод десятичных дробей в обычные и обычных дробей в десятичные.
Если натуральное число не делится нацело на однозначное натуральное число, можно продолжить поразрядное деление и получить в частном десятичную дробь.
Например, 64 разделим на 5.
Таким образом, если при делении натурального числа на натуральное однозначное или многозначное число получается остаток, то можно поставить в частном запятую, остаток перевести в единицы следующего, меньшего разряда и продолжать деление.
Закажи карту Tinkoff Junior сейчас и получи 200 ₽ на счет
С этой картой можно накопить на мечту, жми ⇒
План урока:
Здравствуйте, ребята! Начнем урок с интересной загадки:
Отгадайте без подсказки
Вы героев этой сказки:
Трое братьев до чего же
Друг на друга все похожи!
Буквенные выражения
Три весёлых поросёнка Ниф-Ниф, Наф-Наф и Нуф-Нуф приглашают нас с вами, ребята, в гости. Посмотрите, какие дома они построили!
Как вы думаете, можно ли вставить в окошки карточки с цифрами? Почему?
В домике Ниф-Нифа в открытом окошке может быть карточка с цифрой 5? Какое выражение можно записать?
А какое выражение запишем, если в доме Нуф-Нуфа в окошке будет цифра 2?
Можно ли в окошке Наф-Нафа увидеть цифру 1? А цифру 3?
С цифрой 1 запишем выражение: 1 – 1.
А вот цифра 3 не подходит, потому что из 1 нельзя вычесть 3.
Запишите получившиеся выражения и найдите их значения.
Мы записали числовые выражения, ведь они содержат только числа.
Ребята, как вы думаете, можно ли в окошко вставить карточку с буквой?
В математике принято использовать латинские буквы. Может быть, вы уже знаете некоторые из них? Давайте, правильно назовем латинские буквы.
В окошки домиков поросят подставим карточки с буквами: x, y, d.
Запишем выражения: x+4, 6+y, 1–d.
У нас получились буквенные выражения.
Найдём значение следующих буквенных выражений: 8+а, d–6, x+5, y–1.
Для этого вместо буквы подставим число: а = 12, d = 9, x = 14, y = 20.
Найдите значение выражения: k + 20, если k = 3, k = 5, k = 9.
Уравнение. Решение уравнений методом подбора
Ребята, внимательно посмотрите на карточки с цифрами трех поросят. Чья карточка подходит для записи в рамке? Почему?
Подходит карточка с цифрой 8, потому что 8 + 2 = 10.
Вместо окошка запишем латинскую букву х (икс).
Получится запись: х+2=10.
Это уравнение.
Ниф-Ниф просит из чисел 6, 5, 2, 1 подобрать для каждого уравнения такое значение у (игрек), при котором получится верное равенство:
8 + у = 9 12 – у= 10 у + 7 = 12 у – 5 = 1
Мы решили уравнения методом подбора. Обязательно нужно сделать проверку. Для этого вместо у (игрек) подставим в уравнение нужное число и убедимся, что равенство верное.
А теперь задание от Наф-Нафа. Ребята, найдите среди этих записей уравнение и решите его методом подбора.
3 + у 10 – х 14 – 2 b у = 8
Проверка сложения и вычитания
Ребята, по примеру на сложение составьте два примера на вычитание по образцу:
2+3=56+1=79+7=16
Молодцы! Вспомните, как называются числа при сложении!
Это правило пригодится нам для проверки правильности вычислений.
Выполните самостоятельно сложение и сделайте проверку вычитанием:
17 + 3 76 + 4 20 + 19
Задание от Нуф-Нуфа. Ребята, вспомните, как называются числа при вычитании?
Ребята, выполните вычитание и сделайте проверку сложением:
Выполните вычитание и сделайте проверку, пользуясь правилом:
Письменное сложение и вычитание. Запись столбиком
Ребята. Помогите трем поросятам посчитать!
Веселым поросятам для строительства прочного каменного дома нужно ещё 36 камней. У них уже есть 53 камня. Сколько всего камней нужно для строительства дома?
В этом примере мы к единицам прибавляли единицы, к десяткам прибавляли десятки.
Гораздо удобнее этот пример записать столбиком:
Алгоритм сложения
Вычитание тоже можно выполнять столбиком:
Алгоритм вычитания
Ребята, веселые поросята записали для вас примеры столбиком. Используя алгоритмы, спишите примеры правильно и вычислите с устным объяснением:
Пока мы с вами решали примеры, в записях наших сказочных поросят кто-то стер некоторые цифры. Помогите восстановить примеры на сложение столбиком. Узнайте, какие числа складывали, какие результаты получились. Подумайте, какая цифра должна стоять на месте звездочки.
Правильный ответ вы найдете в конце урока со значком
Ребята, все ли задания этого урока давались вам легко? Выберите мордочку одного из трёх поросят: Ниф-Нифа, Нуф-Нуфа или Наф-Нафа по своему настроению.
А вы помните, чем закончилась сказка про трех веселых поросят? Они спрятались от волка в крепком каменном доме Наф-Нафа. Крепким бывает не только дом, крепкой бывает дружба! Сообща можно многого добиться, даже если бывает очень трудно.
Напоследок три веселых задачки на смекалку от наших сказочных героев.
Задача от Ниф-Нифа.
Сколько лап и сколько ушей у трех зайцев?
Задача от Нуф-Нуфа.
Сколько клювов и сколько лапок у трех цыплят?
Задача от Наф-Нафа.
Сколько хвостов и сколько ушей у трех котов?
У трех зайцев 12 лап и 6 ушей.
У трех цыплят 3 клюва и 6 лапок.
У трех котов 3 хвоста и 6 ушей.
А вот и правильный ответ!
Ниф-Ниф, Наф-Наф и Нуф-Нуф прощаются с вами, ребята. До новых встреч! Проверьте свои знания, подумайте, что еще не очень хорошо у вас получается.