Что такое дробное число в математике 6 класс
Какие дроби называются обыкновенными
Что такое обыкновенная дробь — понятие и определение
Прежде чем дать определение термину «дробь», необходимо рассмотреть, чем она является в сущности.
Доля целого или доля числа — это каждая равная часть, которые вместе составляют целый предмет.
К примеру, апельсины обычно состоят из 10 одинаковых долек. А если торт разрезать пополам, то он будет состоять из двух долей.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
У каждой доли свое название, которое зависит от количества долей в предмете.
Половина — это одна вторая часть от целого. Долька апельсина — это одна десятая от апельсина. Если пиццу разрезать на шесть частей, то каждая часть равна одной шестой от всей пиццы.
Простыми словами, дробное число — это нецелое количество, часть целого, которая получается при «дроблении». «Целым» может быть что угодно: количество денег, еда, числа, делимые предметы и так далее.
Как выглядит, примеры записи
Всего существует два вида записи дробных чисел:
Числитель и знаменатель
Обыкновенная дробь состоит из двух натуральных чисел. Записываются они в определенном порядке. Чтобы понять этот принцип, необходимо изучение и объяснение сути дробных чисел.
В сущности, дробь — это результат деления, в котором делимое не делится на делитель полностью, без остатка. Черточка между верхней и нижней части дроби — дробная черта — равноценна знаку деления.
Числитель обыкновенной дроби вида \(\frac mn\) — это натуральное число m, равное делимому.
Знаменатель обыкновенной дроби вида \(\frac mn\) — это натуральное число n, равное делителю.
В зависимости от отношений числителя и знаменателя, выделяют 2 вида дробей.
Правильная дробь — та, у которой числитель меньше знаменателя.
Неправильная дробь — та, у которой числитель больше знаменателя или равен ему.
Обычно такие дробные числа записывают в виде целых или смешанных чисел: \(5\frac47, \ 2\frac<14><32>.\)
Знаменатель показывает, из скольких частей состоит предмет. Числитель отображает, сколько таких частей рассматривается в задаче. Например, дробь \(\frac<11><32>\) (читается «одиннадцать тридцать вторых») указывает на то, что предмет состоит из 32 долей, и для рассмотрения взяли 11 из них.
Положительные и отрицательные дроби
Дробные числа бывают не только правильными и неправильными, но также и положительными и отрицательными.
Положительная дробь \(\frac23\) и отрицательная дробь \(-\frac23\) — это противоположные числа.
Положительные дроби можно получить двумя способами:
Отрицательные дроби также получают двумя способами:
Какие действия можно выполнять с обыкновенными дробями
Для выполнения действий с дробными числами необходимо знать их свойства.
Основное свойство дроби — если числитель и знаменатель дроби умножить или разделить на одно и то же число, получится равная ей дробь.
В общем виде это правило записывают так: \(\frac mn=\frac
где a, b, k — натуральные числа.
Основных действий, которые можно выполнять с дробями, несколько.
Если у двух дробей равные знаменатели, то сравнивать необходимо только числители.
У положительных чисел чем больше числитель, тем больше число: \(\frac37>\frac17.\)
У отрицательных чисел чем меньше числитель, тем больше число, т. к. оно ближе к нулю: \(-\frac25>-\frac45.\)
Если знаменатели разные, то дроби необходимо сперва привести к общему знаменателю. Подробнее это действие рассмотрено в других статьях.
В результате сложения обыкновенных дробей получается обыкновенная дробь.
Если знаменатели одинаковые, складывать нужно только числители: \(\frac13+\frac13=\frac23.\)
Если знаменатели разные, дробь необходимо привести к общему знаменателю.
Когда в результате решения получается неправильная дробь, его необходимо привести к виду целого или смешанного числа.
Это действие обратно сложению. Правила действуют те же, что и при сложении: \(\frac7<10>-\frac2<10>=\frac5<10>=\frac12.\)
Результатом умножения двух обыкновенных дробей также всегда является обыкновенная дробь. При этом числитель умножается на числитель, а знаменатель умножается на знаменатель (отсюда следует, что знаменатели могут быть разные): \(\frac23\cdot\frac34=\frac<2\cdot3><3\cdot4>=\frac6<12>=\frac12.\)
Это действие обратно умножению. Чтобы разделить одну дробь на другую, необходимо числитель первой дроби умножить на знаменатель второй, а знаменатель первой — на числитель второй. Иными словами, вторую дробь необходимо «перевернуть» и выполнить умножение:
ОБЫКНОВЕННАЯ ДРОБЬ
Ключевые слова конспекта: дроби, обыкновенная дробь, правильные и неправильные дроби, основное свойство дроби, сравнение дробей, арифметические действия с дробями, нахождение части от целого и целого по его части.
Одна или несколько равных частей единицы называются обыкновенной дробью. Дробь 3/4 означает, что единицу разделили на 4 части и взяли 3 таких части.
Дробь можно рассматривать и как результат деления натуральных чисел. Частное от деления натуральных чисел а и b можно записать в виде дроби a/b — где делимое а — числитель, а делитель b — знаменатель.
Правильная и неправильная дробь
Дробь, в которой числитель меньше знаменателя, называется правильной, а дробь, где числитель больше или равен знаменателю, — неправильной.
Число, состоящее из целой и дробной частей, можно обратить в неправильную дробь. Для этого нужно умножить целую часть на знаменатель и к произведению прибавить числитель данной дроби. Полученная сумма будет числителем дроби, а знаменателем остается знаменатель дробной части.
Из любой неправильной дроби можно выделить целую часть. Для этого нужно разделить с остатком числитель на знаменатель. Частное от деления — это целая часть, остаток — это числитель, делитель — это знаменатель.
Основное свойство дроби
Определение. Основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то получится дробь, равная данной.
Основное свойство дроби используют при сокращении дробей. Деление числителя и знаменателя на их общий делитель, отличный от единицы, называют сокращением дробей.
Сравнение дробей
Чтобы сравнить дроби с разными числителями и знаменателями, нужно:
Чтобы привести дроби к наименьшему общему знаменателю, нужно:
Арифметические действия с обыкновенными дробями
Сложение и вычитание дробей
При сложении (вычитании) дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель. Полученную дробь, если возможно, сокращают и выделяют целую часть.
При сложении (вычитании) дробей с разными знаменателями нужно предварительно привести эти дроби к наименьшему общему знаменателю, затем сложить (вычесть) полученные дроби, используя правило сложения (вычитания) дробей с одинаковыми знаменателями.
Особенно надо быть внимательным при сложении (вычитании) с участием смешанных чисел!
Общий случай сложения (вычитания) дробей.
Умножение дробей
Деление дробей
Два числа называются взаимно обратными, если их произведение равно 1, то есть дроби вида a/b и b/a являются взаимно обратными. Например 1/3 и 3. Чтобы разделить одну дробь на другую, нужно делимое умножить на число, обратное к делителю.
При делении чисел, состоящих из целой и дробной части, нужно предварительно представить их в виде неправильной дроби.
Нахождение части от целого (дроби от числа)
Чтобы найти часть от целого, нужно число, соответствующее целому, разделить на знаменатель дроби, выражающей эту часть, и результат умножить на числитель той же дроби.
Задача нахождения части от целого по существу является задачей нахождения дроби от числа. Чтобы найти дробь (часть) от числа, необходимо число умножить на эту дробь.
Нахождение целого по его части (числа по его дроби)
Чтобы найти целое по его части, нужно число, соответствующее этой части, разделить на числитель дроби, выражающей эту часть, и результат умножить на знаменатель той же дроби.
Задача нахождения целого по его части по существу является задачей нахождения числа по его дроби. Чтобы найти число по его дроби, необходимо данное значение разделить на эту дробь.
Это конспект по теме «Обыкновенная дробь». Выберите дальнейшие действия:
Дробные числа и их свойства в математике с примерами
При решении задач по математике ученикам часто приходится иметь дело не только с целочисленными натуральными величинами, но и с дробными числами. Их свойства используются для оптимизации вычислений, которые применяются при точных расчетах некоторых величин (констант), физических процессов, явлений, а также в различных сферах человеческой деятельности, например, фармацевтика и проектирование устройств.
Общие сведения
Математика — наука, в которой точность расчетов имеет огромное значение. Для примера можно взять любую сферу человеческой жизни. Например, строительство моста. Он сначала проектируется, а затем рассчитывается прочность каждого его элемента. Если отнестись к расчетам несерьезно, то мост может не выдержать определенный вес и обрушиться, что приведет к печальным последствиям.
В математике для обозначения точности используются дробные величины. Дробь — определенное числовое значение, показывающее какую-то часть целого числа. На дробную величину распространяются определенные свойства, но перед тем как их разобрать подробно, нужно выяснить, какие бывают дроби и по какому критерию их классифицируют математики.
Следует отметить, что дробные числа еще называются нецелыми, поскольку принадлежат к множеству рациональных величин. Далее необходимо разобрать классификацию дробей.
Виды дробей
В зависимости от типа дроби обладают некоторыми свойствами, которые напрямую зависят от их классификации. Рациональные величины делятся на две группы:
Первые представляют незавершенную операцию деления, т. е. состоят из делимого (числителя) и делителя (знаменателя). Вторые являются частным, полученным при делении двух чисел. Следует отметить, что при работе с рациональными числами требуется определить группу, к которой они принадлежат.
Если этого не сделать, то можно при решении использовать не то свойство. Эти действия часто приводят к плохим оценкам и существенному отставанию от школьной программы.
Чтобы этого не произошло, необходимо разбираться в типах рациональных величин. Для начала необходимо разобрать виды обыкновенные дробные числа.
Типы обыкновенных дробных значений
В зависимости от величины, дробные компоненты делятся на два типа. К ним относятся следующие:
Чтобы понять суть этих величин и их отличие друг от друга, можно привести следующий пример: в каждую корзину положили по 20 яблок (всего 20 корзин). Если предположить, что корзина — это одно целое, состоящее из компонентов (яблок), то значит математическая формула выглядит таким образом: 20/20.
Следует обратить внимание, что величина 20/20 эквивалентна единице. Далее нужно забрать одно яблоко. После этого соотношение будет выглядеть таким образом: 19/20. Последняя величина является правильной дробью, поскольку числитель «19» меньше знаменателя «20». Это пример неправильного дробного тождества, а для демонстрации сути неправильного типа требуется выполнить операцию сложения двух корзин, из которых взяли по одному яблоку, т. е. 19/20 + 19/20 = 38/20 (числитель > знаменателя).
Чтобы не путаться в терминах, необходимо запомнить следующую фразу, вспоминая пример с яблоками и корзинами: в корзину можно положить не более 19 яблок (не 20, т. к. число должно быть нецелым) — это правильно, а больше 20 — не поместятся, поскольку это неправильно, т. к. корзина не рассчитана на такое количество. Далее нужно разобрать десятичные дроби.
Десятичные рациональные величины
Десятичной является произвольная дробь, представляющая законченную операцию деления. Последняя фраза может быть не совсем понятна для некоторых учеников. Следует отметить, что ничего сложного в ней нет. Чтобы объяснить ее, необходимо вспомнить, из каких элементов состоит деление. К ним относятся следующие: искомая величина (делимое), компонент, на который нужно делить (делитель) и результат операции (частное).
Следует отметить, что любая десятичная дробь состоит из целой и дробной частей, которые разделяются при помощи запятой. Однако в различных математических пакетах и калькуляторах может применяться символ точки. Иными словами, величины 4,25 и 4.25 эквивалентны между собой.
Для примера нужно взять обыкновенное числовое выражение «½». Оно является обыкновенной дробью, хотя тождество можно записать иначе: 1: 2. Если воспользоваться калькулятором и разделить единицу на двойку, то получится значение «0,5» (ноль целых пять десятых). Следует отметить, что десятичные дроби делятся на два вида:
К первому виду принадлежат любые десятичные дроби, у которых можно сосчитать количество знаков-разрядов в дробной части. Их можно записывать при решении задач с заданной точностью без операции округления.
Следующим видом являются бесконечные десятичные дробные величины. Они по типу разрядов делятся на два класса: периодические и непериодические. К первым принадлежат значения, знаки которых в дробной части повторяются по заданному закону (периоду). Для примера можно рассмотреть операцию деления единицы на тройку, т. е. 1/3. Если воспользоваться калькулятором, то частное будет состоять из нуля и множества троек, идущих после запятой. В этом случае величина записывается следующим образом: 0,(3) — ноль целых и три в периоде.
Однако при работе с бесконечной непериодической дробью необходимо учитывать особенность: невозможно написать ее точное значение на листе бумаги, поскольку количество разрядов в дробной части является бесконечной величиной.
Для этого используют операцию округления или оставляют в виде обыкновенной дроби. Далее необходимо разобрать смешанные формы чисел.
Смешанные числа
Смешанное число — форма, состоящая из целого и нецелого значений. Их можно условно разделить на два класса, который зависит от дробного основания:
К первым принадлежат все значения, состоящие из целого и дробного основания, которое является обыкновенной дробью. Вторые практически не отличаются от обыкновенных десятичных дробей, поскольку указывается только число в целой части, т. е. 6,28 (шесть целых двадцать восемь сотых). Для преобразования в обыкновенную дробную величину применяется очень простая методика, которая выглядит следующим образом:
Смешанная форма, у которой дробная часть представлена обыкновенной дробью, выглядит таким образом: T[m/n], где Т — целочисленное значение, m — числитель и n — величина знаменателя. Для преобразования в неправильное дробное тождество специалисты рекомендуют применять следующий алгоритм:
Чтобы проверить реализацию алгоритма на практике, специалисты рекомендуют составлять примеры. Одним из них является следующий: преобразовать смешанную форму «6[1/3]» в неправильную дробь. Решение задачи выглядит следующим образом:
Если нужно осуществить обратную конвертацию 19/3 в смешанную форму, то требуется просто выделить целое число делением числителя на знаменатель (19/3=6), а затем от числителя отнять произведение целого на знаменатель (1). После чего можно уже записывать результат преобразования: 6[1/3]. Далее необходимо перейти к основным свойствам десятичных и обыкновенных дробей.
Основные свойства
Для выполнения расчетов с рациональными числами необходимо знать определенные свойства. Они являются различными для каждого из типов дробных выражений. Десятичные дроби имеют следующие особенности:
Если рассматривать свойства дробей с числителем и знаменателем, то можно сделать выводы об их существенном отличии от десятичных. Особенности обыкновенных рациональных чисел имеют следующий вид:
Следует отметить, что знак плюс + можно не указывать перед положительным дробным числом как для десятичной, так и для обыкновенной формы. Кроме того, при решении примеров необходимо учитывать знаки при раскрытии скобок. Например, в числовом выражении «23,3 * 2 — 3[1/3] * (2,3 — 1/3)» порядок знаков очень важен, т. е. 23,3 * 2 — 3[1/3] * 2,3 + 3[1/3] * 1/3). При неправильном раскрытии скобки знак — может «потеряться». Это приведет к неверным вычислениям.
Таким образом, дроби в математике играют очень важную роль и применяются для увеличения точности вычислений, что существенно влияет не только на элементы какой-либо системы, но и на жизнь человека.
Доли, обыкновенные дроби: определения, обозначения, примеры, действия с дробями
Рассмотрение данной темы мы начнем с изучения понятия доли в целом, которое даст нам более полное понимание смысла обыкновенной дроби. Дадим основные термины и их определение, изучим тему в геометрическом толковании, т.е. на координатной прямой, а также определим список основных действий с дробями.
Доли целого
Представим некий предмет, состоящий из нескольких, совершенно равных частей. Например, это может быть апельсин, состоящий из нескольких одинаковых долек.
Доля целого или доля – это каждая из равных частей, составляющих целый предмет.
Очевидно, что доли могут быть разные. Чтобы наглядно пояснить это утверждение, представим два яблока, одно из которых разрезано на две равные части, а второе – на четыре. Ясно, что размеры получившихся долей у разных яблок будут различаться.
Доли имеют свои названия, которые зависят от количества долей, составляющих целый предмет. Если предмет имеет две доли, то каждая из них будет определяться как одна вторая доля этого предмета; когда предмет состоит из трех долей, то каждая из них – одна третья и так далее.
Половина – одна вторая доля предмета.
Треть – одна третья доля предмета.
Четверть – одна четвертая доля предмета.
Понятие доли естественно расширяется с предметов на величины. Так, можно использовать для измерения небольших предметов доли метра (треть или одна сотая), как одной из единиц измерения длины. Аналогичным образом можно применить доли других величин.
Обыкновенные дроби, определение и примеры
Обыкновенные дробиприменяются для описания количества долей. Рассмотрим простой пример, который приблизит нас к определению обыкновенной дроби.
Числитель и знаменатель
Т.е. числитель – число, расположенное сверху над чертой обыкновенной дроби (или слева от наклонной черты), а знаменатель – число, расположенное под чертой (справа от наклонной черты).
Какой же смысл несут в себе числитель и знаменатель? Знаменатель обыкновенной дроби указывает на то, из скольких долей состоит один предмет, а числитель дает нам информацию о том, каково рассматриваемое количество таких долей. К примеру, обыкновенная дробь 7 54 указывает нам на то, что некий предмет состоит из 54 долей, и для рассмотрения мы взяли 7 таких долей.
Натуральное число как дробь со знаменателем 1
Черта дроби как знак деления
Использованное выше представление данного предмета как n долей является не чем иным, как делением на n равных частей. Когда предмет разделен на n частей, мы имеем возможность разделить его поровну между n людьми – каждый получит свою долю.
При помощи обыкновенной дроби мы можем записать итог деления двух натуральных чисел. К примеру, деление 7 яблок на 10 человек запишем как 7 10 : каждому человеку достанется семь десятых долей.
Равные и неравные обыкновенные дроби
Результатом сравнения обыкновенных дробей может быть: равны или неравны.
В случае, когда выясняется, что дроби не являются равными, обычно необходимо также узнать, какая из данных дробей меньше, а какая – больше. Чтобы дать ответ на эти вопросы, обыкновенные дроби сравнивают, приводя их к общему знаменателю и затем сравнив числители.
Дробные числа
Дроби на координатном луче
Все дробные числа, как и любое другое число, имеют свое уникальное месторасположение на координатном луче: существует однозначное соответствие между дробями и точками координатного луча.
Здесь работает тот же принцип, что и с целыми числами: на горизонтальном, направленном вправо координатном луче точка, которой соответствует большая дробь, разместится правее точки, которой соответствует меньшая дробь. И наоборот: точка, координата которой – меньшая дробь, будет располагаться левее точки, которой соответствует бОльшая координата.
Правильные и неправильные дроби, определения, примеры
В основе разделения дробей на правильные и неправильные лежит сравнение числителя и знаменателя в пределах одной дроби.
Дроби и действия с дробями
Что такое дроби?
Вспоминаются примеры из начальной школы. Представьте себе пирог вкусный такой, и 4 голодных ребенка.
Как бы им так сделать, чтоб пирога досталось всем? Верно, надо его поделить, поделить один пирог на 4 человека:
На рисунке ты видишь пирог, разрезанный на 4 дольки. Так вот, как раз дробь – это и есть доля от целого.
Сегодня мы разберем подробно, что такое дроби. Как их правильно делить, умножать, вычитать, складывать, преобразовывать…
В общем, сегодня ты узнаешь о дробях ВСЕ, что нужно знать для успешной сдачи ОГЭ или ЕГЭ.
Дроби — коротко о главном
Определения:
Простая дробь (обыкновенная дробь) – запись рационального числа в виде отношения двух чисел \(\displaystyle\frac\).
Делимое \(\displaystyle a\) – числитель дроби, а делитель \(\displaystyle b\) – знаменатель дроби.
Правильная дробь – дробь, у которой числитель меньше знаменателя.
Например: \(\displaystyle\frac<2><5>\), \(\displaystyle\frac<1><7>\) и так далее.
Неправильная дробь –дробь, у которой числитель больше или равен знаменателю.
Например: \(\displaystyle\frac<9><5>\), \(\displaystyle\frac<13><2>\) и так далее.
Смешанная дробь – дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дроби.
Например: \(\displaystyle2\frac<2><5>\)\( \displaystyle \displaystyle=\frac<2\cdot 5><5>+\frac<2><5>=\frac<10><5>+\frac<2><5>=\frac<12><5>\).
Десятичная дробь – обыкновенная дробь со знаменателем \(\displaystyle10\), \(\displaystyle100\), \(\displaystyle1000\) и так далее, (т.е. \(\displaystyle<<10>^
>\), где \(\displaystyle n\) — натуральное число).
Например: \(\displaystyle\frac<9><100>\) в виде десятичной дроби записывается как \(\displaystyle0,09\),
\(\displaystyle\frac<225><1000>\) записывается как \(\displaystyle0,225\).
Основное свойство дроби:
Если числитель и знаменатель дроби умножить или разделить на одно и то же число, дробь не изменится, несмотря на то, что выглядеть она будет по-другому.
Действия с дробями:
Сложение/вычитание дробей
Умножение дробей
Деление дробей
Сокращение дроби
Приведение дробей к наименьшему общему знаменателю
Например: \(\displaystyle\frac<1><3>\) и \(\displaystyle\frac<3><4>\). Наименьший общий знаменатель — \(\displaystyle12\).
Дополнительный множитель первой дроби — \(\displaystyle12:3=4\), дополнительный множитель второй дроби — \(\displaystyle12:4=3\).
Следовательно: для первой дроби: \(\displaystyle\frac<1\cdot 4><3\cdot 4>=\frac<4><12>\), для второй дроби: \(\displaystyle\frac<3\cdot 3><4\cdot 3>=\frac<9><12>\).
Преобразования неправильной дроби в смешанную дробь
Например: \(\displaystyle\frac<17><4>\) = \(\displaystyle4\frac<1><4>\).
Сравнение дробей:
Простые дроби
В данном случае от целого куска в сторонке отделенная одна доля, одна из четырех, одна четвертая.
Это простая дробь.
Простые дроби принято записывать одним из следующих способов: \(\displaystyle \frac<1><4>\), \(\displaystyle <1>/<4>\;.\)
Ты не поверишь, все эти записи означают одно и то же – одна четвертая. А что останется если забрать эту \(\displaystyle 1/4?\) Было \(\displaystyle 4\) из \(\displaystyle 4\), или \(\displaystyle 4/4\), забрали \(\displaystyle 1/4\).
Верно, останется \(\displaystyle 3\) дольки, \(\displaystyle 3\) из \(\displaystyle 4\). Запишем, как полагается, \(\displaystyle 3/4\).
Можно даже вот так: \(\displaystyle 4/4-1/4=3/4\)
То, что находится выше черты – это числитель (ну или слева от черты в такой записи как тут), то, что ниже – знаменатель.
Можно запомнить так: Ч – чердак. Числитель сверху 🙂
Примеры простых дробей: \(\displaystyle 1/5,\text< >2/4,\text< >3/10,\text< >17/3.\)
Правильные и неправильные простые дроби
В этом ряду все дроби правильные, в них числитель меньше знаменателя. Кроме одной. Да-да, ты не ошибся, бывает и такое, что числитель больше знаменателя, как в этой дроби, например: \(\displaystyle 17/3\).
Если числитель больше знаменателя, то дробь называется неправильной.
Вне зависимости от того правильная дробь или неправильная, она будет простой.
Давай остановимся на неправильной дроби \(\displaystyle 17/3\). Что же это она неправильная?
Вспоминай пример с пирогом, там была \(\displaystyle 1/4\) – одна часть из четырех, а тут что получается? \(\displaystyle 17\) частей из \(\displaystyle 3\)?
Бред какой-то! У нас в знаменателе число, которое означает, что весь пирог состоит из стольки частей! Берем \(\displaystyle 4\) части и поучаем целый ровненький пирог. Но числитель говорит, что на данный момент у нас есть лишь одна из этих частей.
А \(\displaystyle 17/3\)?
Что же, у нас есть \(\displaystyle 17\) частей, а для целого пирога в данном случае надо \(\displaystyle 3\) части. Ну так давай соберем из кусочков целые пироги и отдельно их поставим.
Как узнать сколько пирогов мы можем получить из \(\displaystyle 17\) частей? Верно, надо на \(\displaystyle 3\) как раз и поделить.
Если попробовать составить \(\displaystyle 6\) пирогов, т.е. \(\displaystyle 3\cdot 6=18\), надо \(\displaystyle 18\) частей. Не хватает. А \(\displaystyle 3\cdot 5=15\), о, хватило! Получается \(\displaystyle 5\) целых пирогов собрали, положили в сторону. Осталось \(\displaystyle 17-3\cdot 5=2,2\), \( \displaystyle 2\) куска.
А для целого пирога надо \( \displaystyle 3\) части. В итоге у нас \( \displaystyle 5\) целых и \( \displaystyle 2/3\) (две третьих) пирога.
Много места занимает такое обозначение. А что если убрать лишние слова и оставить только \( \displaystyle 5\frac<2><3>\) (пять целых и две третьих).
Смешанная дробь
То, что у нас получилось (\( \displaystyle 5\frac<2><3>\)), называют смешанная дробь – дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дроби.
То, что между \( \displaystyle 5\) пирогами и \( \displaystyle 2/3\) пирога нет никакого знака не говорит о том, что там знак умножения, как если бы мы писали \( \displaystyle 2x\).
Запомни, между целой и дробной частями можно поставить знак плюс, вот так: \( \displaystyle 5\frac<2><3>=5+\frac<2><3>\).
Так же можно проделать и обратное действие, т.е. преобразование из смешанной дроби в неправильную дробь.
Ты же знаешь, как это сделать?
Преобразование из смешанной дроби в неправильную дробь.
В результате получим исходное \( \displaystyle 17/3\).