Что такое диспергация бурового раствора

Большая Энциклопедия Нефти и Газа

Диспергация

Диспергация всесторонне офлюсованной галогенидами пленки А Оз происходит вследствие уменьшения ее поверхностной энергии под действием поверхностно-активных галогенидных флюсов. [2]

Диспергация бывает химическая и механическая. [3]

Диспергация от расклинивающего действия воды затворения особенно активно идет в начальный период закачки цементного раствора в скважину, когда разрушаются ( диспергируются) малопрочные частицы. По мере приближения раствора к забою скважины он подвергается действию дополнительных факторов, ускоряющих процессы диспергации твердой фазы, а также давления, температуры и перемешивания. Цементные частицы попадают под воздействие всестороннего гидравлического давления. [4]

Диспергация грубых взвесей осуществляется как механическим путем ( шаровыми и коллоидными мельницами), так и с помощью других физических воздействий ( вольтовой дуги или колебательного разряда высокого напряжения под водой, ультразвукового разрушения под водой гидроксидов металлов, гипса, графита. [7]

Диспергация газожидкостной смеси в предвключенных ступенях предотвращает сепарацию газа на ведомой поверхности колеса, улучшает энергообмен между колесом насоса и жидкостью в направляющем аппарате. Вследствие этого восстанавливается циркуляция вектора скорости по контуру колеса, которая была нарушена газовым слоем на его ведомой поверхности при поступлении на прием насоса грубой газожидкостной эмульсии. [9]

Интенсивная диспергация глин морского происхождения в, пресных растворах объясняется как диффузионным отводом норовых солей, ослабляющим структуру пор, так и осмотическими процессами, обусловленными эффектом полу проницаемости глинистой структуры. [11]

Предупреждение диспергации шлама создает предпосылки для более эффективного его отделения средствами механической очистки буровой. Данное заключение косвенно подтверждается мнением исследователей [17], утверждающих, что методы осветления суспензии характеризуют флокулирующие свойства полимерных добавок, а не флокулирующие свойства полимерных буровых растворов. Поэтому при разбуривании мягких и средних глинистых горных пород, легко вступающих в процессы массо-и энергообмена с буровым раствором, необходимы более действенные пути дестабилизации выбуренной глинистой массы другими более сильными флокулянтами. [12]

На диспергацию твердой фазы и ускорение загустевания и схватывания цементных растворов влияют давление и колебания давления, возникающие при закачке растворов в затрубное пространство скважины. Для выяснения действия этих факторов на загусте-вание тампонажных растворов автором совместно с В. А. Волошиным был выполнен ряд экспериментов на консистометре КЦ-3. [13]

На диспергацию твердой фазы и ускорение загустевания и схватывания цементных растворов влияет не только абсолютная величина давления, но и колебания давления, возникающие при закачке растворов в заколонное пространство скважины. [14]

Источник

Большая Энциклопедия Нефти и Газа

Буровой раствор должен обеспечивать стабильность стенок скважины, предотвращать диспергирование шлама и наработку раствора. При ежедневной обработке в буровой раствор добавляются только те реагенты, которые поддерживают заданные свойства раствора. Поддержание определенной концентрации активной твердой фазы помогает снизить использование различных химических реагентов ( разжижители, понизители водоотдачи, стабилизаторы) для дообработки раствора. Если эффективность оборудования по очистке недостаточна, то реагенты станут основным компонентом раствора. Степень разбавления зависит от содержания твердой фазы и пластической вязкости раствора. Если концентрация реагентов превысит требуемый уровень, растворимость их уменьшается и они будут присутствовать в растворе как механические примеси, вызывая дополнительное разбавление. Сбрасываемый шлам может использоваться как индикатор для выявления этой проблемы, так как будет содержать большое количество реагентов. [3]

Переход выбуренной породы в раствор имеет различную интенсивность в зависимости от свойств пород и условий бурения. Диспергирование шлама усиливается: при роторном способе бурения, когда колонна бурильных труб работает в скважине как глиномешалка; при недостаточной промывке, когда уже выбуренная порода подвергается на забое многократному повторному измельчению; при несовершенной очистке раствора; при высоких забойных температурах и наличии в буровом растворе пептизирующих реагентов. [7]

В качестве понизителей вязкости используются таниновые и лигниновые материалы и их модификации, а также неорганические диспергаторы. Это давало скорее кажущийся, чем действительный эффект. Эти реагенты, как правило, способствуют диспергированию шлама и затрудняют очистку буровых растворов. [13]

Не вся разбуренная порода переходит в активную твердую фазу естественного раствора. Крупные частицы осаждаются н желобной системе и отстойниках. Использование в практике бурения нефтяных и газовых скважин дополнительного диспергирования осадочного шлама во фрезерно-струйных мельницах и шаровых мельницах мокрого помола [50] для разведочного бурения пока неприемлемо. [14]

Источник

Буровой диспергатор: типы и описание устройств

Наименование «диспергатор» применяется для обозначения как специального оборудования, так и химических реагентов, способствующих формированию дисперсной системы – смеси двух или более компонент, не смешивающихся друг с другом и не вступающих в химические реакции. В первом случае речь идет об устройствах, механически воздействующих на элементы твердой фазы дисперсной системы, во втором – о веществах, облегчающих процесс дефлокуляции и дезагрегации взвешенных в жидкой среде твердых частиц. В рамках сегодняшней статьи мы подробнее остановимся на диспергаторах как устройствах.

Что такое диспергация бурового раствора. Смотреть фото Что такое диспергация бурового раствора. Смотреть картинку Что такое диспергация бурового раствора. Картинка про Что такое диспергация бурового раствора. Фото Что такое диспергация бурового раствораБуровой диспергатор представляет собой аппарат, предназначенный для измельчения фрагментов твердой фазы, содержащихся в буровых и тампонажных растворах. Использование подобных устройств продиктовано необходимостью повышения качества используемого раствора и улучшения его свойств. За счет применения буровых диспергаторов удается увеличить показатель выхода для глинистых буровых растворов, а также обеспечить более высокую скорость приготовления состава, уменьшая при этом потребность в применении химических реагентов.

В качестве классификации устройств для диспергирования применяется деление на механические, гидравлические и гидромеханические аппараты. Механический тип получил наиболее широкое распространение по сравнению с остальными за счет относительной простоты и большего КПД. К механическому оборудованию для измельчения твердых частиц дисперсной среды относится так называемая фрезерноструйная мельница. Ее конструкция включает в себя ротор, приемный отсек, предохранительную шарнирную плиту, диспергирующую рифленую плиту, а также лоток для отвода обработанного материала. Подаваемый раствор перемещается ротором вдоль диспергирующей плиты вместе с потоком воды, за счет чего происходит измельчение частиц твердой фазы.

Буровые диспергаторы гидравлического типа воздействуют на твердую фазу бурового раствора соударением встречных струй, подаваемых под высоким напором, в отсеке малого объема (около 0,004 кубометра). Относительно малая популярность данного вида диспергаторов связана с низкой производительностью по сравнению с механическими устройствами (15-20 кубометров в час против 60-80 кубометров в час), а также с необходимостью поддержания необходимого показателя давления.

Гидромеханические устройства также уступают по производительности механическим, обеспечивая показатель от 30 до 40 кубометров в час. Измельчение твердых частиц достигается за счет ударов струи о стенку препятствия, производимых под углом 90° к потоку. Подаваемая под давлением жидкость проходит через систему дисков, количество которых может варьироваться от 4 до 6 штук, последовательно проходя через отверстие в каждом диске и ударяясь о поверхность следующего.

Чтобы задать вопрос или сделать заявку,
нажмите на кнопку ниже:

Источник

Что такое диспергация бурового раствора

Рост технологических показателей глубокого бурения на нефть и газ во многом зависит от организации технологии промывки скважин, состава применяемых буровых растворов и их технологических свойств.

Под технологическими свойствами буровых растворов следует понимать влияние промывочных средств на буримость горных пород, фильтрационные процессы, очистку ствола и забоя скважины, устойчивость стенок ствола, сложенными неустойчивыми породами, снижение сопротивлений движению бурильного инструмента при его контакте с глинистой коркой и стенками скважины, раскрытие и освоение коллекторов, содержащих нефть и газ.

Технологические свойства буровых растворов существенно влияют на работоспособность буровых долот, забойных гидравлических и электрических двигателей, бурильных и обсадных труб и другого подземного бурового оборудования.

Понятие «буровые растворы» охватывает широкий круг жидких, суспензионных, аэрированных сред, имеющих различные составы и свойства. Термин « буровой раствор» стали применять вместо его синонимов – «глинистый раствор», «промывочный раствор», «промывочная жидкость».

Тампонажные растворы применяются при креплении обсадных колонн к стенкам скважины, а также при ремонте скважин. В отличие от буровых растворов тампонажные способны превращаться в твердое тело. В подавляющем количестве случаев в качестве вяжущего вещества в тампонажных растворах используется портландцемент. Поэтому в учебных пособиях термин «крепление скважин» отождествляется с термином «цементирование скважин».

Как показывает практика, качество приготавливаемых и закачиваемых в скважину буровых и тампонажных растворов, успех проводимых операций зависит в первую очередь от умения и знаний обслуживающего персонала.

Знание основ физико-химических процессов, происходящих в растворах, обрабатываемых различными реагентами, воздействия этих реагентов на растворы, стенки скважины и пласты, а также мастерство и умение управлять сложным буровым и цементировочным оборудованием – залог успешного проведения операций.

Часть 1 БУРОВЫЕ РАСТВОРЫ

Технологические функции бурового раствора

Буровой раствор в процессе бурения осуществляет ряд функций, которые тем разнообразнее, чем сложнее процесс бурения: глубже скважина, неустойчивее ее стенки, выше давление газа и нефти в разбуриваемых горизонтах.

Процесс бурения представляет собой совокупность различных операций, определяющих технологию проходки скважины, поэтому функции называются технологическими.

1 Гидродинамические функции осуществляются потоком раствора в скважине и заключаются в следующем:

— в выносе выбуренной породы (шлама) из скважины;

— в переносе энергии от насосов к забойным двигателям (турбобурам);

— в размыве породы на забое скважины (гидромониторный эффект);

— в охлаждении долота в процессе бурения.

2 Гидростатические функции осуществляются покоящимся буровым раствором. К этой группе функций относятся:

— удержание частиц выбуренной породы и утяжелителя во взвешенном состоянии при прекращении циркуляции бурового раствора;

— создание гидростатического давления на стенки скважины, сложенные слабосцементированными или пластичными породами;

— уменьшение нагрузки на талевую систему.

3 Функции, связанные с процессом коркообразования

Буровой раствор, представляющий собой тонкую взвесь коллоидных частиц (твердой фазы) в жидкой среде, в процессе движения в пласт образует на его поверхности и в порах фильтрационную корку, препятствующую или замедляющую дальнейшее поступление раствора. Этот процесс разделения жидкой и твердой фаз, в результате чего происходит кольматация (закупоривание) стенок скважины, называется фильтрацией. К этой группе функций относятся:

— уменьшение проницаемости пористых стенок скважины;

— сохранение или усиление связности слабосцементированных пород;

— уменьшение трения бурильных и обсадных труб о стенки скважин.

4 Физико-химические функции заключаются в добавлениях к буровому раствору специальных химических реагентов в процессе бурения скважины, которые принято называть химической обработкой. К этим функциям относятся:

— сохранение связности пород, образующих стенки скважины;

— предохранение бурового оборудования от коррозии и абразивного износа;

— сохранение проницаемости продуктивных горизонтов при их вскрытии;

— сохранение необходимых характеристик бурового раствора в процессе бурения скважины;

— улучшение буримости твердых пород.

К прочим функциям бурового раствора относятся:

— установление геологического разреза скважины (по составу шлама);

— сохранение теплового режима многолетнемерзлых пород.

Коллоидно-химические свойства буровых растворов

Буровые растворы представляют собой физико-химические системы, состоящие из двух или более фаз. Однофазные системы из двух или более веществ, не имеющие между компонентами поверхности раздела, называются гомогенными (истинные растворы). Системы, между фазами которых существуют реальные поверхности раздела, называются гетерогенными. К ним относится большинство буровых и тампонажных растворов.

Дисперсной фазой дисперсионной системы называется вещество, мелко раздробленной и равномерно распределенное в другом веществе, получившем название дисперсионной среды. И фаза, и среда могут быть твердыми, жидкими и газообразными. Буровые и тампонажные растворы относятся к полидисперсным системам, т.е. имеющим частицы дисперсной фазы различных размеров.

Из грубодисперсных систем в качестве бурового раствора применяют суспензии, эмульсии и аэрированные жидкости.

Суспензии – мутные жидкости с находящимися в них во взвешенном состоянии частицами твердого вещества. Эти частицы под влиянием силы тяжести оседают, т.е. седиментируют.

Аэрированной жидкостью называют многофазную систему, содержащую дисперсную фазу в виде пузырьков воздуха. Если воздух играет роль среды, то такие жидкости называются пенами.

Основные свойства дисперсных систем

Из всех дисперсных систем наиболее полно отвечают требованиям, предъявляемым к буровым растворам, коллоидные системы. По молекулярно-кинетической теории внутреннее сцепление тел обусловлено силами взаимодействия молекул. Внутри тела (жидкости) эти силы уравновешены. Силы притяжения молекул, расположенных на поверхности раздела двух фаз, не уравновешены. В результате избытка сил притяжения со стороны жидкости молекулы с границы раздела стремятся втянуться внутрь, поэтому поверхность раздела стремится к уменьшению. В связи с этим поверхностные молекулы на разделе фаз обладают некоторой некомпенсированной избыточной энергией, называемой поверхностной. Поверхностное натяжение можно представить как работу образования 1м2 поверхности (Дж/м2). Таким образом, ПАВ – это вещества, понижающие поверхностное натяжение.

Большое значение в характеристике дисперсных систем имеет явление смачиваемости. Смачивание жидкостью твердого тела можно рассматривать как результат действия сил поверхностного натяжения. Она характеризуется величиной краевого угла.

Различают кинетическую (седиментационную) и агрегативную устойчивости. Кинетическая обеспечивается седиментацией и броуновским движением, а агрегативная определяет способность частиц дисперсной фазы не слипаться. По агрегативному состоянию и механическим свойствам различают свободно-дисперсные (или бесструктурные) и связно-дисперсные (структурированные) системы. Первые отличаются подвижностью и не оказывают сопротивления сдвигу. Связнодисперсная система получила название «геля» и отличается наличием сплошной пространственной структуры. Она обладает вязкостью, пластичностью, прочностью, упругостью и т.п.

Коагуляция- укрупнение (слипание, слияние) частиц дисперсной фазы под действием молекулярных сил сцепления или сил тяжести.

Флокуляция – слипание гидрофобных минеральных частиц в хлопья. Гидрофобная коагуляция характеризуется полным расслоением дисперсной системы на жидкую и твердую фазы.

Структурообразование – это способность коллоидных частиц в неподвижном растворе слипаться по краям и образовывать сотообразную структуру, заполняющую весь объем раствора.

Основные параметры буровых растворов

Плотность (ρ, г/см3) – это отношение массы бурового раствора к его объему. Различают кажущую и истинную плотности. Первая характеризует раствор, выходящий из скважины и содержащий газообразную фазу, а вторая – раствор без газообразной фазы.

Условная вязкость (Т, сек) – величина, определяемая временем истечения из стандартной воронки 500 см3 бурового раствора и характеризующая подвижность бурового раствора.

Показатель фильтрации косвенно характеризует способность бурового раствора отфильтровываться через стенки ствола скважины.

Коэффициент трения (Ктр) – величина, определяемая отношением силы трения между двумя металлическими поверхностями в среде бурового раствора к прилагаемой нагрузке.

Толщина фильтрационной корки (К, мм) – фильтрационная корка образуется в результате отфильтровывания жидкой фазы бурового раствора через пористую систему.

Концентрация водородных ионов, определяемая величиной рН, характеризует щелочность бурового раствора. Чем больше рН, тем щелочность выше.

Материалы для приготовления буровых растворов

Глинистые минералы состоят из мельчайших плоских кристалликов-пластинок, между которыми проникают молекулы воды. Это и есть процесс распускания глины.

Натрий и кальций, не входящие в состав кристаллической решетки глинистых минералов, содержатся в поверхностном слое частиц глины. Поверхность глинистой частицы заряжена отрицательно, в то время как катионы натрия и кальция образуют «облако» в некотором отдалении от поверхности глины. Появление такого отрицательного заряда при распускании глины в воде является одной из причин устойчивости глинистых суспензий. По наименованию этих катионов, обеспечивающих защиту частиц от слипания, глины называют натриевыми и кальциевыми.

Вторым материалом для приготовления буровых растворов является органо-минеральное сырье (ОМС). Это природный материал, представляющий собой донные илистые органогенные отложения водоемов. На основе ОМС сначала готовится сапропелевая паста (вода + ОМС + каус-тическая сода), затем раствор (путем разбавления водой на буровой).

Химические реагенты для обработки буровых растворов

Реагенты–стабилизаторы представляют собой высокомолекулярные органические вещества, высокогидрофильные, хорошо растворимые в воде с образованием вязких растворов. Механизм действия заключается в адсорбции на поверхности коллоидных частиц и гидрофилизации последних.

Реагенты-стабилизаторы 1-ой группы используют как понизители фильтрации, 2-ой группы – понизители вязкости (разжижители). Чем больше молекулярная масса, тем эффективнее реагент. Когда структура молекулы представлена переплетающимися цепочками, реагент является понизителем фильтрации, но вязкость при этом повышается. Глобулярная форма молекулы присуща реагентам второй группы.

Крахмальный реагент получают путем гидролиза в щелочной среде. Он является понизителем фильтрации соленасыщенных буровых растворов.

2 Реагент, связывающий двухвалентные катионы

Двухвалентные катионы находятся в пластовых водах и разбуриваемых породах и, поступая в буровой раствор, ухудшают его качество. Источником Са++ является цемент (при разбуривании цементного стакана после установки цементного моста). Для связывания ионов кальция применяют углекислый натрий (кальцинированную соду).

Са SО4 + Nа2CO3 = СаСО3 + Nа2 SО4

Вместо ионов Са++ в растворе образуется нерастворимый углекислый кальций.

3 Регуляторы щелочности

По мере увеличения щелочности скорость распускания глины и ОМС сначала возрастает, а затем уменьшается. Большинство применяемых реагентов-стабилизаторов имеют рН 9-13. Суспензия глины имеет рН 7-8. Величина оптимальной щелочности – 9-11.

Едкий натр (гидрат окиси натрия, каустическая сода).

4 Смазочные добавки

В основе смазывающего действия, уменьшающего трение, лежит адсорбционный эффект. Действие реагента как смазывающей добавки зависит от его способности адсорбироваться на металле и сопротивляться выдавливанию при сближении трущихся поверхностей деталей инструмента. Смазки применяют для снижения трения между бурильными трубами и фильтрационной коркой при вращении.

Смазки ЗГВ-205, АКС-303, СК, нефть и др.

Если пена находится на поверхности, она сама быстро разрушается, если она внутри жидкости, только наиболее крупные пузыри способны всплыть, преодолевая прочность структуры. Но при перемешивании пузырьки встречаются в глубине и слабая поверхностная пленка, из которой ПАВ вытеснил пенообразователь, не может противостоять слиянию пузырьков. Они увеличиваются в размерах, всплывают и лопаются.

Вспененный раствор обладает высокими значениями структурно-механических характеристик. Ухудшается работа насосов.

Пеногасители: оксаль(Т-80), сивушное масло (применялось ранее), АКС-20.

6 Утяжелители буровых растворов

Степень дисперсности утяжелителя называется тонкостью помола.

Утяжелители: мел, доломит, барит, гематит, магнетит.

Выбор типа бурового раствора для бурения скважин

Наличие соленосных пород в геологическом разрезе месторождений Беларуси обусловило условное подразделение на части: надсолевую, верхнесоленосную, межсолевую, нижнесоленосную и подсолевую. В зависимости от вскрываемого разреза необходимо использовать несколько типов бурового раствора. Выбор типа раствора является одним из основных элементов технологии проводки скважин. Он определяет номенклатуру реагентов и материалов для его создания и эксплуатации.

Надсоль бурят пресным сапропелевым раствором (при мощности до 800 м), пресным глинистым, обработанным Лигнополом (от 800 до 2000 м) и пресным сапропелевым, обработанным Лигнополом (более 2000 м).

Соленосные комплексы бурят тремя типами растворов:

— соленасыщенным глинистым, обработанным крахмальным реагентом «Фито-РК»;

-соленасыщенным сапропелевым, обработанным крахмальным реагентом «Фито-РК»;

— соленасыщенным глинистым, обработанным Лигнополом.

Межсолевые и подсолевые отложения, являющиеся продуктивными, бурят в основном пресным сапропелевым раствором (в случае перекрытия соленосных отложений колонной) и соленасыщенным, который использовался при бурении основного ствола, если соленосные отложения не перекрывались колонной.

Буровые растворы для вскрытия продуктивных отложений не требуют обработки химическими реагентами.

Часть 2 Тампонажные растворы (ТР)

Для извлечения нефти надо создать долговечный устойчивый канал, соединяющий продуктивный горизонт с резервуарами. Для транспортировки нефти или газа надо разобщить пласты горных пород и закрепить стенки скважины.

При креплении скважин применяются металлические трубы, которые, свинчивая в колонну, спускают в пробуренную скважину на определенную глубину. Эти трубы и колонна называются обсадными.

С целью разобщения пластов в обсадную колонну закачивают цементный раствор, который вытесняет находящийся в ней буровой раствор, и продавливают в затрубное пространство на расчетную высоту. Процесс транспортирования (закачивания) цементного раствора в затрубное пространство называется процессом цементирования скважины.

Тампонажные растворы – это комбинации спецматериалов или составов, используемых для тампонирования. Тампонажные смеси с течением времени могут затвердевать с образованием тампонажного камня или загустевать, упрочняться, оставаясь вязкой или вязко-пластичной системой.

По виду тампонирование делят на:

— технологическое, выполняемое в процессе сооружения скважины;

— ликвидационное, проводимое для ликвидации скважины после выполнения целевого назначения.

Функции тампонажного раствора и камня обусловлены целью тампонирования и в зависимости от этого к исходному тампонажному раствору предъявляются различные требования.

Требования к тампонажному раствору

1 Технического характера:

— способность проникать в любые поры и микротрещины;

— хорошая сцепляемость с обсадными трубами и горными породами;

— восприимчивость к обработке с целью регулирования свойств;

— отсутствие взаимодействия с тампонируемыми породами и пластовыми водами;

— устойчивость к размывающему действию подземных вод;

— стабильность при повышенных температуре и давлении;

— отсутствие усадки с образованием трещин при твердении.

2 Технологического характера:

— хорошая прокачиваемость буровыми насосами;

— небольшие сопротивления при движении;

— малая чувствительность к перемешиванию;

— возможность комбинирования с другим раствором;

— хорошая смываемость с технологического оборудования;

— легкая разбуриваемость камня.

3 Экономического характера:

— сырье должно быть недефицитным и недорогим;

— не влиять отрицательно на окружающую среду.

Классификация тампонажных растворов

В зависимости от вяжущей основы ТР делятся:

— растворы на основе органических веществ (синтетические смолы).

Жидкая основа ТР – вода, реже – углеводородная жидкость.

В зависимости от температуры испытания применяют:

— цемент для «холодных» скважин с температурой испытания 22оС;

— цемент для «горячих» скважин с температурой испытания – 75оС.

По плотности ТР делят на:

— легкие – до 1,3 г/см3

— облегченные – 1,3 – 1,75 г/см3;

— тяжелые – больше 20,20 г/см3.

По срокам схватывания делят на:

— быстро схватывающиеся – до 40 мин;

— ускоренно схватывающиеся – 40 мин- 1час 20 мин;

— медленно схватывающиеся – больше 2 час.

Основные технологические параметры ТР

Цементным тестом называется смесь цемента с водой. Цемент перед испытанием просеивается через сито 80 мкм.

Водо-цементное отношение – В/Ц – отношение объема воды к весу цемента.

Тесто готовится вручную в сферической чаше в течение 3 минут или на специальных мешалках 5 минут.

Растекаемость, см – определяет текучесть (подвижность) цементного раствора.

Плотность, г/см3 – отношение массы цементного раствора к его объему.

Фильтрация или водоотдача, см3 за 30мин – величина, определяемая объемом жидкости затворения, отфильтрованной за 30 минут при пропускании цементного раствора через бумажный фильтр ограниченной площади под давлением 1 атм.

Седиментационная устойчивость цементного раствора – определяется водоотделением, т.е. максимальным количеством воды, способным выделиться из цементного раствора в результате процесса седиментации.

Требования к тампонажному камню

Достаточная механическая прочность.

Непроницаемость для бурового раствора, пластовых вод и газа.

Стойкость к коррозионному воздействию пластовых вод.

Сохранение объема при твердении и упрочнении.

Уровень требований к параметрам зависит от цели тампонирования.

Измеряемые характеристики тампонажного камня:

— прочность на изгиб и сжатие;

— объемные изменения при твердении.

Материалы для приготовления тампонажных растворов

на неорганической основе : вяжущие- цементы, гипс, известь;

на органической основе: синтетические смолы, битумы, латексы;

жидкости затворения: пресная вода, минерализованная вода, углеводородные жидкости;

добавки, регулирующие плотность растворов, придания им закупоривающих свойств (наполнители), снижения стоимости;

материалы для регулирования сроков схватывания и реологических характеристик (реагенты).

Утяжелители для тампонажных растворов

Предупреждение осложнений при цементировании достигается регулированием противодавления на пласты, что может быть обеспечено применением тампонажных растворов с увеличенной плотностью. Для этого необходимо повышать плотность дисперсионной среды или твердой фазы. Распространен второй способ, при котором утяжеление достигается:

совместным помолом клинкера и утяжеляющих добавок;

увеличением окиси железа в портландцементе.

Реагенты для регулирования свойств тампонажных растворов

Ускорители сроков схватывания: это в основном электролиты и такие вяжущие, как гипс и глиноземистый цемент. Самый распространенный – хлористый кальций. Хлористый калий, силикат натрия, хлорид натрия, кальцинированная сода и др.

Пластификаторы – применяют для повышения текучести растворов. ССБ, ГКЖ, ПЛС, С-4 и др.

Понизители фильтрации (водоотдачи) – являются стабилизаторами дисперсных систем и поэтому снижают фильтрацию. Бентонитовая глина, ПАА, декстрин, КМЦ, ПВТ-ТР и др.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *