Что такое генератор тока
Как устроен генератор переменного тока — назначение и принцип действия
Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.
Превращение механической энергии в электрическую
Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.
Устройство и конструкция генератора переменного тока
Стандартный электрогенератор имеет следующие компоненты:
В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:
Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:
В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.
Схема генератора переменного тока
Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.
Классификация и виды агрегатов
Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.
По принципу работы
Разделяют асинхронные и синхронные генераторы переменного тока.
Асинхронный
У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.
Синхронный
Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.
По типу топлива двигателя
Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.
Газовый генератор
В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:
Дизельный генератор
Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:
Бензогенератор
Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:
Генератор постоянного тока: устройство, принцип работы, классификация
На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.
Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.
Устройство и принцип работы
В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.
Рис. 1. Принцип действия генератора постоянного тока
По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.
При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinw t, а это значит, что изменение она подчиняется синусоидальному закону.
Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.
Рисунок 2. График тока, выработанного примитивным генератором
Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.
Рис. 3. Ротор генератора
Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.
С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.
И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.
Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.
Классификация
Различают два вида генераторов постоянного тока:
Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:
Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.
С параллельным возбуждением
Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.
Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.
Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.
Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.
Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.
С независимым возбуждением
В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.
На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.
Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.
С последовательным возбуждением
Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.
В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.
Со смешанным возбуждением
Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.
Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.
Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.
Технические характеристики генератора постоянного тока
Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:
Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.
Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5). Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).
В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6). Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.
Рис. 6. Характеристика ГПТ с параллельным возбуждением
Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.
Рис. 7. Внешняя характеристика генератора с последовательным возбуждением
Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.
В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.
В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).
Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.
Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением
Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.
В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.
Реакция якоря
Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.
Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.
Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.
Мощность
Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.
Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.
На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.
Применение
До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.
На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.
Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.
Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.
Принцип работы генератора переменного тока
Переменный ток — основа электрического питания потребителей. Именно этот ток доставляется потребителю по разветвленной системе воздушных и кабельных линий, в промежутках занижаемый трансформаторами.
Переменный ток образуется за счет работы мощных генераторов на электростанциях. Статья подробно раскроет тему, что такое генератор переменного тока, опишет разновидности этих устройств, на каком принципе основана его работа и сферы применения.
Начало
Простейший и самый первый генератор переменного тока был разработан физиком Майклом Фарадеем в 1831 году и получил название «Диск Фарадея». Конструкция первого генератора переменного тока была очень простой. Она включала такие элементы:
Принцип действия генератора переменного тока Фарадея заключался в том, что при вращении рамки, вырабатывался ток со слабым напряжением. Происходит это следующим образом:
Все генераторы переменного тока используют вращающееся магнитное поле. При изменении положения медной рамки существует также момент полной потери напряжения. Он возникает при медленном вращении, например, без двигателя. При быстром вращении, величина напряжения остается неизменной.
Назначение и устройство
Современные генераторы переменного тока работают по тому же принципу, но в качестве движущей силы используют различные механизмы. Основное назначение генератора переменного тока — это преобразование какого-либо типа энергии в электрический ток. В качестве источника энергии может быть:
Генератор или альтернатор переменного тока состоит из следующих частей:
Это самые основные части, из которых состоит простейший альтернатор. Мы рассмотрели устройство и принцип действия современного генератора переменного тока.
Генераторы такого типа могут быть синхронными и асинхронными. Оба устройства практически идентичны. Разница между ними заключается в следующем. Синхронные и асинхронные модели отличаются наличием обмотки на роторе (синхронный) или ее отсутствием (асинхронный). Также различия заключаются в принципе возбуждения, схемы подключения.
Разновидности
Внутреннее устройство генератора переменного тока зависит от его типа. Электромашины делятся на 2 основных типа:
Также существует классификация по:
Далее будет дано подробное описание всех классификаций.
Синхронные
Альтернатор синхронного типа имеет главную особенность, по которой его можно определить с первого взгляда. На его роторе имеется обмоточный провод. Он необходим для стабилизации частоты между статором и ротором. ЭДС в таком устройстве создается за счет пересечения магнитного полюса ротора и обмотки статора.
Альтернатор синхронного типа оснащается роторами с несколькими полюсами, число которых всегда кратно 2, например, 2, 4, 6, 8. Работает генератор переменного тока по следующему принципу:
Работа такого генератора сильно зависит от типа нагрузки. Нагрузка индукционного типа сильно влияет на размагничивание якоря. Этот эффект приводит к большой потере напряжения.
При емкостных нагрузках якорь наоборот намагничивается, что значительно увеличивает выходное напряжение. Схема генератора переменного тока синхронного типа представлена ниже.
Синхронный альтернатор имеет одно большое преимущество. Его выходное напряжение намного выше (в 3–4 раза) номинальных значений. Увеличение необходимо, если устройство питает электрические насосы, приборы и устройства, которым нужен стартовый ток. Такие устройства сильно увеличивают реактивные нагрузки на общую сеть, с которыми справляется синхронный генератор.
Недостатки у такого генератора также есть. Первый заключается в высокой чувствительности к перегрузке в цепи. Реакцией на нагрузку является краткий, но достаточно мощный ток на обмотке ротора, который появляется из-за увеличения тока самим блоком регулировки. В результате обмотка выгорает или происходит ее нагрев.
Вторым минусом является искрение. У простейшего генератора синхронного типа на роторе установлены контактные кольца с щетками. Они небезопасны при эксплуатации на промышленных предприятиях, в условии наличия легко воспламеняемых газов или жидкостей. Для таких случаев используются трех машинные генераторы синхронного типа. Устройство и принцип работы генератора переменного тока такого типа сильно отличается. Этот генератор состоит из:
Все эти элементы установлены на общий вал. Работа осуществляется следующим образом:
В конечном итоге генератор выдает номинальное требуемое напряжение, которое регулируется блоком AVR. Вся работа такого устройства производится в одном корпусе, который полностью герметичен.
Асинхронный
Асинхронный генератор переменного тока имеет иное устройство. Его ротор не имеет обмотки. По этой причине принцип его работы сильно отличается. Во время вращения, ротор такого генератора опережает обороты магнитных полей, которые создаются статором. Роторы этих устройств имеют 2 типа обмотки: короткозамкнутую и фазную. Принцип работы асинхронных электрогенераторов следующий:
Главное отличие заключается в невозможности регулировки напряжения при установленном числе оборотов. Асинхронные генераторы сильно зависимы от приводных двигателей. Любая потеря стабильности приводит к понижению напряжения и частоты тока.
Преимуществом подобных устройств является низкая чувствительность к возникновению коротких замыканий. Применение — питание бытовых приборов, сварочного оборудования и электрических насосов. При наличии реактивной нагрузки, AVR должен увеличить обороты приводного двигателя на короткий срок. При этом включенный в цепь понижающий трансформатор защищает остальные устройства от перенапряжения.
Самые распространенные и универсальные типы генераторов переменного тока имеют 3 независимые обмотки. Такие устройства являются трехфазными. Их принцип работы следующий:
Каждая обмотка такого устройства — это независимый однофазный генератор переменного тока, который способен питать бытовую сеть.
Для снижения числа проводников, которые подключены к генератору, используется один общий провод. Он заменяет 3 проводника от приемников. Этот проводник становится нейтралью. Основные особенности трехфазных генераторов следующие:
Общая схема трехфазного генератора представлена ниже.
Трехфазные генераторы могут использоваться для бытовых нужд. Но подключение стоит проводить между несколькими потребителями или помещениями. Для единоличного потребления подходит однофазная модель синхронного типа. Главное подобрать модель подходящей мощности с небольшим запасом.
Возбуждение
По способу возбуждения, генераторы делятся на 4 основных типа. Они бывают следующими:
Генераторы переменного тока могут иметь схожее устройство. Часто промышленные и бытовые модели различаются только размером и компоновкой. Но есть отличие по принципу возбуждения и количеству фаз. Также существует классификация по схеме подключения внутренней обмотки.
Схемы подключения
Существуют две основные схемы подключения внутренней обмотки. Каждая со своими особенностями.
Каждая схема подключения также предполагает одинаковое сечение проводов. В случае возникновения большой нагрузки на одной фазе, ее провод может выгореть, что приведет к появлению несимметричности цепи, а по нейтрали, в этом случае, потечет ток.
Инвертор
Инверторный генератор переменного тока представляет собой современный и универсальный блок, который может использоваться для бытовых и промышленных нужд. Состоит устройство из следующих частей:
Особенность таких устройств — это стабильная выдача напряжения, возможность подключения к переменному и постоянному току через отдельные гнезда. Рассмотрим, как работает этот тип генератора.
На выходе разъема получается ток частотой 50 Гц, напряжением 220 вольт. Инверторные модели генераторов обладают существенным преимуществом. Оно заключается в следующих нюансах конструкции:
На данный момент различаются 3 основных типа инверторных генераторов:
Инверторные генераторы переменного тока компактные, установить и использовать их довольно просто. В бытовую сеть могут быть подключены через обычный рубильник, с предварительно отсоединенной основной сетью.
Заключение
Статья дала подробное описание всех разновидностей генераторов переменного тока. В данном устройстве используется простой принцип выработки электрического тока за счет образования ЭДС. Генераторы имеют простое устройство, способны обеспечивать бесперебойным электричеством как бытовые, так и промышленные сети.