Что такое внешние помехи

Основные виды помех и искажений в системах связи.

Помехи в системах связи

Внешние помехи принимаются антенной вместе с полезным сигналом и создаются:

а) электромагнитными процессами, происходящими в атмосфере, ионосфере и космическом пространстве;

б) электроустановками и соседними р/станциями;

в) средствами постановки преднамеренных помех.

Внутренние помехи локализованы в различных элементах системы радиосвязи (флуктуационные шумы ламп и полупроводниковых приборов, нестабильность питающих напряжений и т.п.). Характеристики внутренних помех приемного устройства обычно пересчитываются к его входу.

Внутренние и внешние помехи являются аддитивными, когда на входе ПрУ сигнал представляется в виде:

А. К Флуктуационным помехам (ФП) относятся шумы приемника и шумы среды распространения сигнала. Их спектр на входе ПУ обычно шире полосы пропускания ПУ. Плотность вероятности ФП часто является нормальной. В большинстве случаев ее принимают как аддитивный БГШ.

Б. Импульсные помехи представляют собой непериодическую последовательность одиночных радиоимпульсов и создаются атмосферными и промышленными источниками помех. (В некоторых случаях посторонними каналами связи).

Искажения сигналов в линиях связи

Искажения сигналов в ЛС обусловлены хаотическим изменением коэффициента передачи физической среды, в которой распространяется сигнал. Изменения коэффициента проявляется в флуктуациях амплитуды и фазы в точке приема. В КВ и УКВ диапазонах частот возникают искажения сигналов в виде замираний, обусловленных многолучевостью распространения сигналов. Обычно такие искажения называют мультипликативной помехой. В этом случае радиосигнал представляется в виде произведения

передаваемого сигнала S(t), и помехи m(t).

В общем случае на полезный сигнал воздействуют аддитивная и мультипликативная помехи.

Речевые сообщения и методы их преобразования

Звуки речи образуются в результате прохождения воздушного потока из легких через голосовые связки, полость рта и носа. Спектральная плотность речевого процесса S(t), определенная экспериментально, представлена на рисунке 1.

Она достигает максимального значения на частоте 500 Гц. Ширина спектра на уровне 0,5 составляет примерно 3 КГц (DF=3400-3100) для служебной связи. В радиовещании художественных программ (КВ) – 50-4500 Гц, в УКВ спектр ТЛФ КС – 30-10000 Гц.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Возможные способы передачи речи делятся на:

Непосредственная передача речевого сообщения может осуществляться по аналоговым, импульсным и цифровым каналам. В аналоговых КС сигналом является гармоническое колебание, один из параметров которого (амплитуда, частота, фаза) изменяется по закону речевого сообщения. При передаче речевых сообщений по импульсным КС по закону речевого процесса изменяются параметры радиоимпульсов (амплитуда, длительность и время появления). В цифровых КС непрерывные речевые сообщения передаются с помощью цифровых сигналов.

Передача с предварительным преобразованием речевого сигнала осуществляется по каналам связи, имеющим физические ограничения, в частности малую полосу пропускания (скорость передачи информации). Для этого аналоговый сигнал предварительно искажается в основном двумя путями:

Источник

Какие бывают помехи в электросети и как от них защититься?

Вероятно, каждый читатель этой статьи обратил внимание на то, что большинство электрических приборов, работающих от бытовой сети, рассчитаны на напряжение 220 В/50 Гц. Отсюда вывод – именно такие параметры обеспечивает нам поставщик электроэнергии. К сожалению, это не совсем так. Мы можем предположить, что водопроводная вода совершенно чистая, однако опыт подсказывает, что в ней присутствуют примеси, ухудшающие вкус. Такие же «примеси», в виде дополнительных частот и импульсов, поступают к потребителю электроэнергии. Это и есть помехи в электросети.

Классификация помех

Все сетевые отклонения можно классифицировать по двум признакам: происхождению шумов и виду электромагнитной аномалии.

Причиной возникновения сетевых искажений являются:

Перечисленные причины могут вызвать серию импульсных помех или волны гармонических искажений, наложенные поверх синусоидального тока.

Наличие импульсных токов в сети очень вредно сказывается на работе современных бытовых приборов, часто насыщенных электроникой. Если не применять приборы защиты, электронные устройства могут выйти из строя, не говоря уже о качестве их работы. Разумеется, чувствительное оборудование разработчики защищают внедрёнными схемами подавления помех, но нередко требуются дополнительные внешние приборы, например, бесперебойные источники питания, сетевые фильтры (рис. 1) и другие.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи Рис. 1. Защитные импульсные фильтры

При радиочастотных помехах большинство бытовых приборов могут нормально работать. Но к ним чувствительны радиоприёмники, телевизоры и некоторые медицинские приборы. Впрочем, современная цифровая радиоэлектроника довольно хорошо защищена от таких искажений.

Понимание причин искажений в электрической сети помогает решать проблемы защиты оборудования, осознанно подходить к выбору оптимальных схем подавления шумов.

Источники помех

Искажать синусоиду переменного тока способны как природные явления, так и различные техногенное оборудование. В результате их действия происходят:

Остановимся вкратце на основных источниках, вызывающих перечисленные отклонения.

Провалы напряжения.

Данное явление является следствием работы коммутационных устройств в энергосистемах. Это случается при возникновении КЗ на линиях, в результате запусков мощных электромоторов и в других случаях, связанных с изменениями мощности нагрузки. Наличие таких кратковременных помех является неизбежностью при срабатывании защитной автоматики, и они не могут быть устранены поставщиком электроэнергии.

Изменения частотных характеристик.

Отклонение от заданной частоты происходит в результате значительного изменения тока нагрузки. В случае если уровень потребляемой энергии превосходит мощность генерируемых установок, происходит замедление вращения генератора, что ведёт к падению частоты. При заниженной нагрузке возрастает частота генерации.

Автоматика регулирует распределение мощностей, вплоть до отключения нагрузок, однако частотные помехи в сети всё-таки присутствуют.

Гармоники.

Источником данного вида искажений является наличие в сетях оборудования с нелинейной вольтамперной характеристикой:

Причиной гармонических искажений могут быть электродвигатели, особенно если они установлены в конце длинной линии.

Отклонение напряжения

Изменения стабильности потенциала происходит в результате периодических скачков потребляемого максимального тока. Источником изменения нагрузок являются устройства, регулирующие напряжение, например, трансформаторы с РПН.

График, иллюстрирующий кратковременное перенапряжение показан на рисунке 2 (Фрагмент А – изображает импульсный всплеск).

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехиРис. 2. Перенапряжение в сети

ВЧ помехи.

Создаются влиянием устройств работающих, в высокочастотном диапазоне. ВЧ помехи, вызванные действием приборов, генерирующих сигналы с высоким диапазоном частот, распространяются эфирно или через линии сети.

Импульсы напряжения.

Распространённые источники: коммутационные приборы в сетях и грозовые явления.

Несимметрия трехфазной системы.

Причиной таких помех часто являются мощные однофазные нагрузки как бытовые, так и промышленные. Они вызывают сдвиги углов между фазами и амплитудные несоответствия. Путём отключения питания мощных токопотребляющих устройств можно устранить проблему.

Способы защиты

К сожалению, мы не можем управлять качеством электросети, но защитить бытовую технику вполне реально. В зависимости от того к каким искажениям чувствителен конкретный электрический прибор, выбирают соответствующий способ защиты. Снизить уровни помех помогают различные внешние устройства, встроенные электрические схемы, а также экранирование элементов конструкций и заземления.

Пример подавления помех показан на рисунке 3.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи Рис. 3. График, иллюстрирующий фильтрацию тока

Эффективными являются следующие внешние устройства:

Особую трудность вызывает подавление высокочастотных импульсных искажений в диапазоне нескольких десятков МГц. Часто для этих целей используют защиту, применяемую непосредственно к источнику помехи.

Использование стабилизаторов напряжений оправдано в случаях наличия регулярных провалов напряжений в домашней сети. При стабильно заниженном или завышенном токе лучше пользоваться трансформатором.

Высоким уровнем защиты компьютеров и другой чувствительной электроники обладают бесперебойники. На рисунке 5 показано фото источника бесперебойного питания для защиты компьютера.

В этих устройствах реализовано несколько защитных функций, но главная из них – снабжение питанием приборов в течение нескольких минут, с последующим корректным их отключением. С целью достижения максимального уровня защиты логично отдать предпочтение бесперебойному блоку питания.

Методы измерения

Можно ли увидеть сетевые искажения?

С помощью приборов можно не только увидеть наличие помех, но и оценить их величину и определить природу появления. Существуют специальные высокоточные приборы для измерения различных отклонений в сетях. Наиболее распространённым из них является обычный осциллограф.

У прибора имеется дисплей (экран), на котором отображается осциллограмма измеряемого тока. Оперируя различными режимами осциллографа можно с высокой точностью определять характер и уровень шумов.

Пример осциллограммы показан на рисунке 6.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи Рисунок 6. Осциллограмма сетевого тока

На осциллограмме видно как основной сигнал окружают паразитные токи, которые необходимо отсекать. Анализируя характер искажений можно выбрать способ их подавления. Часто бывает достаточно применить сетевой фильтр для того, чтобы избавиться от типичных помех, влияющих на работу устройств.

Типовые часто задаваемые вопросы от читателей

Как найти и устранить источник помех в электрической цепи, приводящий к невозможности использовать powerline?

Чтобы вычислить причину плохого сигнала, вам необходимо проанализировать работу powerline адаптера в другой линии или проверить уже подключенные устройства. Для начала проверьте уровень сигнала в сети роутера, возможно ресурсов вашего маршрутизатора недостаточно для перераспределения сети интернет между таким количеством пользователей. Если предоставляемого лимита достаточно для всех комнат и приемников в них, проверьте работу линий, по которым осуществляется передача данных powerline адаптерами.

Следующий вопрос – тип линии, к которой подключен powerline адаптер. Производитель не рекомендует использовать для этого удлинители, отдавая предпочтение стационарной проводке. Но, для проверки существующих линий рекомендую вам временно использовать удлинитель, если сигнал улучшиться, вполне вероятно, что причина в проводке. Если нет, проверьте бытовое электрооборудование, выступающее наиболее мощным источником электромагнитных помех.

К таковым относятся: кондиционеры, стиральные машины, холодильники, зарядные устройства для мобильных телефонов, блоки питания электроприборов.

По возможности powerline адаптер следует перенести как можно дальше от таких приборов, дабы они не вносили свои коррективы в качество передаваемого сигнала. Если такой возможности нет, подключите источники помех к электрической цепи через «сетевой фильтр», который поможет снизить вносимые искажения.

Еще один момент, на который следует обратить внимание – допустимое расстояние между powerline адаптерами. Оно де должно превышать установленную норму, иначе никакие ухищрения не помогут вам добиться должного качества сигнала.

Источник

Помехи и искажения в каналах связи: виды, действие помех

Помехи и искажения в каналах связи

В процессе прохождения по реальным каналам связи сигналы подвергаются искажениям, поэтому получаемые сообщения воспроизводятся с некоторыми ошибками. Эти ошибки обусловлены характеристиками тракта передачи, а также помехами, воздействующими на сигнал. Изменение характеристик тракта, как правило, имеет регулярный характер, и поэтому их можно в большинстве случаев устранить посредством соответствующей коррекции. Помехи же, воздействующие на сигнал, имеют случайный характер, т. е. они заранее неизвестны и потому их влияние нельзя полностью устранить.

«Помехой» принято называть любое случайное воздействие на сигнал, которое снижает достоверность воспроизведения передаваемых сообщений. Существующие помехи весьма разнообразны по своей природе и физическому воздействию.

Виды радиоканальных помех

В каналах проводной связи основными видами помех являются импульсные шумы и прерывание связи. Импульсные шумы возникают при автоматической коммутации и вследствие перекрестных наводок. «Прерыванием связи» называется явление, при котором сигнал либо резко затухает, либо совсем пропадает, например из-за нарушения контактов при соединении.

Все указанные помехи относятся к «внешним» помехам, однако имеются и «внутренние» помехи, возникающие в аппаратуре, например в усилителях и преобразователях частоты. Внутренние помехи обусловлены, главным образом, наличием тепловых шумов — хаотического движения носителей заряда (электронов) в проводниках. Эти помехи принципиально неустранимы.

В общем случае влияние помех на полезный сигнал можно представить в виде оператора

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

В зависимости от характера взаимодействия с сигналом помехи подразделяются на аддитивные и мультипликативные.

«Аддитивной» называется помеха, которая при образовании выходного сигнала представляется в виде слагаемого:

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

«Мультипликативной» называется помеха, которая при образовании выходного сигнала представляется в виде множителя входного сигнала:

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи
Z(t) = S(t) K(t),
где K(t) — некоторый случайный процесс.

Примером мультипликативной помехи являются замирания, заключающиеся в случайном изменении уровня и соответственно мощности сигнала из-за непостоянства условий распространения радиоволн. В проводных каналах мультипликативной помехой может быть прерывание связи, при котором сигнал в линии резко затухает.

К аддитивным помехам можно отнести все рассмотренные виды внешних и внутренних помех.

В реальных каналах имеются и аддитивные, и мультипликативные помехи, поэтому в них Z(t) = S(t) K(t) + n(t).

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рис. 1.6. Схема действия помех в линии связи

Схема действия помех в линии связи показана на рис. 1.6.

В заключение отметим, что между сигналом и помехой отсутствует принципиальное различие. Более того, они существуют как единое целое, хотя и противоположны по своему действию. Например, излучение передатчика радиостанции, являясь полезным для приемника того абонента, которому оно предназначено, одновременно может служить помехой для приемников тех абонентов, которым оно не предназначено.

Источник

Помехи и шумы в спутниковых системах связи: как добиться помехоустой­чивости и помехозащи­щенности

Что такое помехи в системах связи

Характеристики помех

Помехи характеризуют следующие параметры:

Представлено взаимосвязью средних мощностей сигнала и помехи, выражается в децибелах.

Отображает постоянную составляющую процесса (математическое ожидание).

● Второй момент (дисперсия)

Выражает мощность, характерную для переменной составляющей.

● Функция автокорреляций процесса

Представляет собой смешанный второй момент.

Свойство заключается в совпадении средних по множеству (вычисляемых по распределению математических ожиданий) с найденными по одной реализации процесса средними по времени с вероятностью равной единице.

● Спектральная плотность мощности (спектр)

Классификация помех в системах связи

По форме

Форма делит помехи на:

Идут от промышленной сети, где частота составляет 50 ГГц, от различных аппаратов, медицинских установок.

Представлены отдельными импульсами.

По характеру мешающего воздействия

Характер мешающего воздействия определяет следующие типы помех:

Помеха суммируется с полезным сигналом внутри канала связи.

По месту возникновения

В зависимости от места возникновения помехи бывают:

Создаются электромагнитными процессами, которые происходят в космическом пространстве, ионосфере, атмосфере, электроустановками, а также средствами, используемыми для создания преднамеренных помех.

По виду частотного спектра

Соответственно частотному спектру помехи подразделяются на:

● Стационарный (белый) шум

Содержит отличающиеся случайной начальной фазой, а также одинаковой амплитудой гармонические составляющие, равномерно распределенные по всему диапазону частот — от постоянной составляющей до частоты порядка 1012 Гц.

Флуктуационные помехи

Возникают вследствие наложения большого количества импульсных помех, из-за чего кривая напряжения становится непрерывной по времени величиной. Это случайный процесс, отличающийся нормальным распределением (закон Гаусса). Подобные помехи присутствуют практически во всех каналах связи и называются шумами.

К ним также относятся шумы приемника и среды, где происходит распределение сигнала. У входа приемного устройства их спектр шире полосы пропускания последнего.

Аддитивные помехи

Помехи соседних радиоканалов

Промышленные помехи

Атмосферные помехи

Узкополосные помехи

Мультипликатив­ные помехи

Синусоидальные помехи

Импульсные помехи

Спектральные помехи

Возникают при случайном пересечении спектральных линий различных элементов.

Сплошные помехи

Селективные помехи

Перекрестные помехи

Явления, где переданный по одной линии канала связи сигнал, в другой линии приводит к возникновению нежелательного эффекта. Данный тип может быть вызван паразитными индуктивными, проводящими или емкостными связями, существующими в одной электрической цепи, ее части или канала связи с другой (другим).

В кабельных структурированных системах помехи перекрестного типа возникают вследствие влияния одной витой пары (неэкранированной) на другую, что разделяет их на:

Перекрестные помехи на ближнем конце

Перекрестные помехи на дальнем конце

Внешние перекрестные помехи

Сосредоточенные помехи

Ширина их спектра соразмерна с шириной спектра сигнала или уже его.

Существует два типа сосредоточенных помех:

Апериодическая помеха

Полупериодическая помеха

Нелинейные помехи

Помехи линейных переходов

Шум в системах связи

Шум представляет собой любое нежелательное воздействие, добавляемое к идеальному сигналу и ухудшающее его прием.

Шум представлен несколькими видами:

Перекрестные помехи

Внутриканальные помехи

Искусственные шумы

Естественные шумы

Тепловой шум

Дробовой шум

Фликер-шум

Гауссов шум

Белый шум

Периодический случайный шум

Пути проникновения шумов

Шумы, наводимые на провода

Связь через общее сопротивление

Электрические и магнитные поля

Гальванический процесс

Электролитический процесс

Трибоэлектрический эффект

Перемещение проводника

Помехи от системы зажигания

Помехи от линий электропередач

Помехи от аппаратуры дуговой сварки

Понятие помехоустой­чивости спутниковых систем связи

Потенциальная помехоустойчи­вость системы связи

Реальная помехоустой­чивость

Трансформация телемеханического сообщения

Помехоустойчивость дискретных сигналов

Как добиться помехозащищен­ности систем связи

Технические способы устранения помех

Для подавления идущих от источника шумов необходимо:

● Заключение источников шума в экран;

● Подключение фильтров ко всем проходящим через зашумленное пространство проводникам;

● Ограничение времени нарастания импульса;

● Использование цепей, подавляющих выбросы напряжения, для катушек реле;

● Скручивание шумящих проводников;

● Экранирование витых пар шумящих проводов;

● Заземление обоих концов экранов, которые применяются для подавления помех излучения.

Подавление шумов в приемнике предполагает:

● Расширение полосы пропускания строго до необходимых параметров;

● Использование селективных частотных фильтров;

● Обеспечение соответствующей развязки по питанию;

● Шунтирование малоемкостных высокочастотных электролитических конденсаторов;

● Применение экранирующих корпусов.

Методы защиты от помех промышленных сетей

Предотвратить воздействие на промышленные сети способны следующие методы:

● Использование витой пары как среды передачи информации;

● Применение кабелей волоконно-оптического типа, менее подверженных электромагнитным помехам;

● Скремблирование — приведение данных к виду, похожему на случайные данные по различным характеристикам, что в итоге позволяет подавить сильные составляющие сигнального спектра и не допустить возникновение помех;

● Дополнение пакета данных служебной информацией, говорящей о целостности данного пакета;

● Резервирование линий передачи данных;

● Совместное применение цифровых и аналоговых сигналов.

Источник

Что такое внешние помехи

В качестве электромагнитной помехи (ЭМП) может фигурировать практически любое электромагнитное явление в широком диапазоне частот. Прежде чем переходить к рассмотрению влияния ЭМП на электронную аппаратуру, попытаемся ввести некоторую классификацию ЭМП.

Деление помех на индуктивные и кондуктивные является, строго говоря, условным. В реальности протекает единый электромагнитный процесс, затрагивающий проводящую и непроводящую среду. В ходе распространения многие помехи могут превращаться из индуктивных в кондуктивные и наоборот. Так, переменное электромагнитное поле способно создавать наводки в кабелях, которые далее распространяются как классические кондуктивные помехи. С другой стороны, токи в кабелях и цепях заземления сами создают электромагнитные поля, т.е. индуктивные помехи.

Условность деления помех на индуктивные и кондуктивные наглядно проявляется, например, в ходе анализа пути проникновения высокочастотных помех внутрь электронной аппаратуры. Часто выясняется, что реальный путь проникновения помехи представляет собой комбинацию металлических проводников и «дорожек» на платах аппаратуры («кондуктивные» участки) и паразитных емкостных и индуктивных связей («индуктивные» участки). В результате помеха достигает высокочувствительных цифровых контуров аппаратуры, минуя защитные элементы типа фильтров и варисторов, установленные в расчете на чисто кондуктивный характер помехи.

Деление помех на индуктивные и кондуктивные можно считать относительно строгим лишь в низкочастотной (до десятков кГц) области, когда емкостные и индуктивные связи обычно малы. Однако и здесь есть исключения — например, строгий анализ растекания тока через сложный заземлитель в землю требует учета как гальванической, так и электромагнитной составляющей единого процесса.

Кондуктивные помехи в цепях, имеющих более одного проводника, принято также делить на помехи « провод — земля » (синонимы − несимметричные, общего вида, Common Mode) и « провод-провод » (симметричные, дифференциального вида, Differential Mode). В первом случае («провод-земля») напряжение помехи приложено, как следует из названия, между каждым из проводников цепи и землей. Во втором — между различными проводниками одной цепи (см. рис. 1). Обычно самыми опасными для аппаратуры являются помехи «провод-провод», поскольку они оказываются приложенными так же, как и полезный сигнал (рис. 1 б)). Реальные помехи обычно представляют собой комбинацию помех «провод-провод» и «провод-земля». Нужно учитывать, что несимметрия внешних цепей передачи сигналов и входных цепей аппаратуры может вызывать преобразование помехи «провод-земля» в помеху «провод-провод». Это легко понять, рассматривая упрощенную схему на рис. 2: несимметрия внешних цепей (Zl1Zl2) и входных цепей аппаратуры-приемника (Zi1Zi2) приводит к появлению помехи «провод-провод» величиной Ud = (Zi1/ Zl1 Zi2/Zl2)Uc. В данном примере упрощение заключалось в том, что внутреннее сопротивление приемника в режиме «провод-провод» принято равным бесконечности (т.е., в качестве измерителя полезного сигнала включен идеальный вольтметр).

ЗАДАЧА. Найти выражение для напряжения помехи «провод-провод» в реальной схеме, заменив вольтметр в схеме рис. 2 некоторым входным сопротивлением аппаратуры Z.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 1. Схема приложения помехи «провод-земля» (а) и «провод-провод» (б).

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 2. Преобразование помехи «провод-земля» в помеху «провод-провод».

Применение внешних цепей с высокой степенью симметрии (т.е. с Zl 1 ≈ Zl 2, например, типа «витая пара»), позволяет обеспечить низкий уровень преобразования помех «провод-земля» в помехи «провод-провод», но лишь при условии высокой симметрии входных цепей аппаратуры ( Zi 1 ≈ Zi 2).

Широкополосные помехи имеют существенно несинусоидальный характер и обычно проявляются в виде либо отдельных импульсов, либо их последовательности. Для периодических широкополосных сигналов спектр состоит из большого набора пиков на частотах, кратных частоте основного сигнала. Для апериодических помех спектр является непрерывным и описывается спектральной плотностью. Типичными широкополосными помехами являются:

· шум, создаваемый в сети питания аппаратуры при работе импульсного блока питания;

· импульсы, создаваемые при коммутационных операциях;

Приведенная классификация не претендует ни на строгость, ни на полноту. Тем не менее, она позволяет ввести понятия, которые понадобятся нам в дальнейшем. Эта же классификация широко используется инженерами, работающими в области ЭМС.

2. Влияние ЭМП на аппаратуру связи

Влияние ЭМП на аппаратуру бывает разнообразным — от непредсказуемых временных ухудшений характеристик канала передачи информации, сбоев цифровой техники и искажения изображения на экранах мониторов до физического повреждения и даже возгорания аппаратуры и ее кабелей. Иногда при анализе той или иной неисправности оказывается очень сложно обнаружить, что реальным ее источником являются проблемы ЭМС.

Прежде, чем переходить к описанию физических механизмов влияния ЭМП на аппаратуру, рассмотрим формальную классификацию воздействия ЭМП по признаку степени серьезности последствий. В действующих стандартах для этого используются так называемые критерии качества функционирования аппаратуры под действием ЭМП (см., например, [5]). Они используются для формализации описания поведения аппаратуры под действием той или иной помехи. Рассмотрим эти критерии.

Критерий А — воздействие ЭМП никак не отражается на функциональных характеристиках аппаратуры, работа которой до, во время и после воздействия помехи происходит в полном соответствии с техническими условиями или стандартами. Обычно выполнение критерия А требуется для аппаратуры, используемой для выполнения функций высокой важности в реальном масштабе времени. В первую очередь это аппаратуры защиты и противоаварийной автоматики.

Критерий В — допускается временное ухудшение функциональных характеристик аппаратуры в момент воздействия помехи. После прекращения воздействия ЭМП функционирование полностью восстанавливается без вмешательства обслуживающего персонала. Этот критерий обычно используется для аппаратуры, выполняющей задачи высокой важности, однако не в реальном масштабе времени. Достаточно «скользким» моментом при определении соответствия аппаратуры критерию В является допустимое время восстановления функциональных характеристик после воздействия помехи. Это актуально, например, когда речь идет о цифровой аппаратуре, воздействие ЭМП на которую приводит к перезагрузке.

Критерий С — аналогичен В, но, в отличие от него, допускает вмешательство персонала для восстановления работоспособности аппаратуры (например, перезагрузки «зависшей» цифровой системы, повторного набора номера и т.п.). Обычно используется для аппаратуры, не предназначенной для выполнения ответственных задач.

Критерий D — физическое повреждение аппаратуры под действием помехи. По понятным причинам, этот критерий не может использоваться для формулировки требований к устойчивости аппаратуры.

Несмотря на высокий уровень формализации, применение этих критериев часто требует дополнительной информации. Такая конкретизация обычно выполняется в стандартах на виды продукции, технических условиях и программах испытаний.

Перейдем теперь к рассмотрению физических механизмов влияния ЭМП на аппаратуру.

Условно, можно выделить следующие основные сценарии воздействия ЭМП на аппаратуру:

1) Искажение сигналов во внешних информационных цепях. Можно выделить две основных причины возникновения кондуктивных помех в информационных цепях (рис. 3):

— действие индуктивных ЭМП, наводящих кондуктивные помехи в информационных цепях;

— наличие гальванической связи между подверженной влиянию цепью и источником внешних помех (кондуктивный механизм). В качестве такой гальванической связи очень часто выступает общее для различных устройств сопротивление заземления: потенциал, созданный падением напряжения на сопротивлении заземления, оказывается приложенным к корпусу аппаратуры и, через сопротивления между входными цепями этой аппаратуры и корпусом, прикладывается к информационным цепям.

Помехи, появившись в проводных коммуникациях, достигают входов аппаратуры. Далее механизм воздействия помех зависит от их частот.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 3. Возникновение помех в линии связи: а) — ЭДС помехи E п создается под действием внешнего электромагнитного поля (индуктивный механизм), б) — напряжение U п создается при протекании тока помехи I п через общее для устройств 2,3 сопротивление заземления Z (кондуктивный механизм).

Особенно опасны составляющие спектра помехи, лежащие в той же полосе частот, что и рабочие сигналы. Обычно такие составляющие беспрепятственно минуют входные фильтры и далее обрабатываются так же, как если бы они были полезными сигналами. В результате повышается число ошибок в канале передачи информации. В отдельных случаях может происходить даже физическое повреждение элементов сигнального тракта.

Сравнительно низкочастотные (до 10 − 20 МГц) составляющие помехи, лежащие вне рабочей полосы частот канала связи, обычно воздействуют на ближайшие к входам схемные элементы. В грамотно спроектированной аппаратуре ими обычно оказываются фильтры и специальные устройства ограничения перенапряжений (разрядники, варисторы и т.п.). В этом случае основной угрозой является возможность физического повреждения этих элементов. Обычно это бывает, если амплитуда помехи значительно превышает ту, на которую защитные элементы были рассчитаны.

Высокочастотные составляющие спектра помехи вне рабочей полосы частот, отличаются тем, что благодаря наличию паразитных индуктивных и емкостных связей оказываются способными «обходить» защитные элементы и проникать глубоко внутрь аппаратуры. Особенно опасно их воздействие на элементы внутренних цифровых схем аппаратуры. Поскольку обмен данными по внутренним системным шинам часто производится без использования протоколов с обнаружением и коррекцией ошибок, искажение только одного бита информации уже способно полностью блокировать работу системы.

2) Искажение сигналов в антенных цепях. Относится к радиоаппаратуре. Механизм возникновения помех аналогичен индуктивному механизму возникновения помех в проводных коммуникациях аппаратуры связи (рис. 3 а): электромагнитное поле помехи индуцирует в антенных цепях ЭДС помехи. Обычно амплитуды помех, наводимых таким образом, малы для того, чтобы повредить входные фильтры аппаратуры. Поэтому основную угрозу для приема представляют помехи, значительная часть спектра которых лежит в рабочей полосе частот радиоаппаратуры.

3) Попадание помех на входы питания аппаратуры. Существует множество механизмов возникновения помех в цепях питания аппаратуры. Это связано с тем, что обычно сеть питания имеет большую протяженность и объединяет самых разных потребителей. Описанные выше для информационных цепей механизмы попадания помех (индуцирование ЭДС внешним полем и проникновение помехи через общее сопротивление) действуют и в этом случае. Кроме того, работа каждого потребителя, включенного в общую сеть питания, вносит искажения в формы кривых тока и напряжения в этой сети. При этом частоты помех могут меняться в очень широких пределах — от десятков и сотен герц (гармоники, а также провалы и выбросы напряжения питания при коммутациях больших нагрузок) до радиочастотных (например, при работе некоторых блоков питания аппаратуры). Постоянное отклонение напряжения и (или) частоты питания от номинальных значений вследствие перегрузки сети, аварийной работы энергосистемы или автономного источника питания также могут рассматриваться как помехи.

Среди низкочастотных помех наибольшую опасность представляют перенапряжения при авариях электропитания (особенно − аварийные потенциалы на элементах заземляющего устройства, которые вследствие возникающей разности потенциалов между заземлением аппаратуры и нейтрали питающего ее трансформатора оказываются приложенными к входам питания). К временной потере работоспособности аппаратуры также приводят полные отключения питания на длительное время. Отказы хорошо спроектированной аппаратуры по причине появления других низкочастотных (до нескольких сотен герц) помех в цепях питания случаются относительно редко. Такая устойчивость объясняется тем, что современные блоки питания аппаратуры обычно представляют собой систему автоматического регулирования (САР), способную поддерживать заданное значение напряжения на выходе даже в случае значительного отклонения формы кривой напряжения на входе от номинальной.

При сдвиге спектра частот помехи в высокочастотную область ее опасность (при той же энергии) обычно возрастает. Для частот до нескольких десятков мегагерц это объясняется двумя факторами.

Во-первых, импульсные помехи даже сравнительно небольшой энергии могут иметь значительную амплитуду по напряжению. Действительно, энергия импульса, выделяющаяся на активном сопротивлении, определяется как

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

где u = u ( t ) — напряжение, r — сопротивление, Т — длительность импульса. Таким образом, при меньшей длительности импульс той же энергии может иметь большую амплитуду. Большие значения пикового напряжения импульса могут приводить к пробою элементов блока питания, не рассчитанных на слишком высокое напряжение. Возникающая при пробое дуга может сохраняться и после окончания импульса, поддерживаемая за счет обычного напряжения питания. В этом случае импульс играет роль лидера.

Второй фактор, обуславливающий повышение опасности помех в цепях питания с ростом их частоты — динамические характеристики самого блока питания. Выше уже отмечалось, что современные блоки питания имеют структуру САР, причем с нелинейными элементами. Обычно такая система проектируется в расчете на относительно низкочастотные возмущения на входе. Попадание на вход высокочастотных помех может вызвать нежелательную реакцию системы (резонансные эффекты, автоколебания и т.п.). В результате стабильность напряжения на выходе блока питания может нарушиться, что вызовет отказ аппаратуры.

С дальнейшим ростом частоты помехи (от десятков мегагерц до гигагерц) большое значение начинают играть паразитные емкостные и индуктивные связи. В результате (как и в случае информационных цепей) составляющие помехи могут, в обход установленных защитных элементов, проникнуть вглубь аппаратуры и нарушить работу ее цифровых узлов.

4) Протекание токов помех по металлическим корпусам аппаратуры и экранам кабелей. Источников таких помех может быть множество. Заземленные металлические корпуса и шасси аппаратуры, а также экраны кабелей, образуют часть пути стекания в землю токов помех. Внешние электромагнитные поля также наводят токи помех в экранирующих корпусах аппаратуры и экранах кабелей. При электростатическом разряде с тела человека также происходит протекание тока по металлическим конструкциям аппаратуры.

Отрицательный эффект протекания таких токов может быть обусловлен индуктивным или кондуктивным механизмом. При индуктивном механизме протекание тока создает магнитное поле, которое, в свою очередь, способно индуцировать ЭДС помехи в близкорасположенных контурах аппаратуры. Во втором случае существенно то, что при протекании токов помех различные точки заземленных металлических частей приобретают различные потенциалы. Поскольку при проектировании аппаратуры все такие точки обычно рассматриваются как эквипотенциальные («масса»), это может привести к искажению сигналов. Пример того, как протекание тока помехи по экрану коаксиального кабеля способно исказить передаваемый сигнал, приведен на рис. 4. Здесь Z ж и Z э — полные сопротивления жилы и экрана кабеля соответственно, U с — неискаженное напряжение сигнала на входе в кабель, I п — ток помехи. Легко понять, что реальный сигнал, измеренный на входе аппаратуры, будет уже равен U с + I п Z э.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 4. Искажение сигнала в несимметричной цепи под действием тока в экране кабеля.

Полные сопротивления металлических частей шасси аппаратуры и экранов кабелей носят индуктивный характер и возрастают (по модулю) с ростом частоты. То же самое справедливо и в отношении коэффициентов паразитных связей между ними и цепями аппаратуры. Поэтому опасность со стороны протекающих по металлическим частям шасси аппаратуры и экранам кабелей токов возрастает с ростом частоты.

5) Непосредственное воздействие внешних полей на внутренние цепи аппаратуры. Такая ситуация обычно имеет место при отсутствии у аппаратуры экранирующего корпуса, либо когда экранирующие свойства такого корпуса недостаточны. При этом по закону электромагнитной индукции во внутренних контурах аппаратуры наводится ЭДС помехи. Если эта ЭДС помехи достаточно велика (например, выше порога, отделяющего уровень «ноль» от уровня «единица» в цифровых системах), возможно нарушение функционирования аппаратуры. Поскольку коэффициенты индуктивной связи пропорциональны частоте, особенно высокую опасность представляют высокочастотные поля. Принято считать, что относительно низкочастотные поля (не более 80 МГц) воздействуют, в основном, не на саму аппаратуру, а на ее проводные коммуникации (сценарии 1, 3 из данного списка). Лишь на более высоких частотах влияние поля непосредственно на внутренние контуры аппаратуры может оказаться существенным.

Отдельно стоит сказать о действии магнитных полей на устройства, содержащие электронно-лучевые трубки (ЭЛТ). Конструкция таких устройств предусматривает очень точное нацеливание пучка электронов на соответствующую точку люминофора. Как известно, воздействие электрического или магнитного поля приводит к искажению траектории электронов. В результате искажается и изображение на экране, так как электронный пучок попадает в другие точки люминофора. В первую очередь, это сопровождается искажением цвета. Благодаря остаточной намагниченности отдельных элементов устройства, искажения изображения сохраняются некоторое время и после снятия внешнего магнитного поля.

3. Основные источники ЭМП

В этом разделе мы рассмотрим основные источники ЭМП, способные представлять угрозу для электронной аппаратуры. Некоторые из них характерны лишь для объектов с высокой энерговооруженностью (энергетика, транспорт, тяжелая промышленность и т.п.). Другие могут обнаружиться практически в любом месте, включая офисы, машинные залы ЭВМ и жилые помещения.

3.1 Аварийные потенциалы на элементах заземляющего устройства

Прежде всего, нам понадобится рассмотреть само понятие заземления и функции, которые оно выполняет.

Заземление – преднамеренное электрическое соединение элементов схем, корпусов аппаратуры, экранов кабелей и других проводящих элементов с точкой, потенциал которой принимается в качестве опорного (нулевого). Обычно в качестве такой точки принимается физическая земля, хотя это и не обязательно. Так, на подвижных объектах (автомашинах, самолетах, судах и т.п.) в качестве опорного выбирается потенциал корпуса («масса»).

Заземление обеспечивает выполнение двух основных задач. Во-первых, оно служит для обеспечения электробезопасности. Действительно, хорошая электрическая связь на низкой частоте между всеми имеющимися на объекте проводящими конструкциями, к которым может прикасаться человек, обеспечивает выравнивание их потенциала. В результате разность потенциалов между любыми доступными прикосновению точками сильно снижается.

В случае короткого замыкания фазы на землю по цепям заземления могут протекать очень большие токи. Поскольку элементы системы заземления обладают некоторым сопротивлением (активным и реактивным) то, по закону Ома, на них могут создаваться значительные потенциалы, представляющие опасность для человека. Но и в этом случае заземление все же выполняет свою защитную функцию: протекание большого тока «нулевой последовательности» заставляет сработать систему защиты (в простейшем случае — обычный предохранитель). Существуют жесткие ограничения на время срабатывания защитных устройств (обычно – доли секунды).

Второй задачей заземления является задание единого опорного потенциала для всех элементов электрического или электронного оборудования.

В качестве примера можно рассмотреть два электронных устройства, расположенных в различных помещениях одного здания (рис. 5). Пусть между ними проходят цепи обмена информацией (как, например, в локальной вычислительной сети). Если теперь корпус одного из устройств приобретает высокий потенциал (в результате, например, электростатического разряда), то этот потенциал оказывается приложенным к интерфейсным элементам связи между устройствами. Это может вызвать появление помех или даже физическое повреждение интерфейсных элементов. При заземлении обоих устройств происходит очень быстрое выравнивание потенциала, в результате чего снижается вероятность физического повреждения интерфейсных элементов (хотя появление кратковременных помех при электростатическом разряде исключить по-прежнему нельзя).

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Иногда заземление используют для организации цепи возврата тока к источнику. Некоторые силовые и информационные цепи строятся по так называемой несимметричной схеме, когда от источника к приемнику идет лишь один провод, а обратным проводом является земля. При этом достигается некоторая экономия, однако такой подход часто снижает помехоустойчивость системы и приводит к возникновению паразитных перекрестных связей через общее для различных цепей сопротивление заземления (см. выше).

Базовым элементом системы заземления стационарного объекта является заземлитель (рис. 6). Заземлителем называется проводник (электрод), непосредственно соединенный с физической землей, или совокупность таких проводников, связанных металлическими связями. Широко распространены заземлители типа сетки, представляющие собой заглубленную в землю горизонтальную конструкцию из пересекающихся металлических электродов. Сложные заземлители иногда называют контурами заземления.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 6. Основные элементы заземляющего устройства: 1 — заземлитель, 2 — заземляющий проводник

Иногда вместо заземления используют зануление. Обычно это делается, когда объект не обладает собственным заземлителем. Тогда в качестве заземлителя используют заземлитель ближайшей трансформаторной подстанции, на который (согласно ПУЭ) заземляется «ноль» (в трехфазной сети – нейтраль) питания. Такая организация заземления является неудовлетворительной. Действительно, в этом случае постоянно происходит протекание тока питания через цепи заземления, что приводит к появлению помех. Кроме того, большая длина заземляющего проводника приводит к росту его полного сопротивления.

При протекании тока через заземляющий проводник в заземлитель и далее через землю к другому полюсу источника, физический ввод в заземлитель приобретает некоторый потенциал относительно удаленной земли (т.н. зоны нулевого потенциала). Отношение этого потенциала к величине тока называется сопротивлением растеканию заземлителя (рис. 7). Расстояние до удаленных точек ввода тока и измерения потенциала (точки 1, 2 на рисунке) должно быть много больше линейных размеров заземлителя. Соответствующий метод измерения сопротивления растеканию носит название « метод амперметра — вольтметра ».

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 7. Определение сопротивления растеканию заземлителя.

Сопротивление растеканию зависит от частоты и обычно определяется для 50 Гц.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 8. Влияние разности потенциалов между различными заземляющими устройствами на аппаратуру связи.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 9. Пример напряжения помехи «провод-земля» на входе аппаратуры при воздействии аварийного потенциала.

Аналогичные проблемы могут возникать и в пределах одного заземляющего устройства. Это связано с тем, что заземляющее устройство не является эквипотенциальным. В качестве примера рассмотрим следующую ситуацию.

Пусть произошло короткое замыкание фазы на землю в силовой части энергообъекта (например, на распределительном устройстве — РУ — подстанции). Пусть, далее, ток короткого замыкания возвращается к заземленной нейтрали трансформатора, питающего данное короткое замыкание и расположенного на том же РУ. При этом на элементах заземляющего устройства будут неминуемо создаваться падения напряжения вследствие протекания токов короткого замыкания. Величина этих падений напряжения зависит от величины тока короткого замыкания, а также от свойств грунта и заземлителя и, особенно, от качества электрической связи между отдельными элементами заземляющего устройства.

Для упрощения оценки качества электрической связи между отдельными элементами единого заземляющего устройства вводится понятие сопротивления связи между электроаппаратами (конструкциями) на распределительном устройстве энергообъекта (РУ). Это понятие можно обобщить на любую систему заземления, в которой имеется несколько вводов заземляющих проводников в заземлитель. Чтобы понять, как определяется сопротивление связи, рассмотрим рисунок 10.

Между двумя электроустановками (вводами в заземлитель) А и В включен генератор тока промышленной частоты. Протекающий в земле и заземлителе ток создает между точками А и В некоторую разность потенциалов. Отношение этой разности потенциалов к току генератора и называется сопротивлением связи между точками А и В.

На рисунке 11 приведены графики распределения мгновенного значения потенциала вдоль протяженного заземлителя, показанного на рис. 10. Если бы земля являлась изолятором, то весь ток возвращался бы к генератору по заземлителю, и распределение потенциала вдоль заземлителя было бы равномерным (кривая 1 на рис. 11), т. к. его погонное сопротивление остается неизменным по длине. В действительности земля (грунт) имеет конечную проводимость, не равную нулю, поэтому ток по мере удаления от места его ввода перераспределяется между заземлителем и землей. При этом вблизи точек ввода и вывода занятый током объем грунта будет небольшим, но он будет быстро увеличиваться по мере удаления от концов заземлителя к его середине. Если считать продольный заземлитель вместе с объемом грунта, занятого током, некоторым эквивалентным проводником тока земляного возврата, то этот проводник будет иметь переменное сечение. Наибольшее сечение будет в середине, а наименьшее – в точках ввода и вывода тока, т.е. в точках А и Б. Соответственно, погонное сопротивление такого проводника будет наибольшим вблизи его концов, и распределение мгновенного значения потенциала вдоль него будет неравномерным (кривая 2 на рис. 11). В точках А и В потенциал будет максимальным (по абсолютной величине). По мере удаления от этих точек потенциал будет быстро снижаться до малых значений.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 10. К определению сопротивления основания электроустановки

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 11. Характер изменения мгновенного значения потенциала вдоль заземленного проводника.

Такой характер изменения потенциала определяет опасность напряжения прикосновения. По этой же причине сопротивление электрической связи между двумя точками А и Б можно в большинстве случаев представить суммой двух сопротивлений — сопротивления основания электроустановки А и сопротивления основания электроустановки Б. Под сопротивлением основания электроустановки А относительно Б при этом понимается отношение потенциала, измеренного в точке А, к току генератора.

ЗАМЕЧАНИЕ. Если в качестве точки Б использовать заземлитель, вынесенный далеко за пределы заземляющего устройства, полученное значение сопротивления основания в точке А будет в точности равно сопротивлению растеканию данного ЗУ, измеренному в точке А.

Вообще говоря, сопротивление основания электроустановки А зависит от выбора второй точки Б. Поэтому понятия «сопротивление связи» или «сопротивление растеканию, измеренное в точке А» являются более строгими. Однако на практике при выполнении измерений удобнее всего измерять именно сопротивление основания. Это позволяет ограничиться измерением сопротивления растеканию лишь в одной «опорной» точке (на подстанции такой точкой обычно является заземление нейтрали одного из трансформаторов). Для всех остальных точек (вводов в заземлитель) измеряются только сопротивления оснований относительно этой опорной точки. В целом получается достаточно полная картина, характеризующая заземляющее устройство в целом.

ПРИМЕР. Пусть сопротивления оснований всех аппаратов, расположенных на РУ подстанции относительно нейтрали трансформатора составляют 0,1 Ом (что соответствует реальному значению сопротивлений связи для элементов ЗУ, находящегося в удовлетворительном состоянии). Примем ток КЗ равным 10 кА, что вполне соответствует реальности. Тогда при коротком замыкании на какой-либо из электроустановок разность потенциалов между точками грунта, расположенными рядом с ней, и другими точками, удаленными от места КЗ и питающего его трансформатора, будет равна примерно 1 кВ. При возрастании сопротивления связи до 1 Ом (что нередко наблюдается в реальных условиях), указанная разность потенциалов увеличится до 10 кВ.

Высокая разность аварийных потенциалов в пределах единого ЗУ может, в итоге, оказаться приложенной к некоторым кабелям, и через них — к входам аппаратуры. Кроме того, она представляет значительную опасность для оперативного и ремонтного персонала.

ПРИМЕР. Пусть заземление экранов кабелей, связывающих два объекта А и Б, осуществляется со стороны объекта А. Тогда при появлении аварийного потенциала на объекте А возможен вынос потенциала на объект Б по экранам кабелей.

Аварийные потенциалы воздействуют на аппаратуру как низкочастотные кондуктивные помехи по информационным цепям и цепям питания (сценарии 1 и 3 в разделе 2). Обычная схема − «провод−провод». Поскольку частота 50 Гц очень низка по сравнению с рабочими частотами практически любой современной информационной аппаратуры, основную угрозу представляет физическое разрушение элементов аппаратуры, а также самих кабелей (критерий качества функционирования D согласно классификации раздела 2). Иногда, однако, встроенные схемы мониторинга питания распознают аварийные потенциалы как отказ и производят отключение или перезагрузку аппаратуры. В этом случае критерий качества функционирования — В или С.

К сожалению, пока нет единой стандартизованной процедуры испытаний, моделирующей воздействие аварийных потенциалов на работающую аппаратуру. Применяемые обычно стандартные измерения сопротивления изоляции нельзя считать полностью удовлетворительными, поскольку, во-первых, они проводятся лишь для отключенной аппаратуры и, во вторых, только по схеме «провод-земля».

3.2 Низкочастотные возмущения напряжения питания

Основными источниками возмущений напряжения питания являются:

1. Резкие колебания нагрузки. Рассмотрим условную схему сети электропитания (рис. 12).

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 12. Влияние резкого изменения нагрузки на остальных потребителей.

2. Нештатные режимы работы энергосистем. Вследствие тех или иных неполадок в работе энергосистемы параметры напряжения питания (в первую очередь, действующее значение) могут значительно отличаться от номинальных. Короткие замыкания и другие аварии могут приводить к полному исчезновению напряжения питания длительностью от десятков миллисекунд до нескольких часов. В некоторых случаях могут возникать кратковременные перенапряжения, когда в течение нескольких периодов напряжение питания в 1,5 − 2 раза превышает номинальное.

Воздействие указанных факторов на аппаратуру проявляется как воздействие низкочастотных кондуктивных помех по цепям питания (сценарий 3 из раздела 2). Физическое повреждение аппаратуры (критерий D ) обычно появляется лишь в случае значительных перенапряжений. Большинство современных устройств имеет блоки питания, обеспечивающие нормальное функционирование в широком диапазоне входных напряжений. Поэтому для них существенную угрозу представляют лишь длительные прерывания питания. Наиболее надежным защитным средством в этом случае является применение источника или системы бесперебойного электропитания (ИБП, UPS − Uninterruptable Power Supply ).

Традиционно на энергопредприятиях существовало две системы питания: питание переменным током 380/220 В (сеть собственных нужд объекта) и питание оперативным током (постоянное напряжение 220 В от аккумуляторной батареи). Последняя как раз и используется для питания критических элементов, требующих бесперебойного электроснабжения. Благодаря большой протяженности цепей оперативного тока и большому количеству подключаемых к ним потребителей, уровень помех в этих цепях достаточно высок. Особенно большие помехи в цепях оперативного тока создаются при срабатывании подключенных к ним электромеханических устройств (например, приводов высоковольтных выключателей). Поэтому в последнее время появилась тенденция снабжать особенно важную аппаратуру собственным ИБП, работающим от сети собственных нужд.

Имеются российские и международные стандарты, позволяющие провести полномасштабные испытания аппаратуры на устойчивость к воздействию перечисленных выше помех: провалов, прерываний и выбросов напряжения питания, а также гармоник.

3.3 Помехи от грозовых разрядов

При ударе молнии вблизи от аппаратуры или ее проводных коммуникаций возникают сильные импульсные помехи в информационных и антенных цепях, а также цепях питания (сценарии 1 — 3 раздела 2). При этом могут реализовываться как индуктивный, так и кондуктивный механизм связи. В первом случае первостепенную роль играет то, что на расстоянии до нескольких километров от места разряда могут создаваться значительные электрические и магнитные поля. Эти поля создают наводки в линиях электропередачи и обмена информацией которые, в итоге, оказываются приложенными к входам электронной аппаратуры как помехи.

Кондуктивный механизм связи действует лишь при возникновении разряда между облаком и землей. В этом случае за счет протекания тока происходит подъем потенциала части грунта, а также различных металлоконструкций, включая элементы заземляющего устройства. После этого воздействие помехи на цепи аппаратуры происходит так же, как и в случае аварийных потенциалов на элементах заземляющего устройства (раздел 3.1).

В отдельных случаях опасность может представлять воздействие импульсных электрических и магнитных полей непосредственно на аппаратуру (сценарий 5 раздела 2). Опасность также может представлять протекание токов помех по металлическим частям аппаратуры и экранам (сценарий 4 раздела 2).

МЭК и другие организации произвели изучение молниевого разряда и приняли следующие параметры импульса, имитирующего грозовую помеху:

— ширина переднего фронта импульса — 1.2 мкс,

— общая ширина импульса — 50 мкс,

— амплитуда — до 6 кВ,

— внутреннее сопротивление источника очень мало (обычно 2 Ом).

Таким образом, энергия импульса очень велика (сотни Дж!).

Благодаря высокой энергии и значительному напряжению импульса, его воздействие на аппаратуру часто оказывается разрушительным (критерий D ). Поскольку частоты не очень велики, помехи редко проникают вглубь аппаратуры. Обычно выводятся из строя интерфейсные элементы и блоки питания. Изредка, в случае пробоя защитных элементов или возникновения перекрытия на внутренние цепи, импульс проникает в основные узлы аппаратуры, что приводит к практически полному разрушению последней.

3.4 Помехи от коммутационных операций высоковольтного оборудования

Высокочастотные помехи и электромагнитные поля, возникающие при коммутационных операциях высоковольтного оборудования, имеют частотный спектр от единиц до десятков мегагерц. Примерный вид такой помехи показан на рис. 13.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 13. Коммутационная помеха в информационных цепях

Причинами возникновения импульсных помех на электрических станциях и подстанциях чаще всего являются коммутации основного оборудования выключателями и разъединителями. При работе коммутационного аппарата возникает электрический разряд в промежутке между контактами. При этом в коммутируемом участке системы шин развивается высокочастотный переходный процесс, сопровождаемый повторными пробоями воздушного промежутка. Появляющееся при этом импульсное электромагнитное поле наводит ЭДС в кабелях, проложенных рядом с местом коммутации, а также антенных цепях радиоаппаратуры. Коммутации выключателями менее опасны, чем разъединителями, поскольку выключатель имеет дугогасящую систему, которая не позволяет электрической дуге между контактами гореть слишком долго. При коммутациях разъединителями многократный пробой промежутка и горение дуги может продолжаться более 10 секунд. Многократность пробоя обеспечивается изменением полярности питающего напряжения. В этом случае возникает целая серия затухающих колебательных помех (типа показанных на рис. 13), следующих друг за другом через 5 — 15 мс.

Спектр частот помех существенно зависит от протяженности коммутируемых участков шин. Частота бывает тем выше, чем меньше протяженность (и, следовательно, эквивалентная емкость и индуктивность) коммутируемого участка. В то же время, при коммутации значительных участков шин время горения дуги и, соответственно, длительность пачки импульсов будет выше. Так, например, в случае коммутации короткого участка ошиновки длиной несколько метров спектр частот достигает нескольких десятков мегагерц. В случае же коммутации длинного участка (например, обходной системы шин) основная часть спектра помехи будет лежать в диапазоне сотен килогерц − единиц мегагерц.

Особняком стоят коммутационные помехи на элегазовых подстанциях. Поскольку применение элегаза в качестве изолятора уменьшает линейные размеры основных силовых элементов в несколько раз, соответственно возрастают и частоты помех. Они могут достигать сотен МГц и более.

Коммутационные помехи представляют значительную опасность для любой электронной аппаратуры, размещаемой на энергопредприятиях и предприятиях с высоким энергопотреблением, имеющих собственные подстанции. Основной сценарий воздействия на аппаратуру — создание кондуктивных помех в цепях передачи информации, питания, а также антенных цепях (сценарии 1 — 3 раздела 2). Иногда опасность также может представлять протекание токов помех по металлическим частям аппаратуры и экранам (сценарий 4 раздела 2).

При наличии высокочастотных коммутационных помех (обычно при коммутации коротких участков ошиновки длиной до 5 м или на элегазовых энергообъектах) опасность представляет также непосредственное воздействие полей на аппаратуру (сценарий 5 раздела 2 ).

Нужно учитывать, что энергия коммутационных помех обычно меньше чем молниевых. Поэтому в реальности в большинстве случаев аппаратура, успешно выдерживающая воздействие молниевых импульсов (микросекундных импульсных помех) выдерживает и воздействие коммутационных помех с частотами не выше нескольких десятков МГц. Тем не менее, существуют стандарты, предусматривающие испытания аппаратуры на устойчивость к воздействию коммутационных помех.

3.5 Помехи при коммутациях малой реактивной нагрузки

Коммутационные помехи возникают не только при коммутационных операциях на высоковольтных электроустановках. В принципе все, что необходимо для появления коммутационных помех — это быстрое включение или выключение реактивной нагрузки.

Например, при включении емкостной нагрузки типа люминесцентной лампы, к цепи быстро подключается колебательный контур. Если подключение происходит вблизи пика напряжения сети питания, то возникает затухающий колебательный процесс с максимальным значением напряжения примерно равным удвоенной величине напряжения питания; частота обычно лежит в диапазоне 5 — 10 кГц.

Отключение индуктивной нагрузки также производит переходные помехи. Напомним, что напряжение на индуктивности определяется формулой:

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Здесь V –напряжение на зажимах контура (В), L — индуктивность нагрузки (Гн), d I /dt — скорость изменения тока (А/с).

Когда скорость изменения тока велика, создается очень высокое напряжение. Теоретически, если ток уменьшается от конечного значения до нуля мгновенно, абсолютная величина напряжения оказывается бесконечно большой. В реальности же происходит дуговой пробой, ток которого уменьшает величину напряжения. Также играет роль паразитная емкость, позволяющая протекать току утечки.

Многократный пробой контакта приводит к появлению вместо одного пика множества переходных процессов с резкими скачками напряжения. Рассмотрим цепь на рисунке 14. Если пробоя не происходит (весь ток является током утечки через паразитную емкость), то пиковое значение напряжения Vc определяется формулой:

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Здесь Vc — напряжение, создаваемое на размыкающемся контакте, Io — ток, протекавший в контуре (А), L — индуктивность нагрузки (Гн), C — паразитная емкость контура (Ф).

Если происходит пробой контакта, что определяется приложенным к контакту напряжением и величиной воздушного промежутка, то появляется резкий всплеск ( burst ) тока (см. рис. 15).

Отметим, что этот эффект (появление высокого напряжения при коммутации индуктивной нагрузки, вызывающего пробой воздушного промежутка) используется в системах зажигания двигателей внутреннего сгорания. Поэтому работа таких двигателей также сопровождается генерацией помех.

Часто заметные импульсные помехи возникают при работе электромеханических устройств типа реле. Это особенно опасно там, где современную цифровую аппаратуру устанавливают рядом с устаревшими электромеханическими системами защиты и автоматики.

Еще одним важным источником коммутационных помех является работа щеточных электродвигателей. Поскольку с помощью щеток происходит многократное включение-выключение обмоток такого двигателя, имеет место типичный случай коммутации индуктивной нагрузки.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 14. Генерация переходных помех на индуктивной нагрузке.

Что такое внешние помехи. Смотреть фото Что такое внешние помехи. Смотреть картинку Что такое внешние помехи. Картинка про Что такое внешние помехи. Фото Что такое внешние помехи

Рисунок 15. Многократный пробой контакта при отключении.

Обычно коммутационные помехи в цепях низкого напряжения представляют собой пачки импульсов, причем длительность фронта импульсов — несколько наносекунд. Хотя амплитуда импульсов (по напряжению) может достигать нескольких киловольт, их энергия, как правило, невелика. Чтобы отличать такие помехи от более низкочастотных, но и более мощных помех при коммутациях высоковольтного электрооборудования, их принято называть наносекундными импульсными помехами (НИП, Bursts ). Обычно НИП возникают в цепях питания, однако, благодаря своему высокочастотному спектру, они могут порождать электромагнитные поля, создающие, в свою очередь, наводки в других цепях.

Основной сценарий воздействия на аппаратуру — через цепи питания (сценарий 3 раздела 2), хотя все остальные сценарии также возможны. Благодаря сравнительно низкой энергии, НИП редко вызывают физические повреждения аппаратуры. Однако благодаря паразитным емкостным и индуктивным связям, такие помехи могут легко проникать во внутренние цепи аппаратуры. Типичным последствием влияния НИП являются сбои в работе цифровой техники вследствие искажения сигналов во внутренних шинах обмена данными. Обычно это проявляется как «зависание» устройства с последующей автоматической или ручной перезагрузкой (критерии В или С). Иногда все же встречаются случаи физического повреждения отдельных высокочувствительных элементов (обычно — цифровых и аналоговых микросхем) под действием НИП.

Существующие в настоящее время методы испытаний позволяют эффективно моделировать воздействие НИП на цепи питания и передачи информации. Что касается воздействия на аппаратуру электромагнитных полей, создаваемых НИП, то их влияние частично моделируется при проведении испытаний аппаратуры на устойчивость к воздействию радиочастотных электромагнитных полей.

3.6 Радиочастотные электромагнитные поля

Выше уже рассматривались вопросы, связанные с воздействием на аппаратуру полей, создаваемых при коммутационных операциях и молниевых разрядах. В этом разделе речь пойдет, в первую очередь, о влиянии радиочастотного излучения функциональных источников. К таким источникам относятся, в первую очередь, радио- и телевизионные передатчики различного назначения и радары. Кроме того, к ним можно отнести микроволновые печи бытового и промышленного назначения, различные экспериментальные и испытательные установки и т.п. В некоторых случаях помехи, аналогичные помехам со стороны функциональных источников, могут создаваться и линиями проводной связи, работающими на высокой частоте.

Иногда существенный вклад в общий уровень помех в радиочастотном диапазоне вносят атмосферные и космические радиошумы, шумы от короны, а также радиочастотные шумы, создаваемые при работе блоков питания аппаратуры

Использование радиочастотного спектра зарегистрированными передатчиками становится все более интенсивным (радиовещание, морские и авиационные радиосредства, радары и мобильные передатчики). Частота используемых передатчиков меняется от 10 кГц в длинноволновом диапазоне до гигагерц у радаров, мобильных телефонов и т.п. Напряженность создаваемого электрического и магнитного полей зависит от мощности передатчика и расстояния до него. Так, слабый близкорасположенный источник (например, сотовый телефон) может создавать большее поле, чем удаленный мощный передатчик (например, аэродромный радар).

Приведенная ниже таблица содержит типовые значения напряженности электрического поля для основных источников (информация взята из IEC 1000-2-3: 1992-09).

Таблица 3-1. Типовое распределение радиочастотного спектра

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *