Что такое динамические данные
Динамические структуры данных C++
Сперва давайте разберемся, что это такое и с чем это следует кушать. Динамические структуры данных — это любая структура данных, занимаемый объем памяти которой не является фиксированным. Иными словами, в подобной структуре может храниться как два, пять, двадцать элементов, так и одно большое ничего. Размер подобной структуры ограничен только объемом оперативной памяти компьютера.
Существует несколько разновидностей динамических структур: список, дерево.
Прежде чем переходить к описанию структур, следует запомнить несколько простых определений:
Структура данных Список
Список — это линейная динамическая структура данных, у каждого элемента может быть только один предок и только один потомок. По сути своей это очень похоже на обыкновенный массив, с той лишь разницей, что размер его не имеет ограничений. Списки также подразделяются на несколько
типов.
На базе простого однонаправленного списка могут быть построены такие структуры данных, как очередь (queue) и стек (stack).
Очередь есть ничто иное, как список, операции чтения и добавления элементов в котором подвержены определенным правилам. При этом, при чтении элемента, он удаляется из очереди. Все операции проводятся по принципу «Первый пришел, первый вышел» (FIFO — first in, first out). Таким образом, для чтения в очереди доступна только голова, в то время как добавление проводится только в хвост.
Двусвязный список на языке C++
Рассмотрим пример реализации простейшего двусвязного списка. Этот и последующие примеры кода будут приведены на языке c++. В примере реализованы операции добавления нового элемента в список и вывод элементов на форму.
Элемент списка
Список
Структура данных Дерево
Дерево — несколько более интересная структура. В отличие от списка, у одной записи может быть более одного потомка, но только один предок. Кроме того в дереве явно выделяется только головной элемент, называемый корнем (Root). Среди деревьев также существует разбиение на подтипы.
В свою очередь для бинарных деревьев существует разбиение в зависимости от высоты поддеревьев, информационной части вершин и т.д. (АВЛ-деревья, красно-черные деревья, и др.).
В отличие от списка при обходе дерева может быть применено насколько различных путей:
Бинарное дерево поиска на языке C++
Рассмотрим реализацию простейшего бинарного дерева поиска. В данном примере используется поперечный обход дерева.
Бинарное дерево
Одним из интересных примеров сильно разветвленного дерева является так называемая TRIE-структура или БОР. Подобная структура данных можем быть очень
полезна при создании алгоритма наподобие Т9, потому как в каждой вершине бора содержится всего один символ алфавита или символ конца слова.
Префиксное дерево
При реализации любой динамической структуры средствами языка c++ следует очень внимательно следить за памятью. Наиболее частые ошибки в данном случае регистрируются как «access violation», то есть обращение к не размеченной области памяти. Обычно лечится внимательным изучением трассировки и поиском, где поезд пошел не в тот тоннель.
Ну и на сладкое: рассмотрим пример интерактивного ввода дерева. По клику на мышку. Для этого незначительно расширим реализацию простого бинарного дерева. Единственное, что нам понадобится на форме — Image.
Динамические структуры данных С++. Заключение
Удачных вам экспериментов с динамическими структурами, коллеги.
Кроме того, рекомендую прочитать статью Set C# | Структура данных Множество C#. А также подписывайтесь на группу ВКонтакте, Telegram и YouTube-канал. Там еще больше полезного и интересного для программистов.
Динамические структуры данных
Цель лекции: изучить понятия, классификацию, объявления и особенности доступа к данным в динамических структурах, работу с памятью при использовании структур в программе, научиться решать задачи с использованием динамических структур в языке C++.
Если до начала работы с данными невозможно определить, сколько памяти потребуется для их хранения, память следует распределять во время выполнения программы по мере необходимости отдельными блоками. Блоки связываются друг с другом с помощью указателей. Такой способ организации данных называется динамической структурой данных, поскольку она размещается в динамической памяти и ее размер изменяется во время выполнения программы.
Динамические структуры данных – это структуры данных, память под которые выделяется и освобождается по мере необходимости.
Динамическая структура данных характеризуется тем что:
Каждой динамической структуре данных сопоставляется статическая переменная типа указатель (ее значение – адрес этого объекта), посредством которой осуществляется доступ к динамической структуре.
Сами динамические величины не требуют описания в программе, поскольку во время компиляции память под них не выделяется. Во время компиляции память выделяется только под статические величины. Указатели – это статические величины, поэтому они требуют описания.
Необходимость в динамических структурах данных обычно возникает в следующих случаях.
Динамические структуры, по определению, характеризуются отсутствием физической смежности элементов структуры в памяти, непостоянством и непредсказуемостью размера (числа элементов) структуры в процессе ее обработки.
Поскольку элементы динамической структуры располагаются по непредсказуемым адресам памяти, адрес элемента такой структуры не может быть вычислен из адреса начального или предыдущего элемента. Для установления связи между элементами динамической структуры используются указатели, через которые устанавливаются явные связи между элементами. Такое представление данных в памяти называется связным.
Достоинства связного представления данных – в возможности обеспечения значительной изменчивости структур:
Вместе с тем, связное представление не лишено и недостатков, основными из которых являются следующие:
Последний недостаток является наиболее серьезным и именно им ограничивается применимость связного представления данных. Если в смежном представлении данных для вычисления адреса любого элемента нам во всех случаях достаточно было номера элемента и информации, содержащейся в дескрипторе структуры, то для связного представления адрес элемента не может быть вычислен из исходных данных. Дескриптор связной структуры содержит один или несколько указателей, позволяющих войти в структуру, далее поиск требуемого элемента выполняется следованием по цепочке указателей от элемента к элементу. Поэтому связное представление практически никогда не применяется в задачах, где логическая структура данных имеет вид вектора или массива – с доступом по номеру элемента, но часто применяется в задачах, где логическая структура требует другой исходной информации доступа (таблицы, списки, деревья и т.д.).
Порядок работы с динамическими структурами данных следующий:
Классификация динамических структур данных
Они отличаются способом связи отдельных элементов и/или допустимыми операциями. Динамическая структура может занимать несмежные участки оперативной памяти.
Динамические структуры широко применяют и для более эффективной работы с данными, размер которых известен, особенно для решения задач сортировки.
Динамические данные.
в Базы данных 20.01.2018 0 207 Просмотров
“Данные” в области компьютерных наук – это термин, относящийся к информации, которая хранится в электронном виде в базе данных. “Динамическое” означает изменение, а когда слово употребляется для описания данных — как в “динамических данных” — это относится к электронной информации, которая меняется по мере необходимости или при желании. Есть много причин, почему данные должны быть динамичными. Например, большому веб-сайту электронной коммерции, который предлагает много различных продуктов для продажи, почти всегда надо отслеживать инвентаризацию. Информация о продукте хранится в базе данных и извлекаются и обновляется в реальном времени.
Если один посетитель купит последний продукт, у поступит уведомление “продано”, то это может быть запрограммировано для отображения для последующих посетителей. Электронная информация будет отображаться и отражать изменения в базе данных, которые были сделаны в результате закупочной деятельности. Это яркий пример динамических данных в реальном мире.
Большинство веб-сайтов построены на основе базы данных или просто данных. Это означает, что содержание таких сайтов создаётся на лету, основываясь на постоянно меняющихся условиях. Например, набрав в интернете адрес сайта и попав на главную страницу – это состояние, для которого веб-разработчик может запрограммировать отображение динамических данных.
Разработчику может понадобиться контент главной страницы, который будет отображаться в случайном порядке, так что страница каждый раз будет разной. Он или она может также, возможно, захотеть сделать что-то вроде показа последнего контента добавленного в базу данных или даже позволить посетителям настраивать, в зависимости от степени удовлетворенности посетителей. Личные предпочтения каждого посетителя будут определять, как будет отображаться содержимое и как этот контент будет появляться для них. Это ещё один реальный пример генерации динамических данных.
Для достижения динамических данных веб-разработчики используют языки программирования для кодирования скриптов. Если сайт управляется данными, разработчику предстоит работать с базой данных. Разработчик может написать запросы, чтобы их можно было добавлять, обновлять, удалять и объединять информацию в базе данных для создания динамических данных, которые будут отображаться для всех возможных сценариев.
База данных – это не всегда то, что стоит за динамическими данными. Время меняется каждую минуту, а дата меняется каждый день. Простые скрипты могут быть написаны для того чтобы достигнуть отображения текущего времени и даты на сайте, которые состоят из статичных или неизменяемых данных.
Динамические структуры данных
Динамические структуры данных
Объект данных обладает динамической структурой, если его размер изменяется в процессе выполнения программы или он потенциально бесконечен.
Классификация структур данных
Используемые в программировании данные можно разделить на две большие группы:
Данные статической структуры – это данные, взаиморасположение и взаимосвязи элементов которых всегда остаются постоянными.
Данные динамической структуры – это данные, внутреннее строение которых формируется по какому-либо закону, но количество элементов, их взаиморасположение и взаимосвязи могут динамически изменяться во время выполнения программы, согласно закону формирования.
Данные динамической структуры:
К данным динамической структуры относят файлы, несвязанные и связанные динамические данные.
Заметим, что файлы в данной классификации отнесены к динамическим структурам данных. Это сделано исходя из вышеприведенного определения. Хотя удаление и вставка элементов в середину файла не допускается, зато длина файла в процессе работы программы может изменяться – увеличиваться или уменьшаться до нуля. А это уже динамическое свойство файла как структуры данных.
Статические и динамические переменные в Паскале
В Паскале одной из задач описания типов является то, чтобы зафиксировать на время выполнения программы размер значений, а, следовательно, и размер выделяемой области памяти для них. Описанные таким образом переменные называются статическими.
Все переменные, объявленные в программе, размещаются в одной непрерывной области оперативной памяти – сегмент данных. Длина сегмента данных определяется архитектурой микропроцессора и составляет обычно 65536 байт.
Однако порой заранее не известны не только размеры значений, но и сам факт существования значения той или иной переменной. Для результата переменной приходится отводить память в расчете на самое большое значение, что приводит к нерациональному использованию памяти. Особенно это затруднительно при обработке больших массивов данных.
Предположим, например, что у вас есть программа, требующая массива в 400 строк по 100 символов каждая. Для этого массива требуется примерно 40К, что меньше максимума в 64К. Если остальные ваши переменные помещаются в оставшиеся 24К, массив такого объема проблемы не представляет.
Но что если вам нужно два таких массива? Это потребовало бы 80К, и 64К сегмента данных не хватит.
Другим общим примером является сортировка. Обычно когда вы сортируете большой объем данных, то делаете копию массива, сортируете копию, а затем записываете отсортированные данные обратно в исходный массив. Это сохраняет целостность ваших данных, но требует также наличия во время сортировки двух копий данных.
С другой стороны объем памяти компьютера достаточно велик для успешного решения задач с большой размерностью данных. Выходом из положения может служить использование так называемой динамической памяти.
Динамическая память (ДП) – это оперативная память ПК, предоставляемая программе при ее работе, за вычетом сегмента данных (64 Кб), стека (16 Кб) и собственно тела программы. Размер динамической памяти можно варьировать. По умолчанию ДП – вся доступная память ПК.
ДП – это фактически единственная возможность обработки массивов данных большой размерности. Многие практические задачи трудно или невозможно решить без использования ДП. Например, при разработке САПР статическое распределение памяти невозможно, т. к. размерность математических моделей в разных проектах может значительно различаться.
И статические и динамические переменные вызываются по их адресам. Без адреса не получить доступа к нужной ячейке памяти, но при использовании статических переменных, адрес непосредственно не указывается. Обращение осуществляется по имени. Компилятор размещает переменные в памяти и подставляет нужные адреса в коды команд.
Адресация динамических переменных осуществляется через указатели. Их значения определяют адрес объекта.
Для работы с динамическими переменными в программе должны быть выполнены следующие действия:
· Выделение памяти под динамическую переменную;
· Освобождение памяти после использования динамической переменной.
Программист должен сам резервировать место, определять значение указателей, освобождать ДП.
Вместо любой статической переменной можно использовать динамическую, но без реальной необходимости этого делать не стоит.
Для работы с динамическими программными объектами в Паскале предусмотрен ссылочный тип или тип указателей. В переменной ссылочного типа хранится ссылка на программный объект (адрес объекта).
Указатель – это переменная, которая в качестве своего значения содержит адрес байта памяти.
Указатель, связанный с некоторым определенным типом данных, называют типизированным указателем. Его описание имеет вид:
Type A= array [1..100] of integer;
Указатель, не связанный с каким-либо конкретным типом данных, называется нетипизированным указателем. Для описания нетипизированного указателя в Паскале существует стандартный тип pointer. Описание такого указателя имеет вид:
С помощью нетипизированных указателей удобно динамически размещать данные, структура и тип которых меняются в ходе выполнения программы.
Значения указателей – адреса переменных в памяти. Адрес занимает четыре байта и хранится в виде двух слов, одно из которых определяет сегмент, второе – смещение.
Следовало бы ожидать, что значение одного указателя можно передать другому. На самом деле можно передавать значения только между указателями, связанными с одним типом данных. Указатели на различные типы данных имеют различный тип, причем эти типы несовместимы.
Однако это ограничение не распространяется на нетипизированный указатель. В программе допустимы будут следующие действия:
Выделение и освобождение динамической памяти
Вся ДП рассматривается как сплошной массив байтов, который называется кучей.
Расположение кучи в памяти ПК.
Существуют стандартные переменные, в которых хранятся значения адресов начала, конца и текущей границы кучи:
Heaporg – начало кучи;
Heapend – конец кучи;
Heapptr – текущая граница незанятой ДП.
Выделение памяти под динамическую переменную осуществляется процедурой:
В результате обращения к этой процедуре указатель получает значение, соответствующее адресу в динамической памяти, начиная с которого можно разместить данные.
Графически действие процедуры new можно изобразить так:
Освобождение динамической памяти осуществляется процедурой:
Следует помнить, что повторное применение процедуры dispose к свободному указателю может привести к ошибке.
Процедура dispose освобождает память, занятую динамической переменной. При этом значение указателя становится неопределенным.
Любые действия над указателем в программе располагаются между процедурами new и dispose.
При использовании динамически распределяемых переменных часто возникает общая проблема, называемая утечкой динамической памяти. Утечка памяти – это ситуация, когда пространство выделяется в динамически распределяемой памяти и затем теряется – по каким-то причинам ваш указатель не указывает больше на распределенную область, так что вы не можете освободить пространство.
Общей причиной утечек памяти является переприсваивание динамических переменных без освобождения предыдущих. Простейшим случаем является следующий:
var IntPointer: ^Integer;
При первом вызове New в динамически распределяемой памяти выделяется 2 байта, и на них устанавливается указатель IntPointer. Второй вызов New выделяет другие 2 байта, и IntPointer устанавливается на них. Теперь у вас нет указателя, ссылающегося на первые 2 байта, поэтому вы не можете их освободить. В программе эти байты будут потеряны.
Присваивание значений указателю
Для инициализации указателей существует несколько возможностей.
1) процедура new отводит блок памяти в области динамических переменных и сохраняет адрес этой области в указателе;
2) специальная операция @ ориентирует переменную-указатель на область памяти, содержащую уже существующую переменную. Эту операцию можно применять для ориентации на статическую и динамическую переменную.
Например,
type A= array [0..99] of char;
var X: array [0..49] of integer;
pA: ^A; <указатель на массив символов>
Объявлены переменные разных типов: массив из 50 целых чисел и указатель на массив символов. Чтобы указатель pA указывал на массив X, надо присвоить ему адрес X
3) Существует единственная константа ссылочного типа nil, которая обозначает «пустой» адрес. Ее можно присваивать любому указателю.
4) Переменной-указателю можно присвоить значение другого указателя того же типа. Используя указательный тип pointer как промежуточный, можно присвоить значение одного указателя другому при несовпадении типов.
Для указателей определены только операции присваивания и проверки на равенство и неравенство. В Паскале запрещаются любые арифметические операции с указателями, их ввод-вывод и сравнение на больше-меньше.
Еще раз повторим правила присваивания указателей:
· любому указателю можно присвоить стандартную константу nil, которая означает, что указатель не ссылается на какую-либо конкретную ячейку памяти;
· указатели стандартного типа pointer совместимы с указателями любого типа;
· указателю на конкретный тип данных можно присвоить только значение указателя того же или стандартного типа данных.
Указатели можно сравнивать на равенство и неравенство, например:
В Паскале определены стандартные функции для работы с указателями:
· addr(x) – тип результата pointer, возвращает адрес x (аналогично операции @), где x – имя переменной или подпрограммы;
· seg(x) – тип результата word, возвращает адрес сегмента для x;
· ofs(x) – тип результата word, возвращает смещение для x;
· ptr(seg, ofs) – тип результата pointer, по заданному сегменту и смещению формирует адрес типа pointer.
Присваивание значений динамическим переменным
После того, как динамическая переменная объявлена, ей можно присваивать значения, изменять их, использовать в выражениях и т. д. Для этого используют следующее обращение: переменная_указатель^. Такое обращение называется операция разадресации (разыменования). Таким образом происходит обращение к значению, на которое указывает указатель, т. е. к данным. Если же за переменной_указателем значок ^ не стоит, то имеется в виду адрес, по которому расположены данные.
Динамически размещенные данные можно использовать в любом месте программы, где допустимо использование выражений соответствующего типа.
Недопустимо использовать выражения, подобные следующим:
Вещественная переменная R^:= sqr(R) аргумент – адрес.
Рассмотрим пример работы с указателями:
Var P, Q: ^integer;
Линейные списки (однонаправленные цепочки).
Списком называется структура данных, каждый элемент которой посредством указателя связывается со следующим элементом.
Каждый элемент связанного списка, во-первых, хранит какую-либо информацию, во-вторых, указывает на следующий за ним элемент. Так как элемент списка хранит разнотипные части (хранимая информация и указатель), то его естественно представить записью, в которой в одном поле располагается объект, а в другом – указатель на следующую запись такого же типа. Такая запись называется звеном, а структура из таких записей называется списком или цепочкой.
Лишь на самый первый элемент списка (голову) имеется отдельный указатель. Последний элемент списка никуда не указывает.
В Паскале существует основное правило: перед использованием какого-либо объекта он должен быть описан. Исключение сделано лишь для указателей, которые могут ссылаться на еще не объявленный тип.
Чтобы список существовал, надо определить указатель на его начало.
Var u, x: ukazat;
Создадим первый элемент списка:
Продолжим формирование списка. Для этого нужно добавить элемент либо в конец списка, либо в голову.
А) Добавим элемент в голову списка. Для этого необходимо выполнить последовательность действий:
1) получить память для нового элемента;
2) поместить туда информацию;
3) присоединить элемент к голове списка.
Б) Добавление элемента в конец списка. Для этого введем вспомогательную переменную, которая будет хранить адрес последнего элемента. Пусть это будет указатель с именем hv (хвост).
x:= hv;
Удаление элемента из списка
А) Удаление первого элемента. Для этого во вспомогательном указателе запомним первый элемент, указатель на голову списка переключим на следующий элемент списка и освободим область динамической памяти, на которую указывает вспомогательный указатель.
x:= u;
Б) Удаление элемента из середины списка. Для этого нужно знать адреса удаляемого элемента и элемента, стоящего перед ним. Допустим, что digit – это значение удаляемого элемента.
while (x<> nil) and (x^.inf<> digit) do
В) Удаление из конца списка. Для этого нужно найти предпоследний элемент.
while x^.next<> nil do
Прохождение списка. Важно уметь перебирать элементы списка, выполняя над ними какую-либо операцию. Пусть необходимо найти сумму элементов списка.
Динамические объекты сложной структуры
Использование однонаправленных списков при решении ряда задач может вызвать определенные трудности. Дело в том, что по однонаправленному списку можно двигаться только в одном направлении, от головы списка к последнему звену. Между тем нередко возникает необходимость произвести какую-либо операцию с элементом, предшествующим элементу с заданным свойством. Однако после нахождения элемента с данным свойством в однонаправленном списке у нас нет возможности получить удобный и быстрый способ доступа к предыдущему элементу.
Для устранения этого неудобства добавим в каждое звено списка еще одно поле, значением которого будет ссылка на предыдущее звено.
Динамическая структура, состоящая из звеньев такого типа, называется двунаправленным списком, который схематично можно изобразить так:
Наличие в каждом звене двунаправленного списка ссылки как на следующее, так и на предыдущее звено позволяет от каждого звена двигаться по списку в любом направлении. По аналогии с однонаправленным списком здесь есть заглавное звено. В поле Pred этого звена фигурирует пустая ссылка nil, свидетельствующая, что у заглавного звена нет предыдущего (так же, как у последнего нет следующего).
В программировании двунаправленные списки часто обобщают следующим образом: в качестве значения поля Next последнего звена принимают ссылку на заглавное звено, а в качестве значения поля Pred заглавного звена – ссылку на последнее звено:
Как видно, здесь список замыкается в своеобразное «кольцо»: двигаясь по ссылкам, можно от последнего звена переходить к заглавному звену, а при движении в обратном направлении – от заглавного звена переходить к последнему. Списки подобного рода называют кольцевыми списками.
Существуют различные методы использования динамических списков:
1) Стек – особый вид списка, обращение к которому идет только через указатель на первый элемент. Если в стек нужно добавить элемент, то он добавляется впереди первого элемента, при этом указатель на начало стека переключается на новый элемент. Алгоритм работы со стеком характеризуется правилом: «последним пришел – первым вышел».
2) Очередь – это вид списка, имеющего два указателя на первый и последний элемент цепочки. Новые элементы записываются вслед за последним, а выборка элементов идет с первого. Этот алгоритм типа «первым пришел – первым вышел».
3) Возможно организовать списки с произвольным доступом к элементам. В этом случае необходим дополнительный указатель на текущий элемент.