Что такое вариант в статистике
Понятие вариации в статистике
Правила построения рядов распределения
Ряды распределения представляют собой простейшую группировку, в которой каждая выделенная группа характеризуется одним показателем.
В зависимости от признака, положенного в основу образования ряда распределения, различают атрибутивные и вариационные ряды распределения.
Атрибутивными называют ряды распределения, построенные по качественным признакам, то есть признакам, не имеющим числового выражения.
Атрибутивные ряды распределения характеризуют состав совокупности по тем или иным существенным признакам. Взятые за несколько периодов, эти данные позволяют исследовать изменение структуры.
Вариационными рядами называют ряды распределения, построенные по количественному признаку. Любой вариационный ряд состоит из двух элементов: вариантов и частот. Вариантами называются отдельные значения признака, которые он принимает в вариационном ряду, то есть конкретное значение варьирующего признака. Частотами называются численности отдельных вариант или каждой группы вариационного ряда, то есть это числа, которые показывают, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность всей совокупности, ее объем. Частностями называются частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частностей равна 1 или 100%.
Правила построения рядов распределения аналогичны правилам построения группировки.
Группировки, построенные за один и тот же период времени, но для разных объектов или, наоборот, для одного объекта, но за два разных периода времени могут оказаться несопоставимыми из-за различного числа выделенных групп или неодинаковости границ интервалов.
Вторичная группировка, или перегруппировка сгруппированных данных применяется для лучшей характеристики изучаемого явления (в случае, когда первоначальная группировка не позволяет четко выявить характер распределения единиц совокупности), либо для приведения к сопоставимому виду группировок с целью проведения сравнительного анализа.
Термин «вариация» произошел от латинского varito —изменение, колеблемость, различие. Однако не всякое различие называется вариацией. Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов.
Исследование вариации в статистике имеет важное значение, т.к. дает возможность оценить степень воздействия на данный признак других варьирующих признаков. Определение вариации необходимо при организации выборочного наблюдения, построения статистических моделей, разработке материалов экспертных опросов и т.д.
Средняя величина — это обобщающая характеристика признака изучаемой совокупности. Она не дает представления о том, как отдельные значения изучаемого признака группируются вокруг средней. Поэтому для характеристики колеблемости признака используют показатели вариации.
Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака. Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае.
Колебания отдельных значений характеризуют показатели вариации.
Термин «вариация» произошел от лат. variatio – «изменение, колеблемость, различие». Под вариацией понимают количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию признака: случайную и систематическую.
Систематическая вариация помогает оценить степень зависимости изменений в изучаемом признаке от определяющих ее факторов.
Для характеристики колеблемости признака используется ряд показателей, такие как размах вариации, определяемый как разность между наибольшим (Хмах) и наименьшим(xmjn) значениями вариантов:
Среднее линейное отклонение определяется как средняя арифметическая из отклонений индивидуальных значений от средней без учета знака этих отклонений.
Меру вариации более объективно отражает показатель дисперсии.
Среднее квадратическое отклонение – это мерило надежности средней.
Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах, которые позволяют сравнивать характер рассеивания в различных распределениях. Расчет показателей меры относительного рассеивания осуществляют отношением абсолютного показателя рассеивания к средней арифметической и умножают на 100%.
При помощи группировок, подразделив изучаемую совокупность на группы, однородные по признаку-фактору, можно определить три показателя колеблемости признака в совокупности: общую дисперсию, межгрупповую дисперсию и среднюю из внутригруп-повых дисперсий.
Общая дисперсия характеризует вариацию признака, зависящую от всех условий в изучаемой статистической совокупности.
Межгрупповая дисперсия отражает вариацию изучаемого признака, которая возникает под влиянием признака-фактора, положенного в основу группировки, характеризует колеблемость групповых (частных) средних хi и общей средней хо.
Средняя внутригрупповых дисперсий характеризует случайную вариацию в каждой отдельной группе, возникает под влиянием факторов кроме положенного в основу группировки.
Дисперсия альтернативного признака равна произведению доли единиц, обладающих признаком, и доли единиц, не обладающих им.
22. Показатели вариации: абсолютные и относительные
Вариация – различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени.
К показателям вариации относятся:
I группа — абсолютные показатели вариации
II группа — относительные показатели вариации
· Для измерения вариации в статистике применяют несколько способов.
· Наиболее простым является расчет показателя размаха вариации Н как разницы между максимальным (Xmax ) и минимальным (Xmin) наблюдаемыми значениями признака:
· Однако размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается.
· Более строгими характеристиками являются показатели колеблемости относительно среднего уровня признака. Простейший показатель такого типа – среднее линейное отклонение Л как среднее арифметическое значение абсолютных отклонений признака от его среднего уровня:
·
· При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной:
·
· (Напомним, что алгебраическая сумма отклонений от среднего уровня равна нулю.)
· Показатель среднего линейного отклонения нашел широкое применение на практике. С его помощью анализируются, например, состав работающих, ритмичность производства, равномерность поставок материалов, разрабатываются системы материального стимулирования. Но, к сожалению, этот показатель усложняет расчеты вероятностного типа, затрудняет применение методов математической статистики. Поэтому в статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии.
· Дисперсия признака (s 2 ) определяется на основе квадратической степенной средней:
· .
· Показатель s, равный , называется средним квадратическим отклонением.
· В общей теории статистики показатель дисперсии является оценкой одноименного показателя теории вероятностей и (как сумма квадратов отклонений) оценкой дисперсии в математической статистике, что позволяет использовать положения этих теоретических дисциплин для анализа социально-экономических процессов.
· Если из генеральной совокупности сделать несколько выборок и каждый раз при этом определять среднее значение признака, то возникает задача оценки колеблемости средних. Оценить дисперсию среднего значения можно и на основе всего одного выборочного наблюдения по формуле
· ,
· где n – объем выборки; s 2 – дисперсия признака, рассчитанная по данным выборки.
· Величина носит название средней ошибки выборки и является характеристикой отклонения выборочного среднего значения признака Х от его истинной средней величины. Показатель средней ошибки используется при оценке достоверности результатов выборочного наблюдения.
· Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.
· 1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней
· .
· 2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины
· .
· 3. Коэффициент вариации:
·
· является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.
· В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.
· У такого способа оценки вариации есть и существенный недостаток. Действительно, пусть, например, исходная совокупность рабочих, имеющих средний стаж 15 лет, со средним квадратическим отклонением s = 10 лет, «состарилась» еще на 15 лет. Теперь = 30 лет, а среднеквадратическое отклонение по-прежнему равно 10. Совокупность, ранее бывшая неоднородной (10/15 × 100= 66,7%), со временем оказывается, таким образом, вполне однородной (10/30 × 100 = 33,3 %).
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Вариация (статистика)
Вариа́ция — различие значений какого-либо признака у разных единиц совокупности за один и тот же промежуток времени. Причиной возникновения вариации являются различные условия существования разных единиц совокупности. Вариация — необходимое условие существования и развития массовых явлений. [1] Определение вариации необходимо при организации выборочного наблюдения, статистическом моделировании и планировании экспертных опросов. По степени вариации можно судить об однородности совокупности, устойчивости значений признака, типичности средней, о взаимосвязи между какими-либо признаками. [2]
Содержание
Показатели вариации
Абсолютные показатели
где — выборочное среднее.
где ,
— первый (нижний) и третий (верхний) квартили соответственно,
— медиана (второй или серединный квартиль).
Относительные показатели
Известно, что коэффициент вариации может быть записан посредством долей [4] :
где .
где — математическое ожидание. Эта формула применяется для вероятностных моделей.
Примечания
Описательная статистика |
| ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Статистический вывод и проверка гипотез |
| ||||||||||||
Корреляция | Коэффициент корреляции Пирсона · Ранг корреляций (Коэффициент Спирмана для ранга корреляций, Коэффициент тау Кендалла для ранга корреляций) · Переменная смешивания | ||||||||||||
Линейные модели | Основная линейная модель · Обобщённая линейная модель · Анализ вариаций · Ковариационный анализ | ||||||||||||
Регрессия | Линейная · Нелинейная · Непараметрическая регрессия · Полупараметрическая регрессия · Логистическая регрессия |
ПолезноеСмотреть что такое «Вариация (статистика)» в других словарях:Статистика — Гистограмма (метод графических изображений) У этого термина существуют и другие значения, с … Википедия статистика — ▲ измерение ↑ масса, явление статистика измерение массовых явлений. выборка группа испытуемых представителей. на выборку (взять #). дисперсия. рассеяние. вариация разброс значений. варианта. | закон распределения. медиана. | биометрия: ковариация … Идеографический словарь русского языка ВАРИАЦИОННАЯ СТАТИСТИКА — ВАРИАЦИОННАЯ СТАТИСТИКА, термин, объединяющий группу приемов статистического анализа, применяющихся преимущественно в естественных науках. Во второй половине XIX в. Кетле (Quetelet, «Anthro pometrie ou mesure des differentes facultes de 1… … Большая медицинская энциклопедия Мода (статистика) — У этого термина существуют и другие значения, см. Мода (значения). Мода значение во множестве наблюдений, которое встречается наиболее часто. Случайная величина может не иметь моды. Иногда в совокупности встречается более чем одна мода (например … Википедия Медиана (статистика) — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия Среднеквадратическое отклонение — (синонимы: среднеквадратичное отклонение, квадратичное отклонение; близкие термины: стандартное отклонение, стандартный разброс) в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины … Википедия ГОСТ Р 50779.11-2000: Статистические методы. Статистическое управление качеством. Термины и определения — Терминология ГОСТ Р 50779.11 2000: Статистические методы. Статистическое управление качеством. Термины и определения оригинал документа: 3.4.3 (верхняя и нижняя) границы регулирования Граница на контрольной карте, выше которой верхняя граница,… … Словарь-справочник терминов нормативно-технической документации Корреляция — (Correlation) Корреляция это статистическая взаимосвязь двух или нескольких случайных величин Понятие корреляции, виды корреляции, коэффициент корреляции, корреляционный анализ, корреляция цен, корреляция валютных пар на Форекс Содержание… … Энциклопедия инвестора t-критерий Стьюдента — t критерий Стьюдента общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t критерия связаны с проверкой равенства средних… … Википедия СтатистикаРяды распределенияРезультаты сводки и группировки материалов статистического наблюдения оформляются в виде статистических рядов распределения и таблиц. Статистические ряды распределения представляют собой упорядоченное расположение единиц изучаемой совокупности на группы по группировочному признаку. Ряды распределения, образованные по качественным признакам называют атрибутивными. Например, распределение работников торговли по занимаемой должности, профессии, образованию; распределение товарооборота – по формам торговли, товарным группам. При группировке ряда по количественному признаку получаются вариационные ряды, которые по способу построения бывают дискретными (прерывными), основанными на прерывной вариации признака (например, число касс в магазине, комнат в квартире), и интервальными (непрерывными), базирующимися на непрерывно изменяющемся значении признака и имеющими любые (в том числе и дробные) количественные выражения (объем товарооборота, величина фонда оплаты труда и т.п.). В практике применяются также интервальные ряды распределения. Вариационные ряды состоят из двух элементов: варианты и частоты. Варианта – это отдельное значение варьируемого признака, которое он принимает в ряду распределения. Частота (обозначается f i ) – численность отдельных вариант или каждой группы вариационного ряда. Частоты, выраженные в долях единицы или в процентах к итогу, называются частостями. Сумма частот составляет объем ряда распределения, а сумма частостей равна 1 (или 100%). 1. Ряд распределения по атрибутивному признаку Распределение продавцов магазина по категориям Статистическое изучение вариации
Тема 5 Основные вопросы: 1. Понятие вариации. 2. Показатели вариации. 3. Относительные показатели вариации. 1. Понятие вариации. При изучении совокупности явления нельзя ограничиваться только нахождением средней величины. Средние величины дают обобщенную характеристику варьирующего признака, показывают типичные характеристики для изучаемой совокупности. Однако в средней величине не проявляется степень колеблемости отдельных значений признаков вокруг среднего уровня. В зависимости от однородности в совокупности колеблемость признаков может быть большой или малой. Поэтому возникает необходимость в измерении вариации отдельных вариантов по отношению к средней величине. Определение: Вариация – это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. Вариация в переводе с латинского означает «колеблемость», «изменчивость», «непостоянство». Предполагая, что большинство социально-экономических явлений и процессов варьируют в некотором масштабе, статистика разработала методологию расчета показателей вариации, которые, в свою очередь, могут быть абсолютными, относительными и средними. Величины признаков колеблются, варьируют под действием различных причин и условий, которые в статистике называют факторами. Нередко эти факторы действуют в противоположных направлениях и сами, в свою очередь, варьируют. Среди них есть существенные факторы, определяющие величину вариантов данного признака у всех единиц совокупности. Но есть и несущественные, которые на одни единицы совокупности могут оказывать влияние, на другие нет. Например, вариация оценок студентов на экзамене в вузе вызывается, в частности, различными способностями студентов; временем, затраченным ими на самостоятельную работу; посещаемостью занятий; различием социально-бытовых условий и т.д. Но на оценку могут влиять и какие-либо привходящие, чисто случайные причины, например, временное недомогание. Вариация, порождаемая существенными факторами, носит систематический характер, то есть наблюдается последовательное изменение вариантов признака в определенном направлении. Такая вариация называется систематической. В систематической вариации проявляются взаимосвязи между явлениями, их признаками, в такой связи – один как причина, другой как следствие его действия. Вариация, обусловленная случайными факторами, называется случайной вариацией. Здесь не наблюдается систематического изменения вариантов зависимого признака от случайных факторов; все изменения носят хаотический характер, поскольку нет устойчивой связи этих факторов с единицами изучаемой совокупности. Вариация зависимого признака, образовавшаяся под действием всех без исключения влияющих на него факторов, называется общей вариацией. Следовательно, общая вариация слагается из систематической и случайной вариации. 2. Показатели вариации. К показателям вариации относятся: размах вариации, среднее линейное (абсолютное) отклонение (с.л.о.), дисперсия, среднее квадратическое отклонение (с.к.о.), коэффициент вариации. 1) Размах вариации – разность между максимальным и минимальным значением признака:
Он характеризует пределы изменения признака. Средний размах: Однако размах вариации показывает лишь крайние отклонения признака и не отражает отклонений всех вариантов в ряду. При изучении вариации нельзя ограничиваться только определением размаха. Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и дает обобщенную характеристику. Простейший показатель такого типа СЛО. 2). Среднее линейное отклонение (СЛО) – представляет собой среднюю арифметическую абсолютных значений отклонений отдельных вариантов от их средней арифметической (учитывает только крайние значения признака и не учитывает все промежуточные). – СЛО для несгруппированных данных: где Т.е. – СЛО для сгруппированных данных: где В формулах разности в числителе взяты по модулю, иначе в числителе всегда будет ноль – алгебраическая сумма отклонений вариантов от их средней арифметической. Поэтому СЛО применяют редко, только в случаях, когда суммирование показателей без учета знаков имеет экономический смысл. Например, анализ состава рабочих, ритмичность производства, оборот внешней торговли. 3) Дисперсия – это средний квадрат отклонений индивидуальных значений от средней арифметической (не имеет единиц измерения). В общем виде взвешенная дисперсия исчисляется по формуле: или простая дисперсия:
Дисперсия альтернативного признака: 4) Среднее квадратическое отклонение (СКО) ‑ это есть квадратный корень из среднего квадрата отклонений отдельных значений признака от средней арифметической:
3. Относительные показатели вариации (коэффициент вариации). В статистической практике часто возникает необходимость сравнения вариаций различных признаков. Например, большой интерес представляет сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д. для подобных сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией зарплаты, выраженной в рублях. Для осуществления такого сравнения, а также сравнения колеблемости одного и того же признака в нескольких совокупностях с различным средним арифметическим используют относительный показатель вариации – коэффициент вариации (КВ). КВ – представляет собой выраженное в процентах отношение СКО к средней арифметической.
это и есть коэффициент вариации. Это относительная мера вариации и позволяет сравнивать степень варьирования в разных вариационных рядах. Определение: Дисперсия – это средний квадрат отклонений всех значений признака ряда распределения от средней арифметической. 1) Дисперсия постоянной величины равна нулю ( 2) Дисперсия не меняется, если все варианты увеличить или уменьшить на одно и то же число ( 3) Если все варианты умножить на число 4) Дисперсия от средней меньше, чем средний квадрат отклонений от любого числа Использование свойств дисперсии позволяет упрощать ее расчеты, особенно в случаях, когда вариационный ряд составляет арифметическую прогрессию или имеет равные интервалы. В этих случаях сначала находят дисперсию от условного нуля, а затем используют 4-е свойство, переходят к дисперсии от средней. Виды дисперсий для сгруппированных данных, условия их применения в статистических исследованиях. Если совокупность данных сгруппирована на группы по какому-то признаку, то в этом случае выделяются 3 вида дисперсий: — Общая дисперсия – Средняя из внутригрупповых дисперсий — Межгрупповая дисперсия Общая Средняя из внутригрупповых дисперсий исчисляется где
Межгрупповая дисперсия Она измеряет вариацию, обусловленную признаком, положенным в основу группировки. Правило сложения дисперсий. Общий закон (правило) сложения дисперсий ‑ Общая дисперсия равна сумме средней из внутригрупповых дисперсий и межгрупповой дисперсии. Показывает значение фактора, положенного в основу группировки (из всей совокупности факторов). Коэффициент детерминации – есть квадрат эмпирического корреляционного отношения. Эмпирическое корреляционное отношение – есть корень квадратный из отношения межгрупповой дисперсии к общей:
|