Что такое горизонт инструмента
Исполнительная-схема.ру
Использование нивелира в строительстве «для чайников»
Как научиться пользоваться нивелиром?
Предположим, что вам срочно понадобилось вынести пару высотных отметок. Или произвести профилирование или разметку дачного участка. Платить довольно ощутимую сумму за один выезд геодезической бригады — жаль, а результата хочется, причём быстро и качественно. Могу вас поздравить – при наличии прямых рук, и трезвого помощника — вы можете выполнить эти и многие другие геодезические работы самостоятельно и довольно точно!
Итак, предположим, что мы имеем:
Что нам требуется:
В общем смысле, любые действия с нивелиром – это перенос высотных отметок. Используя точку с известной высотой, мы определяем горизонт инструмента (ГИ) – высоту визирного луча прибора (горизонтальной линии, вдоль которой идёт наш взгляд, когда мы смотрим в прибор) над условным «нулём».
ГИ = известная вам заранее отметка земли в определённой точке (репер, отметка чистого пола и т. п.) + отсчёт по нивелирной рейке (если что, и чёрные штрихи, и красные штрихи, и промежутки между ними на нивелирной рейке имеют одинаковую высоту в 1 см)
Если мы хотим определить отметку в любой другой точке с неизвестной нам высотой, мы ставим на неё рейку (конечно, соблюдая вертикальное её положение), и из значения горизонта инструмента вычитаем отсчёт по рейке. Вуаля! Высотная отметка теперь нам известна.
Разберём пример выноса высоты на одной из точек.
Вы, стоя за прибором, визируетесь на рейку, стоящую на репере с известной высотной отметкой. Предположим, +148.900. Отсчёт по рейке на этой точке составил 1.100, соответственно, складывая, получаем +150.000 – наш Горизонт Инструмента (не стоит забывать, что прибор должен быть должным образом изначально отгоризонтирован и неподвижен в процессе работ). Предположим, мы хотим вынести высотную отметку H=149.600. Путём нехитрых вычислений, находим отсчёт, который должен быть на рейке: 150.000–149.600 = 0.400. Сообщаем помощнику об этой информации и он двигает рейку вертикально, до тех пор, пока отсчёт 0.400 не будет в перекрестье сетки нитей нивелира. Уверенным криком останавливаем помощника, и наблюдаем, как он закрепляет высоту точки. В случае работы на земле, в поле, на дачном участке в качестве маячка/репера удобнее всего использовать нарезанную арматуру небольшого сечения. На ней, например, разноцветным скотчем, будет обозначена наша высотная отметка. Нелишним будет также обозначить нашу закреплённую точку, намотав не неё сигнальную ленту, или соорудив подобие пирамиды из подручных материалов.
Вот такими не хитрыми операциями мы и освоили нивелир!:)
Геодезические высотные сети?
Государственные высотные геодезические сети создают для распространения по всей территории страны единой системы высот. За начало высот в РФ и ряде других стран принят средний уровень Балтийского моря.
Дать определение, что такое горизонт инструмента, как он определяется?
Горизонт инструмента (ГИ) – это высота луча визирования над уровенной поверхностью.
В чем сущность способа геометрического нивелирования «из середины», формулы для вычисления превышений?
Нивелирование из середины заключается в том, что нивелир устанавливается в середину между точками (на равных расстояниях)и приводят его визирную ось в горизонтальное положение
Формула:
Порядок построения профиля и его назначение?
Дать определение репера, их виды?
Репер – знак в геодезии, закрепляющий точку земной поверхности, высота которой относительно исходной уровенной поверхности определена путём нивелирования.
Что такое теодолитный ход, виды ходов?
Устройство нивелирной рейки. Как выполняется снятие отсчёта по рейке?
Рейки бывают 2-х видов:
· Деревянные (складные) – складывают пополам (высота 3 м). Имеет 2-е стороны – чёрная и красная
· Телескопические – с одной стороны и красная и чёрная.
Что такое румб, зависимость дирекционных углов и румбов?
Румб – это угол между северным или южным направлением магнитного меридиана до ориентируемой линии.
Дирекционные углы и румбы используются для ориентирования линий. Связь между дирекционными углами и румбами зависит от четверти, в которой находится заданное направление.
Сущность обратной геодезической задачи.
Обратная геодезическая задача заключается в том, что по известным координатам двух точек А и В вычисляют горизонтальное положение (длину) линии между этими точками и дирекционный угол этой линии.
Сущность прямой геодезической задачи.
Сущность прямой геодезической задачи заключается в том, что по известным координатам одной точки А вычисляют координаты другой точки В, для чего необходимо знать горизонтальное проложение (длину) линии между этими точками и дирекционный угол этой линии.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
– определение превышений между точками земной поверхности.
Нивелирование выполняют различными приборами и разными способами, различают:
– геометрическое нивелирование (нивелирование горизонтальным лучом),
– тригонометрическое нивелирование (нивелирование наклонным лучом),
– гидростатическое нивелирование и некоторые другие.
Рекомендуемые файлы
Выполняют с помощью сообщающихся сосудов, заполненных одной жидкостью. Жидкость устанавливается в обоих сосудах на одном уровне, на одной отметке. Пусть высота столба жидкости в первом сосуде будет c1, а во втором c2; тогда превышение точки В относительно точки А будет равно:
Точность гидростатического нивелирования зависит от расстояния между сосудами, типа жидкости, диапазона измерения превышения, конструкции отсчетного устройства и других условий. Она может быть очень высокой; средняя квадратическая ошибка измерения превышения лучшими гидростатическими нивелирами достигает 5 – 10 мкм; диапазон измерения превышений при этом невелик – всего около 1 см. При расстоянии между сосудами до 500 м можно измерить превышение с ошибкой около 10 мм.
Основано на зависимости атмосферного давления от высоты точки над уровнем моря. Известно, что с увеличением высоты на 10 м давление падает примерно на 1 мм ртутного столба.
Приближенное значение превышения между точками 1 и 2 можно вычислить по формуле:
P1 и P2 – давление в первой и во второй точках;
ΔH – барометрическая ступень (значения ΔH выбирают из специальных таблиц)
Более точные формулы барометрического нивелирования получают, учитывая закономерности распределения плотности и температуры воздуха по высоте. Приведем полную формулу Лапласа:
В этой формуле:
P1, P2 – давление воздуха на высоте H1 и H2 соответственно
Pm – среднее значение давления
Hm – среднее значение высоты
tm, em – среднее значение температуры и влажности воздуха
fm – среднее значение широты
α – температурный коэффициент объемного расширения воздуха, равный 0.003665 град. –1
β – коэффициент, равный 0.00265
K0 – коэффициент, равный 18400 при некоторых стандартных значениях давления воздуха и силы тяжести.
Известны и так называемые сокращенные барометрические формулы, в которых значения некоторых параметров состояния атмосферы приняты фиксированными; так в формуле М.В. Певцова:
Точность барометрического нивелирования невысока; средняя квадратическая ошибка измерения превышения колеблется от 0.3 м в равнинных районах до 2 м и более в горных. Основные области применения барометрического нивелирования – геология и геофизика.
В тригонометрическом нивелирование превышение определяется при помощи наклонного визирного луча на местности непосредственно измеряется вертикальный угол и расстояние между точками. Точность определения превышения зависит от точности измерения расстояний (1 см).
Применяется при топографических съемках для создания съемочного обоснования и съемки рельефа, а также при передаче отметок на большие расстояния.
Схема тригонометрического нивелирования
Для определения превышения между точками А и В надо точкой А устанавливают прибор таким образом, чтобы его основная ось проходила через точку А, и при помощи рулетки измеряют высоту инструмента i. В точку В устанавливают рейку длиною l. Визируют на верх рейки и измеряют вертикальный угол v. Если известно горизонтального проложение d между точками А и В, то можно вычислить превышение
Если горизонтальное проложение d не известно, а измерено наклонное расстояние при помощи нитяного дальномера, то формула меняется:
Для удобства вычисления обычно визируют не на верх рейки, а на высоту инструмента i=l, тогда превышение вычисляется по формуле:
Выполняется при помощи горизонтального визирного луча. Точность определения превышение может достигать десятых долей миллиметра. Имеет наиболее широкое применение, поскольку самый точный способ. Выполняется двумя способами: «вперед» и «из середины»
Нивелирование «вперед»
Для определения превышения между точками А и В на точку с известной отметкой (заднюю) устанавливают нивелир таким образом чтобы его окуляр находился на одной отвесной линии с этой точкой и при помощи рулетки измеряют высоту инструмента i. В точку отметку которой определяют (переднюю) вертикально устанавливают рейку и берут по ней отсчет b.
Отсчет по рейке – расстояние от начала рейки до проекции на нее визирной оси.
Отметку точки В можно вычислить через горизонт инструмента (ГИ).
Горизонт инструмента – расстояние от средней уровенной поверхности до визирного луча прибора.
Нивелирование «из середины»
Для определения превышения между точками А и В на них вертикально устанавливают рейки и на равном удалении от них устанавливают нивелир, приводят его в рабочее положение.
Визируют на заднюю и переднюю точки и берут отсчеты по рейкам (а и b).
Превышение равно разности отсчетов на заднюю и переднюю точки
Простое и сложное нивелирование
Если превышение между точками можно определить с одной стоянки (станции) прибора, то нивелирование называется простым.
Если для этого необходимо несколько станций, то нивелирование называется сложным.
Число станций зависит от расстояния между точками и крутизны склона. Для определения превышения между точками А и В между ними закрепляют вспомогательные промежуточные точки (их также называют «переходные» или «иксовые» точки).
Классификация и устройства нивелиров
Нивелиры делятся по:
–точности на 3 группы:
–высокоточные – предназначены для нивелирования I–го и II–классов, позволяющие определять превышения со средней квадратичной погрешностью (СКП) не более 0.5–1 мм на 1 км хода;
–точные – предназначены для нивелирования III и IV классов с СКП не более 5–10 мм на 1 км хода;
–технические – предназначены для инженерно–технических работа, позволяющих определять превышение с СКП не более 10 мм на 1 км хода. Для технических работа допустимое СКП 15–50 мм на 1 км хода.
– по конструкции на 3 группы:
–нивелиры с цилиндрическим уровнем;
–нивелиры с компенсатором;
–нивелиры с наклонным лучом визирования.
Устройства нивелиров с цилиндрическим уровнем (на примере Н3)
Основными частями является зрительная труба с укрепленными на ней цилиндрическим контактным уровнем и подставка с подъемными винтами и круглым уровнем. Труба закрепляется зажимным винтом, для точного визирования используется наводящий винт. Для точного горизонтирования визирной оси трубы используют элевационный винт.
Круглый уровень предназначен для приближенного горизонтирования прибора, а цилиндрический контактный для точного горизонтирования его визирной оси. Поэтому должно выполнятся следующие геометрическое условие: визирная ось трубы и ось цилиндрического уровня должны быть параллельны.
Обычно применяют трех метровые деревянные, двусторонние складные рейки.
На нижнюю часть рейки набита металлическая пластина предохраняющая рейку от истирания, называемая «пяткой» рейки. На рейке нанесены подписанные дециметровые деления. На черной шкале от 00 до 29 дм, на красной от произвольного значения превышающего 30 дм. Дециметровые деления поделены на сантиметровые, которые для удобства отсчитывания объедены группами по 5 см. Отсчет по рейке берут по средней горизонтальной нити с точностью до 1 мм в момент когда пузырек цилиндрического уровня находиться в нуль–пункте.
Поверки нивелиров с уровнем
Ось круглого уровня должна быть параллельна оси прибора. Поверки и исправления выполняются аналогично поверке цилиндрического уровня при алидаде горизонтального круга теодолита.
Вертикальная нить сетки должна быть параллельна оси вращения нивелира. Для выполнения поверки на расстоянии 20–30 м от нивелира на тонком шнуре подвешивают отвес и нивелир горизонтируют по круглому ровню. Совмещают один конец вертикальной нити сетки со шнуром отвеса. Если другой коней вертикальной нити отклонился от шнура не более 0.5 мм, условие поверки выполняется. В противном случае сетку нитей исправляют также, как сетку теодолита.
Ось цилиндрического уровня должна быть параллельна визирной оси трубы. Поверка выполняется двойным нивелирование одной и тоже линии, с разных ее концов. Для этого на местности закрепляют два колышка на расстояние 50–70 м друг от друга. Над одной из точек устанавливают нивелир так, чтобы его окуляр находился на одной отвесной линии с точкой, горизонтируют и при помощи рулетки измеряют высоту инструмента i1. В другой точке вертикально устанавливают рейку и визируют на нее.
Нивелир и рейку меняют местами, измеряют i2 и берут отсчет по рейке b2. Поскольку расстояние между точками постоянно отсчет b2 будет ошибочным также на х.
В противном случае вычисляют правильный отсчет по рейке , и действуя элевационным винтом устанавливают среднюю нить сетки на этот отсчет.
При этом концы изображения пузырька разойдутся и их необходимо совместить исправительными винтами цилиндрического уровня. Для контроля поверку повторяют.
Способы геометрического нивелирования
ТЕМА 6. НИВЕЛИРОВАНИЕ
Лекция 8:
Задачи и методы нивелирования
Одним из основных видов геодезических работ является нивелирование, имеющий целью определение относительных отметок точек земной поверхности, элементов конструкций, а также их высоты относительно принятой уровенной поверхности.
Нивелирование производится для изучения форм рельефа и определения превышений отдельных точек конструкций и сооружения в целом при проектировании, строительстве и эксплуатации. Результаты этого вида геодезических работ используются при решении различных инженерных и научных задач в целом ряде отраслей, в том числе и оборонного значения.
По видам нивелирование подразделяется на:
Геометрическое нивелирование основано на горизонтальном положении визирного луча, которое задается с помощью инструментов, называемых нивелирами.
Тригонометрическое нивелирование производится наклонным лучом с использованием теодолитов либо тахеометров. В этом случае измеряются углы наклона и расстояния между определяемыми точками.
Физическое нивелирование разделяется на барометрическое, гидростатическое и аэронивелирование.
При барометрическом нивелировании используют барометры, с помощью которых по разности давлений в различных точках определяются превышения между ними.
Гидростатическое нивелирование основано на свойстве поверхности жидкости в сообщающихся сосудах всегда находится на одинаковом уровне.
Аэронивелирование производится с самолета при помощи радио-высотометра и статоскопа, позволяющих определять высоты самолета над земной поверхностью и изменение его высоты в полете; совместное использование этих данных определяет превышения между точками поверхности Земли.
Стереофотограмметрическое нивелирование выполняется путем измерений модели местности, основанное на стереоэффекте при рассматривании двух снимков одной и той же местности (стереопар).
Автоматическое нивелирование производится при помощи приборов, автоматически вычерчивающих профиль местности.
Наиболее точным и употребительным в инженерной практике является геометрическое нивелирование.
Способы геометрического нивелирования
Геометрическое нивелирование является наиболее распространенным и точным видом. С помощью геометрического нивелирования выполняются следующие виды работ:
— создание высотной государственной геодезической сети;
— передача отметок от пунктов высотной опорной сети на строительные площадки;
— при трассировании линейных сооружений;
— передача отметок на монтажные горизонты и дно глубокого котлована;
— наблюдение за вертикальными деформациями зданий и сооружений.
Различают два способа геометрического нивелирования: из середины и вперед. При выполнении первого способа нивелир устанавливают посередине между точками А и В и приводят визирную ось инструмента в горизонтальное положение (рис. 6.1). На точки А и В Вертикально устанавливают рейки с нанесенными делениями. Отсчет делений ведется от нижнего конца (пятки) рейки вверх. Превышение между точками определяют
где а и b – отсчеты по рейкам.
Если нивелирование производится от точки А к точке В, то рейка в точке А будет задней, а в точке В – передней. Следовательно, превышение равно разности отсчетов по задней и передней рейкам.
Второй способ заключается в следующем: нивелир устанавливают над точкой таким образом, чтобы вертикальная линия от окуляра с точкой А (рис. 6.2). Визирную ось приводят в горизонтальное положение, измеряют высоту i инструмента и берут отсчет b по рейке. В этом случае
т.е. превышение равно высоте инструмента минус отсчет по передней рейке.
Если известна отметка точки А и определено превышение точки В над точкой А,то из рис. 6.1 следует
Очень часто возникает необходимость вычислять отметки точек через горизонт инструмента ГИ. Горизонтом инструмента называется расстояние по вертикали от уровенной поверхности до визирного луча и согласно рис 6.1
. (6.4)
Для схемы на рис. 6.2 горизонт инструмента определится
. (6.5)
Отметка точки В получается
, (6.6)
т.е. отметка точки равна горизонту инструмента минус отсчет на данную точку.
Для передачи отметок на значительные расстояния, а также для составления профиля местности нивелируемая линия АС (рис. 6.3) разбивается на отрезки, каждый из которых нивелируется с одной постановки инструмента, которая называется станцией. Установив нивелир в точке К1,получают превышение точки 1относительно точки А:
. (6.8)
Отметка точки С будет
. (6.9)
Точки нивелирного хода, через которые происходит последовательная передача отметок, называются связующими. В том случае, если последовательное нивелирование производится для составления профиля, возникает необходимость определять отметки характерных точек местности. Такие точки, расположенные между связующими, называются промежуточными или плюсовыми, и не участвуют в передаче отметок. Они обозначаются числом метров, соответствующим расстоянию от задней точки до промежуточной, (+71 на станции К2 и +66на последней станции).
Статьи о радиотехнике, технологиях, чертежах, 3D-моделировании
Публикации для людей, интересующихся наукой и техникой
Начальной точкой счета высот в нашей стране является нуль Кронштадтского футштока. От этого нуля идут ходы нивелирования, пункты которых имеют Балтийской системе высот. Затем от этих пунктов с известными высотами прокладывают новые нивелирные ходы и так далее, пока не получится довольно густая сеть, каждая точка которой имеет известную высоту. Эта сеть называется государственной сетью нивелирования; она покрывает всю территорию страны. Иногда высоты точек определяют в условной системе высот, если поблизости нет пунктов государственной нивелирной сети. Вследствие того, что измерение превышений выполняют различными приборами и разными способами, различают следующие нивелирования:
Геометрическое нивелирование – это метод определения превышения с помощью горизонтального визирного луча и нивелирных реек (рис. 1). Для получения горизонтального луча используют прибор, который называется нивелиром. Геометрическое нивелирование широко применяется в геодезии и строительстве.
Рис. 1. Способы геометрического нивелирования: а – способ «из середины»; б – способ «вперед»
Сущность геометрического нивелирования заключается в следующем. Нивелир устанавливается горизонтально и по рейкам с делениями, стоящими на точках А и В, определяют превышение h как разность между отрезками а и b: h = а – b. Длины отрезков а и b в геодезии называют отсчетами, а иногда – «взглядом».
Горизонтальный визирный луч создает специальный геодезический прибор – нивелир, устанавливаемый между точками А и В. На точках А и В местности отвесно устанавливают нивелирные рейки с нанесенными на них делениями.
Для геометрического нивелирования могут быть использованы кроме нивелира и другие геодезические приборы (теодолиты, тахеометры и т. д.), если придать их визирным осям строго горизонтальное положение. Различают способы геометрического нивелирования «из середины» и «вперед» (рис. 1, а, 6).
Геометрическое нивелирование «из середины» осуществляют следующим образом. Для определения превышения h между точками А и В (рис. 1, а) в этих точках отвесно устанавливают рейки и берут отсчеты а («взгляд назад») на точку А и b («взгляд вперед») на точку В. Как следует из рис. 1, а, превышение между точками А и В равно:
Если превышение h оказалось положительным, то это означает, что передняя точка В расположена выше задней точки А и, наоборот, при отрицательном значении превышения h передняя точка расположена ниже задней.
Таким образом, превышение передней точки над задней равно разности отсчетов «взгляд назад» минус «взгляд вперед».
Если известна высота На задней точки А, то вычислив превышение, легко определить высоту Нb передней точки В по формуле:
То есть высота передней точки равна высоте задней плюс соответствующее превышение. Высота последующей точки может быть также определена через горизонт инструмента прибора Hi (рис. 1, а):
Горизонт прибора равен высоте точки плюс «взгляд на эту точку». Тогда высоту передней точки В легко определить по формуле:
Высота точки равна горизонту инструмента минус «взгляд на эту точку».
Способ нивелирования «из середины» является основным при производстве инженерных работ, поскольку практически не сказывается на результатах нивелирования точность юстировки прибора, а также влияние кривизны Земли и рефракции земной атмосферы. При геометрическом нивелировании способом «вперед» прибор устанавливают таким образом, чтобы окуляр его трубы находился над точкой А (рис. 1, 6). Вертикальное расстояние от центра окуляра до точки А называют высотой прибора i. Высоту прибора обычно измеряют с помощью вертикально установленной рейки.
Если в точке В установить рейку и взять на нее отсчет «взгляд вперед» b, то превышение между точками А и В определится:
На результаты нивелирования способом «вперед» существенное влияние оказывает точность юстировки прибора, а также влияние кривизны Земли и рефракции земной атмосферы. Поэтому геометрическое нивелирование способом «вперед» используют, как правило, при поверках и юстировках нивелиров перед началом полевых работ.
Нивелирование с одной стоянки прибора (станции) называют простым. Если требуется определить превышения или высоты для многих точек на значительном протяжении, то нивелирование осуществляют с нескольких станций, т. е. прокладывают нивелирный ход. Такое нивелирование называют сложным.
В процессе сложного нивелирования точки, общие для двух смежных станций, называют связующими, а остальные – промежуточными (рис. 2).
Рис. 2. Схема нивелирного хода: точки связующие (Рп, ПК1, +28, ПК3, +31,+72, ПК5); точки промежуточные (+41, ПК2, ПК4); а – продольный план.
При сложном нивелировании особое внимание уделяют связующим точкам, так как ошибка, допущенная в определении высоты одной из связующих точек, передается на все последующие.
При изысканиях автомобильных дорог, мостовых переходов, каналов и других линейных инженерных сооружений нивелирование ведут вдоль трассы сооружений, с определением высот переломных и характерных точек местности, с последующим составлением продольного профиля по оси будущего сооружения. Такое нивелирование называют продольным.
В характерных местах производят определение высот точек местности по перпендикулярам к трассе. Такое нивелирование называют поперечным. Необходимо иметь в виду, что поперечное геометрическое нивелирование производят обычно при небольшом перепаде высот между крайними точками поперечников, когда каждый поперечник может быть снят с 1-2 станций.
Классификация и устройство нивелиров
В соответствии с ГОСТ Р 53340-2009 нивелиры классифицируют по нескольким признакам.
По принципу приведения визирной оси зрительной трубы в горизонтальное положение существует нивелиры с уровнем при зрительной трубы нивелиры с компенсаторами.
В приборах с уровнем перед каждым отсчетом по рейке пузырек цилиндрического уровня выводится на середину элевационным винтом. Таким нивелиром является, например, нивелир Н-3. Его устройство показано на рис. 3.
Рис. 3. Устройство нивелира с уровнем при трубе:
Вращая элевационный винт 9 (рис. 3), изменяющий наклон трубы 1 и цилиндрического уровня 12, приводят ось уровня в горизонтальное положение. Ось уровня горизонтальна, если его пузырек находится в нуль-пункте, на что указывает совмещение концов изображений половинок уровня в поле зрения трубы (рис. 4).
Рис. 4. Поле зрения зрительной трубы нивелира: отсчет по рейке равен 1449 мм
У нивелиров с компенсаторами визирная ось зрительной трубы автоматически приводится в горизонтальное положение с помощью специального устройства, называемого компенсатором. Компенсатор действует в пределах определенного диапазона, обычно 12-15´, поэтому предварительно прибор должен быть приведен в рабочее положение по круглому установочному уровню. Компенсаторы делят на две группы: оптико- механические и жидкостные.
Оптико-механические (маятниковые) компенсаторы используют свойство маятника занимать отвесное положение при наклоне прибора. На маятнике крепится оптическая деталь зрительной трубы (призма, зеркало), которая при наклоне прибора приводит визирную ось в горизонтальное положение. Для гашения колебаний маятника нивелир снабжают демпфером. По конструкции демпферы бывают воздушные или магнитные. Более надежны ми в эксплуатации считаются магнитные демпферы, они обеспечивает более высокую стабильность результатов измерений.
В жидкостных компенсаторах компенсирующим элементом является слой жидкости, поверхность которой при наклоне прибора всегда принимает горизонтальное положение, образуя со стеклянным дном ампулы оптический клин с углом, при вершине равным углу наклона прибора.
Нивелиром с компенсатором является, например, нивелир SETL AT24D. Его устройство показано на рис. 5.
Рис. 5. Устройство нивелира с компенсатором:
По точности, в зависимости от величины средней квадратической погрешности (СКП) измерения превышения на 1 км двойного хода, нивелиры делят на высокоточные, точные и технические.
По способу отсчитывания по рейке нивелиры делятся на визуальные и цифровые. Нивелиры с цифровым отсчетом в своей конструкции содержат электронно-цифровой датчик, позволяющей автоматически считывать положение визирной линии по специальной штрих-кодовой рейке, а также регистрировать, хранить и обрабатывать информацию.
Цифровые (электронные) нивелиры являются многофункциональными геодезическими приборами, совмещающими функции оптического нивелира, электронного запоминающего устройства и встроенного программного обеспечения для обработки полученных результатов. К таким нивелирам относится, например, точный нивелир SDL50 (рис. 6).
Рис. 6. Цифровой нивелир SDL50
Основные требования к нивелирным рейкам
Нивелирные рейки используют для определения превышений точек местности относительно плоскости нивелирования. В зависимости от класса и точности нивелирования применяются различные типы реек.
Рейки для цифровых нивелиров имеют RAB- или BAR-код, по которому с помощью цифрового нивелира снимают отсчет и определяют расстояние до рейки. Рейки для цифровых нивелиров могут быть односторонними или двухсторонними (с дополнительной сантиметровой или E-градуировкой, позволяющей снимать отсчеты с помощью оптического нивелира). Нивелирные рейки могут также использоваться для установки детектора лазерного луча на заданной высоте при работе с лазерными нивелирами (построителями плоскостей).
По конструкции нивелирные рейки могут быть цельными, складными или телескопическими.
Рис. 7. Рейки нивелирные
Рейки телескопической конструкции имеют компактные размеры (в сложенном состоянии), малый вес и очень удобны в использовании с различными оптическими нивелирами. Телескопические рейки обычно изготавливаются из алюминиевого сплава или фибергласса.
Оформление полевых журналов
После получения задания инженеры оформляют обложки журналов и необходимые чертежи, обертывают журнал плотной бумагой и на лицевой стороне пишут номер журнала, свою фамилию. Затем нумеруют листы и оформляют титульный лист, данные о нивелирах и рейках.
Записи в журналах делают вычислительным шрифтом, простым карандашом или шариковой ручкой черного или синего цвета.
Запрещается пользоваться химическими и цветными карандашами.
Ну что понравилась вам статья? Теперь вы знаете, что такое геометрическое нивелирование. Если у вас есть вопросы или нужна консультация пишите сюда.
Подписывайтесь на наш youtube канал, где мы постоянно выкладываем образовательные видео о чертежах, технологиях, 3D.