Что такое дробное уравнение

Рациональные уравнения (ЕГЭ 2022)

Рациональные уравнения – это уравнения, в которых и левая, и правая части – рациональные выражения.

Ну… Это было сухое математическое определение, и слово-то какое: «рациональные». А по сути, рациональные выражения – это просто целые и дробные выражения без знака корня.

А получается, что под пугающим «рациональным уравнением» скрывается всего лишь уравнение, в котором могут присутствовать сложение, вычитание, умножение, деление и возведение в степень с целым показателем, но НЕ корень из переменной.

Рациональные уравнения — коротко о главном

Определение рационального уравнения:

Рациональное уравнение – это равенство двух рациональных (без знака корня) выражений.

Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.

Алгоритм решения рациональных уравнений:

Система для решения дробно рациональных уравнений:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Что такое рациональные уравнения?

Давай научимся отличать рациональные уравнения от иррациональных! Зачем? Рациональные уравнения решать проще.

А зачем работать больше, если можно работать меньше?

Надеюсь, теперь ты сможешь различать, к какому виду относится уравнение. (И не поедешь из Москвы в Петербург через Магадан, решая рациональные уравнения как нерациональные).

Целые рациональные уравнения

Важно знать, что рациональные уравнения в свою очередь тоже разные бывают.

Если в дроби нет деления на переменную (то есть на \( \displaystyle x\), \( \displaystyle y\) и т.д.), тогда рациональное уравнение будет называться целым (или линейным) уравнением, вот примеры:

Умеешь такие решать? – конечно, умеешь, упрощаешь и находишь неизвестное, тема-то 5-ого или 6-ого класса.

Ну, рассмотрим первый из примеров на всякий случай и по порядочку. Все неизвестные переносим влево, все известные вправо:

Какой наименьший общий знаменатель будет?

Правильно \( \displaystyle 6\)!

Чтоб к нему привести домножаем и числитель и знаменатель первого слагаемое на \( \displaystyle 2\), а второго на \( \displaystyle 3\), этого делать не запрещено, если и числитель и знаменатель дроби умножить на одно и то же значение, то дробь от этого не изменится, т.к. ее можно будет сократить на то же число.

А \( \displaystyle 13\) не трогаем, оно нам не мешает, имеем:

А теперь делим обе части на \( \displaystyle 13\):

Поскольку уравнение целое, что мы уже определили, то и ограничений никаких нет, \( \displaystyle 6\), так \( \displaystyle 6\), ну можно для верности подставить этот ответ в исходное уравнение, получим \( \displaystyle 0=0\), значит все верно и ответ подходит (ты можешь пересчитать, а вообще должно сойтись).

Дробно-рациональные уравнения

А вот еще одно уравнение \( \displaystyle \frac<5>+\frac<4-6><(x+1)\cdot (x+3)>=3\).

Это уравнение целое? НЕТ. Тут есть деление на переменную \( \displaystyle x\), а это говорит о том, что уравнение не целое. Тогда какое же оно? Это дробно рациональное уравнение.

Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.

На первый взгляд особой разницы не видно, ну давай попробуем решать его как мы решали целое (линейное) уравнение.

Для начала найдем наименьший общий знаменатель, это будет \( \displaystyle (x+1)\cdot (x+3)\).

Важный момент!

В предыдущем примере, где было целое уравнение мы не стали свободный член \( \displaystyle 13\) приводить к знаменателю, т.к. умножали все на числа без переменных, но тут-то наименьший общий знаменатель \( \displaystyle (x+1)\cdot (x+3)\).

А это тебе не шутки, переменная в знаменателе!

Решая дробно-рациональное уравнение, обе его части умножаем на наименьший общий знаменатель!

Это надеюсь, ты запомнишь, но давай посмотрим что вышло:

Что-то оно огромное получилось, надо все посокращать:

\( \displaystyle 5(x+3)+(4-6)=3\cdot (x+1)\cdot (x+3)\).

Раскроем скобки и приведем подобные члены:

Ну как, это уже попроще выглядит, чем в начале было?

Выносим за скобку общий множитель: \( \displaystyle 3x\cdot (x+1)=0\)

У этого уравнения два решения, его левая сторона принимает нулевое значение при \( \displaystyle x=0\) и \( \displaystyle x=-1\).

Вроде бы все, ну ладно давайте напоследок подставим корни \( \displaystyle x=0\) и \( \displaystyle x=-1\) в исходное уравнение, чтобы проверить, нет ли ошибок. Сначала подставим \( \displaystyle 0\), получается \( \displaystyle 3=3\) –нет претензий?

Но ведь это же будет ноль!

На ноль делить нельзя, это все знают, в чем же дело.

Дело в ОДЗ — Области Допустимых Значений!

Всякий раз когда ты видишь уравнение, где есть переменные (\( \displaystyle x,y\) и т.д.) в знаменателе, прежде всего, нужно найти ОДЗ, найти какие значения может принимать икс.

Хотя удобнее в ОДЗ написать, чему икс НЕ может быть равен, ведь таких значений не так много, как правило.

Просто запомни, что на ноль делить нельзя! И перед тем как решать наше уравнение нам следовало сделать так:

Если бы мы сразу так написали, то заранее бы знали, что эти ответы стоит исключить и так, из полученных нами \( \displaystyle x=0\) и \( \displaystyle x=-1\) мы смело исключаем \( \displaystyle x=-1\), т.к. он противоречит ОДЗ.

Значит, какой ответ будет у решенного уравнения?

В ответ стоит написать только один корень, \( \displaystyle x=0\).

Стоит заметить, что ОДЗ не всегда сказывается на ответе, возможны случаи, когда корни, которые мы получили, не попадают под ограничения ОДЗ.

Но писать ОДЗ в дробно рациональных уравнениях стоит всегда – так просто спокойнее, что ты ничего не упустил и да,

ВСЕГДА по окончании решения сверяй свои корни и область допустимых значений!

Алгоритм решения рационального уравнения

Усвоил, говоришь? А ты докажи! 🙂 Вот тебе примеры на закрепление. Попробуй решить сам, а потом сверься с ответом.

Источник

Решение целых и дробно рациональных уравнений

Давайте познакомимся с рациональными и дробными рациональными уравнениями, дадим их определение, приведем примеры, а также разберем наиболее распространенные типы задач.

Рациональное уравнение: определение и примеры

Знакомство с рациональными выражениями начинается в 8 классе школы. В это время на уроках алгебры учащиеся все чаще начинают встречать задания с уравнениями, которые содержат рациональные выражения в своих записях. Давайте освежим в памяти, что это такое.

Рациональное уравнение – это такое уравнение, в обеих частях которого содержатся рациональные выражения.

В различных пособиях можно встретить еще одну формулировку.

Рациональное уравнение – это такое уравнение, запись левой части которого содержит рациональное выражение, а правая – нуль.

Определения, которые мы привели для рациональных уравнений, являются равнозначными, так как говорят об одно и том же. Подтверждает правильность наших слов тот факт, что для любых рациональных выражений P и Q уравнения P = Q и P − Q = 0 будут равносильными выражениями.

А теперь обратимся к примерам.

Рациональные уравнения точно также, как и уравнения других видов, могут содержать любое количество переменных от 1 до нескольких. Для начала мы рассмотрим простые примеры, в которых уравнения будут содержать только одну переменную. А затем начнем постепенно усложнять задачу.

Рациональные уравнения делятся на две большие группы: целые и дробные. Посмотрим, какие уравнения будут относиться к каждой из групп.

Рациональное уравнение будет являться целым в том случае, если в записи левой и правой его частей содержатся целые рациональные выражения.

Рациональное уравнение будет являться дробным в том случае, если одна или обе его части содержат дробь.

Дробно рациональные уравнения в обязательном порядке содержат деление на переменную или же переменная имеется в знаменателе. В записи целых уравнений такого деления нет.

К числу целых рациональных уравнений можно отнести линейные и квадратные уравнения.

Решение целых уравнений

Решение таких уравнений обычно сводится к преобразованию их в равносильные алгебраические уравнения. Достичь этого можно путем проведения равносильных преобразований уравнений в соответствии со следующим алгоритмом:

Решение

Теперь проведем преобразование выражения, которое находится в левой части в многочлен стандартного вида и произведем необходимые действия с этим многочленом:

3 · ( x + 1 ) · ( x − 3 ) − x · ( 2 · x − 1 ) + 3 = ( 3 · x + 3 ) · ( x − 3 ) − 2 · x 2 + x + 3 = = 3 · x 2 − 9 · x + 3 · x − 9 − 2 · x 2 + x + 3 = x 2 − 5 · x − 6

Давайте разберем, что значит «степень целого уравнения». С этим термином мы будем часто встречаться в тех случаях, когда нам надо будет представить целое уравнение в виде алгебраического. Дадим определение понятию.

Степень целого уравнения – это степень алгебраического уравнения, равносильного исходному целому уравнению.

Если посмотреть на уравнения из примера, приведенного выше, можно установить: степень данного целого уравнения вторая.

Если бы наш курс ограничивался решением уравнений второй степени, то рассмотрение темы на этом можно было бы закончить. Но все не так просто. Решение уравнений третьей степени сопряжено с трудностями. А для уравнений выше четвертой степени и вовсе не существует общих формул корней. В связи с этим решение целых уравнений третьей, четвертой и других степеней требует от нас применения целого ряда других приемов и методов.

Чаще прочих используется подход к решению целых рациональных уравнений, который основан на методе разложения на множители. Алгоритм действий в этом случае следующий:

Решение

Точно также мы можем использовать метод введения новой переменной. Этот метод позволяет нам переходить к равносильным уравнениям со степенями ниже, чем были степени в исходном целом уравнении.

Решение

Целые уравнения высоких степеней попадаются в задачах достаточно часто. Пугаться их не нужно. Нужно быть готовым применить нестандартный метод их решения, в том числе и ряд искусственных преобразований.

Решение дробно рациональных уравнений

Если это условие выполняется, то найденный корень является корнем исходного уравнения. Если нет, то корень не является решением задачи.

Решение

Условие выполняется. Это значит, что x = 2 3 является корнем исходного уравнения.

Решение

Ответ​​: x = 1 ± 2 3

Решение

Проведем проверку полученных корней. Определить ОДЗ в данном случае нам сложно, так как для этого придется провести решение алгебраического уравнения пятой степени. Проще будет проверить условие, по которому знаменатель дроби, которая находится в левой части уравнения, не должен обращаться в нуль.

По очереди подставим корни на место переменной х в выражение x 5 − 15 · x 4 + 57 · x 3 − 13 · x 2 + 26 · x + 112 и вычислим его значение:

1 2 5 − 15 · 1 2 4 + 57 · 1 2 3 − 13 · 1 2 2 + 26 · 1 2 + 112 = = 1 32 − 15 16 + 57 8 − 13 4 + 13 + 112 = 122 + 1 32 ≠ 0 ;

6 5 − 15 · 6 4 + 57 · 6 3 − 13 · 6 2 + 26 · 6 + 112 = 448 ≠ 0 ;

7 5 − 15 · 7 4 + 57 · 7 3 − 13 · 7 2 + 26 · 7 + 112 = 0 ;

( − 2 ) 5 − 15 · ( − 2 ) 4 + 57 · ( − 2 ) 3 − 13 · ( − 2 ) 2 + 26 · ( − 2 ) + 112 = − 720 ≠ 0 ;

Решение

Разберем отдельно случаи, когда в числителе дробного рационального уравнения вида p ( x ) q ( x ) = 0 находится число. В таких случаях, если в числителе находится число, отличное от нуля, то уравнение не будет иметь корней. Если это число будет равно нулю, то корнем уравнения будет любое число из ОДЗ.

Решение

Данное уравнение не будет иметь корней, так как в числителе дроби из левой части уравнения находится отличное от нуля число. Это значит, что ни при каких значениях x значение приведенной в условии задачи дроби не будет равняться нулю.

Ответ: нет корней.

Решение

Чтобы облегчить вам работу по изучению темы, мы обобщили всю информацию в алгритм решения дробного рационального уравнения вида r ( x ) = s ( x ) :

Визуально цепочка действий будет выглядеть следующим образом:

Решение

Для этого нам придется привести рациональные дроби к общему знаменателю и упростить выражение:

Нам осталось выполнить проверку любым из методов. Рассмотрим их оба.

Решение

Мы имеем дело с дробным рациональным уравнением. Следовательно, будем действовать по алгоритму.

Ответ: нет корней.

Если мы не включили в алгоритм другие равносильные преобразования, то это вовсе не значит, что ими нельзя пользоваться. Алгоритм универсален, но он создан для того, чтобы помогать, а не ограничивать.

Решение

Проще всего будет решить приведенное дробное рациональное уравнение согласно алгоритму. Но есть и другой путь. Рассмотрим его.

Проведем проверку для того, чтобы установить, являются ли найденные корни корнями исходного уравнения.

Источник

Дробно-рациональные уравнения

Что такое дробно-рациональные уравнения

Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

1 2 x + x x + 1 = 1 2

Уравнения, которые не являются дробно-рациональными:

Как решаются дробно-рациональные уравнения

В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

Алгоритм действий при стандартном способе решения:

Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

Начать следует с области допустимых значений:

Воспользуемся правилом сокращенного умножения:

В результате общим знаменателем дробей является:

Выполним умножение каждого из членов выражения на общий знаменатель:

После сокращения избавимся от скобок и приведем подобные слагаемые:

Осталось решить квадратное уравнение:

Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

Примеры задач с ответами для 9 класса

Требуется решить дробно-рациональное уравнение:

Определим область допустимых значений:

Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

Потребуется решить квадратное уравнение:

Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

Дано дробно-рациональное уравнение, корни которого требуется найти:

В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

Получилось квадратное уравнение, которое можно решить:

Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

Нужно решить дробно-рациональное уравнение:

На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

Корни квадратного уравнения:

Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

Найти корни уравнения:

Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

Ответ: х — любое число, за исключением 3.

Требуется вычислить корни дробно-рационального уравнения:

На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

Ответ: корни отсутствуют

Нужно найти корни уравнения:

Начнем с определения ОДЗ:

При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

Второе значение не соответствует области допустимых значений.

Источник

Что такое дробное уравнение

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. » )

Продолжаем осваивать уравнения. Мы уже в курсе, как работать с линейными уравнениями и квадратными. Остался последний вид – дробные уравнения. Или их ещё называют гораздо солиднее – дробные рациональные уравнения. Это одно и то же.

Дробные уравнения.

Как ясно из названия, в этих уравнениях обязательно присутствуют дроби. Но не просто дроби, а дроби, у которых есть неизвестное в знаменателе. Хотя бы в одном. Например:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Напомню, если в знаменателях только числа, это линейные уравнения.

Как решать дробные уравнения? Прежде всего – избавиться от дробей! После этого уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы знаем, что делать… В некоторых случаях оно может превратиться в тождество, типа 5=5 или неверное выражение, типа 7=2. Но это редко случается. Ниже я про это упомяну.

Но как избавиться от дробей!? Очень просто. Применяя всё те же тождественные преобразования.

Нам надо умножить всё уравнение на одно и то же выражение. Так, чтобы все знаменатели посокращались! Всё сразу станет проще. Поясняю на примере. Пусть нам требуется решить уравнение:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Как учили в младших классах? Переносим все в одну сторону, приводим к общему знаменателю и т.д. Забудьте, как страшный сон! Так нужно делать, когда вы складываете или вычитаете дробные выражения. Или работаете с неравенствами. А в уравнениях мы сразу умножаем обе части на выражение, которое даст нам возможность сократить все знаменатели (т.е., в сущности, на общий знаменатель). И какое же это выражение?

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Это обычное умножение дробей, но распишу подробно:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Обратите внимание, я пока не раскрываю скобку (х + 2)! Так, целиком, её и пишу:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

В левой части сокращается целиком (х+2), а в правой 2. Что и требовалось! После сокращения получаем линейное уравнение:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

А это уравнение уже решит всякий! х = 2.

Решим ещё один пример, чуть посложнее:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Если вспомнить, что 3 = 3/1, а 2х = 2х/1, можно записать:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

И опять избавляемся от того, что нам не очень нравится – от дробей.

Видим, что для сокращения знаменателя с иксом, надо умножить дробь на (х – 2). А единицы нам не помеха. Ну и умножаем. Всю левую часть и всю правую часть:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Опять скобки (х – 2) я не раскрываю. Работаю со скобкой в целом, как будто это одно число! Так надо делать всегда, иначе ничего не сократится.

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

С чувством глубокого удовлетворения сокращаем (х – 2) и получаем уравнение безо всяких дробей, в линеечку!

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

А вот теперь уже раскрываем скобки:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Приводим подобные, переносим всё в левую часть и получаем:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Решаем через дискриминант и проверяем по теореме Виета. Получаем х = 1 и х = 3. Два корня.

Как видим, в первом случае уравнение после преобразования стало линейным, а здесь – квадратным. Бывает так, что после избавления от дробей, все иксы сокращаются. Остаётся что-нибудь, типа 5=5. Это означает, что икс может быть любым. Каким бы он не был, всё равно сократится. И получится чистая правда, 5=5. Но, после избавления от дробей, может получиться и совсем неправда, типа 2=7. А это означает, что решений нет! При любом иксе получается неправда.

Осознали главный способ решения дробных уравнений? Он прост и логичен. Мы меняем исходное выражение так, чтобы исчезло всё то, что нам не нравится. Или мешает. В данном случае это – дроби. Точно так же мы будем поступать и со всякими сложными примерами с логарифмами, синусами и прочими ужасами. Мы всегда будем от всего этого избавляться.

Однако менять исходное выражение в нужную нам сторону надо по правилам, да… Освоение которых и есть подготовка к ЕГЭ по математике. Вот и осваиваем.

Сейчас мы с вами научимся обходить одну из главных засад на ЕГЭ! Но для начала посмотрим, попадаете вы в неё, или нет?

Разберём простой пример:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Дело уже знакомое, умножаем обе части на (х – 2), получаем:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Напоминаю, со скобками (х – 2) работаем как с одним, цельным выражением!

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Здесь я уже не писал единичку в знаменателях, несолидно… И скобки в знаменателях рисовать не стал, там кроме х – 2 ничего нет, можно и не рисовать. Сокращаем:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Раскрываем скобки, переносим всё влево, приводим подобные:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Решаем, проверяем, получаем два корня. х = 2 и х = 3. Отлично.

Предположим в задании сказано записать корень, или их сумму, если корней больше одного. Что писать будем?

Если решите, что ответ 5, – вы попали в засаду. И задание вам не засчитают. Зря трудились… Правильный ответ 3.

В чём дело?! А вы попробуйте проверку сделать. Подставить значения неизвестного в исходный пример. И если при х = 3 у нас всё чудненько срастётся, получим 9 = 9, то при х = 2 получится деление на ноль! Чего делать нельзя категорически. Значит х = 2 решением не является, и в ответе никак не учитывается. Это так называемый посторонний или лишний корень. Мы его просто отбрасываем. Окончательный корень один. х = 3.

Как так?! – слышу возмущённые возгласы. Нас учили, что уравнение можно умножать на выражение! Это тождественное преобразование!

Да, тождественное. При маленьком условии – выражение, на которое умножаем (делим) – отлично от нуля. А х – 2 при х = 2 равно нулю! Так что всё честно.

И что теперь делать?! Не умножать на выражение? Каждый раз проверку делать? Опять непонятно!

Спокойно! Без паники!

В этой тяжелой ситуации нас спасут три магических буквы. Я знаю, о чем вы подумали. Правильно! Это ОДЗ. Область Допустимых Значений.

ОДЗ. Область Допустимых Значений.

Это те значения икса, которые могут быть в принципе. Скажем, в уравнении:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

мы не знаем пока, чему равен икс. Мы пока уравнение не решили. Но уже твёрдо знаем, что икс не может равняться нулю ни при каких обстоятельствах! На ноль делить нельзя! На любое другое число – целое, дробное, отрицательное – пожалуйста, а на ноль – ни в коем разе! Иначе исходное выражение становится бессмыслицей. Это означает, что ОДЗ в этом примере: х – любое, кроме нуля. Уловили?

Как записывать ОДЗ, как вообще с этим работать?

Очень просто. Всегда рядом с примером пишите ОДЗ. Под этими известными буквами, глядя на исходное уравнение, записываем значения х, которые разрешены для исходного примера. Или можно наоборот: найти запретные значения х, при которых исходный пример теряет всякий смысл, и исключить их из ОДЗ.

Я специально акцентирую внимание на словах исходный пример. Это важно. Преобразование может изменить ОДЗ и, соответственно, ответ.

Далее мы спокойно решаем уравнение, находим корни. И проверяем их на соответствие ОДЗ. Те решения или корни, которые не входят в ОДЗ – безжалостно выбрасываются.

А как искать это самое ОДЗ? Тоже просто. Внимательно осматриваем пример и ищем опасные места. Места, в которых возможны запретные действия. Таких запретных действий в математике очень мало. Но и их не все помнят… Нельзя делить на ноль. Это актуально в этой теме. Есть ещё запреты в корнях чётной степени и в логарифмических уравнениях – это мы рассмотрим в соответствующих темах. Всё. Когда мы нашли опасные места, вычисляем иксы, которые приведут к бессмыслице. И исключаем их из ОДЗ.

Важно! Для нахождения ОДЗ мы не решаем пример! Мы решаем кусочки примера для нахождения запретных иксов. Это сложно выглядит в разъяснениях, но практически – очень легко. До удивления. Смотрите сами. Возьмём предыдущий пример:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Сразу замечаем, что в примере есть операция деления на х – 2. Вот и пишем:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Вот и всё. Соломки подстелили. Теперь мы можем умножать всё уравнение на (х – 2). Это по-прежнему будет не совсем тождественное преобразование, но все вредные последствия от нарушения тождественности мы исключим по ОДЗ.

А как же первые два уравнения? Там что, нет ОДЗ? Есть конечно. Есть деление на неизвестное – есть ОДЗ. В примере:

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Я специально в этих примерах ничего не сказал про ОДЗ. Чтобы вас не спугнуть… В этих двух примерах ОДЗ никак не сказалось на ответах. Такое бывает. Но в заданиях ЕГЭ ОДЗ, как правило, влияет на ответ! ОДЗ писать надо. Не для проверяющих, для себя. ОДЗ не пишут, если очевидно, что икс – любое число. Как, например, в линейных уравнениях.

Мы с ОДЗ дружить будем. Во всех темах, где потребуется, будем ОДЗ вспоминать. Чтобы не попасть в засаду.

1. Перед решением внимательно исследуем пример. Ищем опасные места, определяем ОДЗ.

2. Определяем множитель, который позволит полностью избавиться от дробей. Умножаем на него уравнение.

3. Решаем получившееся уравнение, находим корни. Проверяем их на соответствие ОДЗ. Те корни, что не входят в ОДЗ, из ответа исключаем.

А сейчас, вооружившись глубокими познаниями и практическими советами, решаем примеры.

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Что такое дробное уравнение. Смотреть фото Что такое дробное уравнение. Смотреть картинку Что такое дробное уравнение. Картинка про Что такое дробное уравнение. Фото Что такое дробное уравнение

Посказка: в каждом уравнении только одно решение. Один корень. Ответы в традиционном беспорядке:

Что, у вас иксов поболее будет? Бывает. Про ОДЗ не забыли, часом? Кое-какие корни выкидывать надо. ОДЗ учли, а всё равно не получается? Да-а-а. Проблемка. Такие уравнения надо уметь решать, слишком они популярны во всех темах математики. Но не падайте духом!)

Ну вот, основы дробных уравнений освоили. Это оч-ч-чень нам пригодится в теме про задачи!

Но до того мы другие задачи научимся решать. На проценты. Те ещё грабли, между прочим!

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

А вот здесь можно познакомиться с функциями и производными.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *