Что такое дисперсная фаза и дисперсионная среда
Дисперсная система, дисперсная фаза, дисперсионная среда.
Дисперсная система, дисперсная фаза, дисперсионная среда.
• Дисперсионная среда – растворитель, в котором распределено вещество в раздробленном состоянии
• Дисперсная фаза – раздробленное вещество
Между дисперсной фазой и дисперсионной средой существует поверхность раздела
Понятие о степени дисперсности. Удельная поверхность фазы.
Классификация дисперсных систем по степени дисперсности.
• Молекулярно- и ионно-дисперсные. Гомогенны, устойчивы (истинные растворы)
Сравнительная характеристика дисперсных систем с различной степенью дисперсности.
Классификация дисперсных систем по агрегатному состоянию фаз. Примеры.
Газ(воздух, туман, пыль), жидкость(пена, эмульсия), ТВ тело( пенопласт, сплавы).
Классификация систем по характеру взаимодействия дисперсной фазы с дисперсионной средой.
дисперсная фаза + дисперсионная среда= пример.
Условия получения веществ в коллоидном состоянии
Дисперсная фаза должна обладать плохой растворимостью
• Необходимы стабилизаторы, которые на поверхности раздела фаз образуют ионный или молекулярный слой и гидратную оболочку
Дисперсионные методы получения коллоидных систем.
Дисперсионные методы – дробление вещества до коллоидной степени дисперсности:
• Механические (шаровые и коллоидные мельницы, ступка) – диспергирование с добавлением стабилизаторов
• Ультразвуковые – диспергирование частиц под действием сжатий и расширений
Получение коллоидных растворов методом физической конденсации.
Конденсационные методы – укрупнение молекул и ионов до размеров коллоидных частиц. Основой физической конденсации явл физическое воздействие. Для получения золя исп метод замены р-ля. Вначале готовят истинный раствор в-ва в летучем р-ле и добавляют к жидкости, в кот в-во нерастворимо. Летучий р-ль удаляют нагреванием. В рез-те происходит резкое понижение р-ти. М. в-ва конденсируются в частицы коллоидных размеров и образ коллоидный р-р.
Методы химической конденсации в получении коллоидных растворов.
При вливании спиртовых растворов серы, канифоли, в воду, в которой эти вещества плохо растворимы, они начинают конденсироваться в частицы коллоидных размеров и могут находиться во взвешенном состоянии
Получение коллоидных растворов пептизацией.
Пептизация – процесс перехода вещества из осадка в золь при добавлении диспергирующих веществ (Al(OH)3, Fe(OH)3 + электролит)
Способы очистки коллоидных растворов от примесей.
Диализ – основан на способности животных и растительных мембран пропускать ионы и задерживать коллоидные частицы (медленный)
– Компенсационный диализ (вивидиализ)
Сущность диализа, электродиализа.
Диализ – основан на способности животных и растительных мембран пропускать ионы и задерживать коллоидные частицы (медленный)
454) Особенности и применение компенсационного диализа,вивидиализа. Компенсационный диализ применяют, когда необходимо освободить к/р-р лишь от части низкомолекулярных примесей. В диализаторе р-ль зам р-ры Нмс, которые необходимо остановить в к/р-ре. На принципе вивидиализа основано действие искусственной почки. Диализирующий р-р содержит в одинаковых с кровью концентрациях в-ва, кот необходимо сохранить в крови.
Сущность и цели ультрафильтрации дисперсных систем.
Ультрафитрация прим для очистки систем, содержащих частицы коллоидных размеров. В основе метода лежит продавливание разделяемой смеси через фильтры с порами, пропускающими только молекулы и ионы низкомолекулярных в-в.
Седиментация. От каких факторов зависит скорость седиментации частиц дисперсных систем?
седиментация это оседание частиц дисперсной фазы под действием различных сил. Зависит от радиуса частицы, разности плотностей дисперсной фазы и среды, вязкости. Определение скорости оседания положено в основу седиментационного анализа, опред размер частиц и их фракционный состав. Седиментация исп для качественной оценки функционального состояния эритроцитов.
Седиментационный анализ.Сущность и назначение ультрацентрифугирования дисперсных систем.
сед анализ прим для:
• Определение размера и фракционного состава частиц (число частиц разного размера)
• Определение молекулярного веса полимерных материалов, белков, нуклеиновых кислот
• Качественная оценка функционального состояния эритроцитов. СОЭ значительно меняется при различных заболеваниях
Броуновское движение. Факторы, влияющие на его интенсивность.
• Не зависит от природы вещества
• Обусловлено тепловым движением молекул
• Изменяется в зависимости от температуры, вязкости среды и размеров частиц
Уравнение Эйнштейна-Смолуховского для броуновского движения.
Описывает броуновское движение
∆х – среднее смещение (среднее расстояние, на которое сместится коллоидная частица в единицу времени)
Д – коэффициент диффузии
Диффузия в коллоидных системах. Скорость диффузии.
∆m=-Д*(∆С/∆Х)*∆τ Скорость диффузии в случае коллоидных растворов во много раз меньше, чем в истинных (т.к. коллоидные частицы обладают большим размером и массой, чем отдельные молекулы или ионы)
Характеристика осмотического давления коллоидных систем.
Осмотическое давление коллоидных растворов подчиняется закону Вант-Гоффа
Как правило, в 1 000 раз меньше осмотического давления истинных растворов
Светорассеяние в дисперсных системах. Уравнение Рэлея, анализ уравнения.
I = I0 · K*(С · V 2 )/ λ 4
I0 – интенсивность падающего света
K – константа, зависящая от природы вещества
С – частичная концентрация
λ – длина волн видимого света
Опалесценция. Эффект Фарадея-Тиндаля.
Опалесценция – некоторая мутность раствора при рассмотрении его в отраженном свете; явление рассеяния света мельчайшими частицами
• От природы вещества (поглощение света)
• От степени дисперсности
Окраска драгоценных камней (рубинов, изумрудов, сапфиров)
Грубодисперсные золи золота – синяя окраска
Большей степени дисперсности – фиолетовая
Высокодисперсные золи – ярко красная
Факторы, влияющие на окраску золей.
на окраску золей влияют длина волны падающего света, поглощение света, частичная концентрация, радиус частиц, вязкость.
Сущность ультрамикроскопии. Применение ультрамикроскопи для изучения свойств дисперсных систем.
• Определение массы и объема коллоидной частицы
• Исследование сыворотки и плазмы крови
• Исследование инъекционных растворов
• Определение чистоты воды и других сред
Объясните влияние температуры на величину дзета-потенциала (заряд гранулы) дисперсных систем.
дисперсная система, дисперсная фаза, дисперсионная среда.
• Дисперсионная среда – растворитель, в котором распределено вещество в раздробленном состоянии
• Дисперсная фаза – раздробленное вещество
Между дисперсной фазой и дисперсионной средой существует поверхность раздела
Что такое дисперсная фаза и дисперсионная среда
Ключевые слова конспекта: Дисперсные системы: дисперсная фаза и дисперсионная среда. Классификация дисперсных систем по агрегатному состоянию и размеру частиц дисперсной фазы. Грубодисперсные системы: эмульсии, суспензии, аэрозоли. Тонкодисперсные системы: золи и гели. Синерезис и коагуляция.
В природе индивидуальные вещества почти не встречаются, а образуют различные смеси, в том числе и дисперсные системы (от лат. dispersus — рассеянный, рассыпанный). Но можно ли чистый горный воздух назвать такой системой? Очевидно, нет, потому что у него отсутствует такой важный признак, как гетерогенность (от лат. heterogenes — неоднородный по составу), т. е. поверхность раздела фаз веществ системы.
Агрегатные состояния дисперсной фазы и среды в двухкомпонентной дисперсной системе позволяют выделить восемь типов дисперсных систем.
В свою очередь, грубодисперсные системы делятся на эмульсии, суспензии и аэрозоли.
К эмульсиям относятся жиросодержащие продукты питания: молоко, сливки, сметана, сливочное масло, маргарин, майонез и др. Нерастворимые в воде жидкие растительные и твёрдые животные жиры, попадая в организм, под действием желчи разрушаются на мелкие капельки, образуя водную эмульсию. Эта эмульсия с помощью ферментов (например, липазы) гидролизуется до глицерина и жирных кислот, которые транспортируются в кровь.
В медицине широко применяются эмульсии, позволяющие оказать энергетическую поддержку ослабленному организму, которые готовят на основе растительного масла (оливкового, соевого или хлопкового). В фармацевтической и косметической промышленности эмульсиями являются многие лекарственные и косметические препараты. В сельском хозяйстве для борьбы с вредителями используют эмульсии пестицидов. В металлообработке эмульсии используются в качестве охлаждающих и смазочных жидкостей.
В суспензиях частицы фазы отражают видимый свет, а потому визуально они воспринимаются как мутные системы.
Если вы помогали проводить ремонт дома, хотя бы косметический, то суспензии вы использовали часто. Это вододисперсионные краски, цементный раствор, бетон (строительные растворы). Широко распространены суспензии среди косметических и гигиенических средств: кремы, мази, зубные пасты.
В медицинской практике для лечения кожных заболеваний используют суспензии, содержащие кальциевые, магниевые, цинковые и другие препараты, а также пасты — предельно концентрированные суспензии. В сельском хозяйстве ядохимикаты, пестициды, минеральные удобрения применяют в основном в виде суспензий.
В быту обычной практикой стало применение таких грубодисперсных систем, как аэрозоли.
Аэрозоли с жидкой дисперсной фазой называются туманами, а с твёрдой — дымами. К естественным туманам относятся некоторые виды облаков, в том числе пылевые. Разновидностью дыма является смог, который появляется в результате выбросов промышленных предприятий, авто– и авиатранспорта и пр.
Аэрозоли возникают при распылении различных пестицидов, освежителей воздуха, парфюмерных жидкостей и т. д.
Аэрозоли также широко распространены в различных сферах производства: порошковая металлургия, технология лакокрасочного производства и т. д.
Промежуточное положение между истинными растворами (молекулярными, ионными, молекулярно-ионными), т. е. растворами, в которых размер растворённых частиц меньше 1 нм, и грубодисперсными системами занимают тонкодисперсные системы, или коллоидные растворы.
К природным коллоидным системам относятся: почва, глина, природные воды, многие минералы и драгоценные камни.
Живые организмы представляют собой совокупность множества коллоидных систем, которые можно разделить на золи и гели.
В золях можно наблюдать явление коагуляции, т. е. процесс укрупнения частиц дисперсной фазы и выпадение их в осадок.
Более плотные коллоидные системы живых организмов относятся к гелям.
Гели — это коллоидные системы с соприкасающимися частицами.
Со временем структура гелей нарушается — из них самопроизвольно выделяется вода. Это явление называется синерезисом. На его основе можно судить о качестве и сроках годности пищевых, медицинских и косметических продуктов.
Биологический синерезис происходит при свёртывании крови, в результате чего растворимый белок фибриноген превращается в нерастворимый — фибрин, образующий тромб, который закупоривает кровеносный сосуд. В этом случае коллоидный раствор белка превращается в гель, который уплотняется в результате синерезиса.
Визуально коллоидные и истинные растворы различают с помощью эффекта Тиндаля. При пропускании луча света через коллоидный раствор в нём возникает светящаяся дорожка из-за рассеивания света частицами дисперсной фазы. Частицы истинного раствора настолько малы, что не рассеивают свет. Подобное эффекту Тиндаля явление можно наблюдать при рассеивании лучей солнечного света частицами аэрозольного коллоида — воздуха.
Конспект урока по химии «Дисперсные системы». В учебных целях использованы цитаты из пособия «Химия. 11 класс : учеб, для общеобразоват. организаций : базовый уровень / О. С. Габриелян, И. Г. Остроумов, С. А. Сладков. — М. : Просвещение». Выберите дальнейшее действие:
Дисперсные системы. Дисперсная фаза и среда.
Диспе ́ рсная систе ́ ма — образования из двух или большего числа фаз (тел), которые практически не смешиваются и не реагируют друг с другом химически. В типичном случае двухфазной системы первое из веществ (дисперсная фаза) мелко распределено во втором (дисперсионная среда). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т.д.).
Обычно дисперсные системы — это коллоидные растворы, золи. К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза. Растворы высокомолекулярных соединений вами
Классификация дисперсных систем
Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсионной среды и дисперсной фазы (фаз). Сочетания трёх видов агрегатного состояния позволяют выделить девять видов двухфазных дисперсных систем. Для краткости записи их принято обозначать дробью, числитель которой указывает на дисперсную фазу, а знаменатель на дисперсионную среду; например, для системы «газ в жидкости» принято обозначение Г/Ж.
Обозначение | Дисперсная фаза | Дисперсионная среда | Название и пример |
Г/Г | Газообразная | Газообразная | Всегда гомогенная смесь (воздух, природный газ) |
Ж/Г | Жидкая | Газообразная | Аэрозоли: туманы, облака |
Т/Г | Твёрдая | Газообразная | Аэрозоли (пыли, дымы), порошкообразные вещества |
Г/Ж | Газообразная | Жидкая | Газовые эмульсии и пены |
Ж/Ж | Жидкая | Жидкая | Эмульсии: нефть, крем, молоко |
Т/Ж | Твёрдая | Жидкая | Суспензии и золи: пульпа, ил, взвесь, паста |
Г/Т | Газообразная | Твёрдая | Пористые тела: пенополимеры, пемза |
Ж/Т | Жидкая | Твёрдая | Капиллярные системы (заполненные жидкостью пористые тела): грунт, почва |
Т/Т | Твёрдая | Твёрдая | Твёрдые гетерогенные системы: сплавы, бетон, ситаллы, композиционные материалы |
По кинетическим свойствам дисперсной фазы двухфазные дисперсные системы можно разделить на два класса:
· Свободнодисперсные системы, у которых дисперсная фаза подвижна;
· Связнодисперсные системы, у которых дисперсионная среда твёрдая, а частицы их дисперсной фазы связаны между собой и не могут свободно перемещаться.
В свою очередь, эти системы классифицируются по степени дисперсности.
Системы с одинаковыми по размерам частицами дисперсной фазы называются монодисперсными, а с неодинаковыми по размеру частицами — полидисперсными. Как правило, окружающие нас реальные системы полидисперсны.
Встречаются и дисперсные системы с бо́льшим числом фаз — сложные дисперсные системы. Например, при вскипании жидкой дисперсионной среды с твёрдой дисперсной фазой получается трёхфазная система «пар — капли — твёрдые частицы»[1].
Другим примером сложной дисперсной системы может служить молоко, основными составными частями которого (не считая воды) являются жир, казеин и молочный сахар. Жир находится в виде эмульсии и при стоянии молока постепенно поднимается кверху (сливки). Казеин содержится в виде коллоидного раствора и самопроизвольно не выделяется, но легко может быть осаждён (в виде творога) при подкислении молока, например, уксусом. В естественных условиях выделение казеина происходит при скисании молока. Наконец, молочный сахар находится в виде молекулярного раствора и выделяется лишь при испарении воды.
Свободнодисперсные системы
Свободнодисперсные системы по размерам частиц подразделяют на:
Название | Размер частиц, м | Основные признаки гетерогенных систем |
Ультрамикрогетерогенные | 10−9…10−7 | — гетерогенные; — частицы проходят через бумажный фильтр и не проходят через ультрафильтр — частицы не видны в оптический микроскоп, а видны в электронный микроскоп и обнаруживаются в ультрамикроскоп — относительно устойчивы кинетически — прозрачные, рассеивают свет (дают конус Фарадея — Тиндаля) |
Микрогетерогенные | 10−7…10−5 | |
Грубодисперсные | более 10−5 |
Ультрамикрогетерогенные системы также называют коллоидными или золями. В зависимости от природы дисперсионной среды, золи подразделяют на твёрдые золи, аэрозоли (золи с газообразной дисперсионной средой) и лиозоли (золи с жидкой дисперсионной средой). К микрогетерогенным системам относят суспензии, эмульсии, пены и порошки. Наиболее распространёнными грубодисперсными системами являются системы «твёрдое тело — газ» (например, песок).
Коллоидные системы играют огромную роль в биологии и человеческой жизни. В биологических жидкостях организма ряд веществ находится в коллоидном состоянии. Биологические объекты (мышечные и нервные клетки, кровь и другие биологические жидкости) можно рассматривать как коллоидные растворы. Дисперсионной средой крови является плазма — водный раствор неорганических солей и белков.
Связнодисперсные системы
Пористые материалы
Основная статья: Пористый материал
Пористые материалы по размерам пор подразделяют, согласно классификации М. М. Дубинина, на:
Название | Размер частиц, мкм |
Микропористые | менее 2 |
Мезопористые | 2-200 |
Макропористые | более 200 |
По рекомендации ИЮПАК, микропористыми называют пористые материалы с размерами пор до 2 нм, мезопористыми — от 2 до 50 нм, макропористыми — свыше 50 нм.
По своей структуре пористые материалы подразделяют на корпускулярные и губчатые. Корпускулярные тела образуются срастанием отдельных структурных элементов (обычно разной формы и размера) — как не пористых, так и обладающих первичной пористостью (пористая керамика, бумага, ткань и др.); порами здесь служат промежутки между структурными элементами. Губчатые тела являются промежутки между этими частицами и их ансамблями. Губчатые тела может сформироваться в результате топохимических реакций, выщелачивание некоторых компонентов твёрдых гетерогенных систем, пиролитического разложения твёрдых веществ, поверхностной и объёмной эрозии; в них поры обычно представляют собой сеть каналов и полостей различной формы и переменного сечения[2].
По геометрическим признакам пористые структуры подразделяются на регулярные (у которых в объёме тела наблюдается правильное чередование отдельных пор или полостей и соединяющих их каналов) и стохастические (в которых ориентация, форма, размеры, взаимное расположение и взаимосвязи пор носят случайный характер). Для большинства пористых материалов характерна стохастическая структура. Имеет значение и характер пор: открытые поры сообщаются с поверхностью тела так, что через них возможна фильтрация жидкости или газа; тупиковые поры также сообщаются с поверхностью тела, но их наличие на проницаемости материала не сказывается; закрытые поры[2].
Твёрдые гетерогенные системы
Основная статья: Композиционный материал
Характерным примером твёрдых гетерогенных систем являются получившие в последнее время широкое распространение композиционные материалы (композиты) — искусственно созданные сплошные, но неоднородные, материалы, которые состоят из двух или более компонентов с чёткими границами раздела между ними. В большинстве таких материалов (за исключением слоистых) компоненты можно разделить на матрицу и включённые в неё армирующие элементы; при этом армирующие элементы обычно отвечают за механические характеристики материала, а матрица обеспечивает совместную работу армирующих элементов. К числу старейших композиционных материалов относятся саман, железобетон, булат, папье-маше. Ныне широко распространены фиброармированные пластики, стеклопластик, металлокерамика, нашедшие применение в самых различных областях техники.
Движение дисперсных систем
Изучением движения дисперсных систем занимается механика многофазных сред. В частности, задачи оптимизации различных теплоэнергетических устройств (паротурбинных установок, теплообменников и др.), а также разработки технологий нанесения различных покрытий делают актуальной проблему математического моделирования пристеночных течений смеси «газ — жидкие капли». В свою очередь, значительное разнообразие структуры пристеночных течений многофазных сред, необходимость учёта различных факторов (инерционность капель, образование жидкой плёнки, фазовые переходы и др.) требуют построения специальных математических моделей многофазных сред, активно разрабатываемых в настоящее время[3].
Возможности аналитического исследования нестационарных газодинамических течений многофазных дисперсных сред, в которых несущая газообразная фаза включает мелкие твёрдые или жидкие включения («частицы»), сильно ограничены, и на первый план выходят методы вычислительной механики[4]. Значительную актуальность при этом приобретает изучение таких течений при наличии интенсивных фазовых переходов — например, при анализе аварийных ситуаций в системах охлаждения атомных электростанций, исследовании вулканических извержений и в ряде технологических приложений, включая оптимизацию устройств, которые позволяют создавать высокоскоростные многофазные струи
Дисперсные системы
Основные понятия
Дисперсные системы – это гетерогенные системы, состоящие из двух или большего числа фаз с сильно развитой поверхностью раздела между ними. Особые свойства дисперсных систем обусловлены именно малым размером частиц и наличием большой межфазной поверхности. В связи с этим определяющими являются свойства поверхности, а не частиц в целом. Характерными являются процессы, происходящие на поверхности, а не внутри фазы. Отсюда становится понятным, почему коллоидную химию называют физико-химией поверхностных явлений и дисперсных систем.
Особенность дисперсных систем состоит в их дисперсности – одна из фаз обязательно должна быть раздробленной, ее называют дисперсной фазой. Сплошная среда, в которой распределены частицы дисперсной фазы, называется дисперсионной средой. Фаза считается дисперсной, если вещество раздроблено хотя бы в одном направлении. Если вещество раздроблено только по высоте, образуются пленки, ткани, пластины и т. д. Если вещество раздроблено и по высоте и по ширине, образуются волокна, нити, капилляры. Наконец, если вещество раздроблено по всем трем направлениям, дисперсная фаза состоит из дискретных (отдельных) частиц, форма которых может быть самой разнообразной.
Дисперсные системы можно классифицировать по многим признакам, что связано с огромным множеством объектов, которые изучает коллоидная химия. В качестве основного классификационного признака можно выделить размер частиц дисперсной фазы:
—Грубодисперсные (> 10 мкм): сахар-песок, грунты, туман, капли дождя, вулканический пепел, магма и т. п.
—Среднедисперсные (0,1-10 мкм): эритроциты крови человека, кишечная палочка и т. п.
—Высокодисперсные (1-100 нм): вирус гриппа, дым, муть в природных водах, искусственно полученные золи различных веществ, водные растворы природных полимеров (альбумин, желатин и др.) и т. п.
—Наноразмерные (1-10 нм): молекула гликогена, тонкие поры угля, золи металлов, полученные в присутствии молекул органических веществ, ограничивающих рост частиц, углеродные нанотрубки, магнитные нанонити из железа, никеля и т. п.
Здесь отметим, что классификацию дисперсных систем по размеру частиц мы рассматриваем первой не случайно. Именно размер частиц (линейный размер, а не вес и не число частиц атомов в частице!) является важнейшим количественным показателем дисперсных систем, определяющим их качественные особенности. По мере изменения размеров частиц изменяются все основные свойства дисперсных систем: реакционная, адсорбционная способность; оптические, каталитические свойства и т. д. Современная коллоидная химия изучает дисперсные системы с широким диапазоном размеров частиц: от грубодисперсных (10-6-10-4 м) до высокодисперсных или собственно коллоидных (10-9-10-7 м).
Под взаимодействием фаз дисперсных систем подразумевают процессы сольватации (гидратации в случае водных систем), т. е. образование сольватных (гидратных) оболочек из молекул дисперсионной среды вокруг частиц дисперсной фазы. Соответственно, по интенсивности взаимодействия между веществами дисперсной фазы и дисперсионной среды (только для систем с жидкой дисперсионной средой), по предложению Г. Фрейндлиха различают следующие дисперсные системы:
—Лиофильные (гидрофильные, если ДС – вода): мицеллярные растворы ПАВ, критические эмульсии, водные растворы некоторых природных ВМС, например, белков (желатина, яичного белка), полисахаридов (крахмала). Для них характерно сильное взаимодействие частиц ДФ с молекулами ДС. В предельном случае наблюдается полное растворение. Лиофильные дисперсные системы образуются самопроизвольно вследствие процесса сольватации. Термодинамически агрегативно устойчивы.
—Лиофобные (гидрофобные, если ДС – вода): эмульсии, суспензии, золи. Для них характерно слабое взаимодействие частиц ДФ с молекулами ДС. Самопроизвольно не образуются, для их образования необходимо затратить работу. Термодинамически агрегативно неустойчивы (т. е. имеют тенденцию к самопроизвольной агрегации частиц дисперсной фазы), их относительная устойчивость (так называемая метастабильность) обусловлена кинетическими факторами (т. е. низкой скоростью агрегации).
По агрегатному состоянию фаз В. Оствальд предложил ставшую весьма распространенной классификацию:
Таблица 1. Классификация дисперсных систем по агрегатному состоянию фаз
ДС ДФ | Жидкая | Газообразная | Твердая |
Твердая | Т/Ж – суспензии, золи: суспензии металлов и других твердых частиц, золи металлов и их оксидов | Т/Г – пыли, дымы, порошки: промышленные выбросы твердых частиц в атмосферу, дым от костра, песчаные бури, мучная и дорожная пыль в воздухе, аэрозоли твердых лекарственных веществ | Т/Т – сплавы, твердые коллоидные растворы: сплавы металлов, оксидные и металлоксидные композиционные материалы, минералы |
Жидкая | Ж/Ж – эмульсии, кремы: молоко, сметана, нефть, косметические кремы | Ж/Г – аэрозоли с жидкой ДФ: туман, капли дождя, распыленная струя охлаждающей жидкости, распыленные в воздухе духи, жидкое топливо в камере сгорания) туманы | Ж/Т – пористые тела, заполненные жидкостью, капиллярные тела, гели: клетки живых организмов, жемчуг, глины, яблоко |
Газооб-разная | Г/Ж – пены: мыльная пена, пивная пена, пена для тушения пожаров | – | Г/Т – пористые и капиллярные системы, ксерогели: пемза, активированный уголь, силикагель, пенопласт, древесина, бумага, картон, текстильные ткани |
В соответствии с кинетическими свойствами дисперсной фазы различают свободнодисперсные и связнодисперсные системы. Выделяют также разбавленные и концентрированные системы. В связнодисперсных системах одна из фаз структурно закреплена (между частицами реализуется взаимодействие, они «связаны» друг с другом) и не может перемещаться свободно. В свободнодисперсных системах частицы обособлены и участвуют в тепловом движении и диффузии. В разбавленных связнодисперсных системах частицы образуют сплошную пространственную сетку (дисперсную структуру) – возникают гели. Дисперсные системы любого типа, полученные в концентрированном состоянии (пасты, мази, густые золи, густые аэрозоли и т. п.), также относят к связнодисперсным системам. В концентрированных дисперсных системах независимое движение частиц дисперсной фазы затруднено, и для них характерна некоторая степень структурированности, что и позволяет их рассматривать как связнодисперсные системы.
Дата добавления: 2019-11-25 ; просмотров: 1554 ; Мы поможем в написании вашей работы!