Что такое дифракция фраунгофера
Что такое дифракция фраунгофера
§2 Дифракция Фраунгофера на одной щели
Дифракция Фраунгофера (или дифракция плоских световых волн, или дифракция в параллельных лучах) наблюдается в том случае, когда источник света и точка наблюдения бесконечно удалены от препятствия, вызвавшего дифракцию.
Для наблюдения дифракции Фраунгофера необходимо точечный источник поместить в фокусе собирающей линзы, а дифракционную картину можно исследовать в фокальной плоскости второй собирающей линзы, установленной за препятствием.
Разобьём волновую поверхность на участке щели М N на зоны Френеля, имеющие вид полос, параллельных ребру М щели. Ширина каждой полосы выбирается так, чтобы разность хода от краев этих зон была равна λ/2, т.е. всего на ширине щели уложится зон. Т.к. свет на щель падает нормально, то плоскость щели совпадает с фронтом волны, следовательно, все точки фронта в плоскости щели будут колебаться синфазно. Амплитуды вторичных волн в плоскости щели будут равны, т.к. выбранные зоны Френеля имеют одинаковые площади и одинаково наклонены к направлению наблюдения.
Число зон Френеля укладывающихся на ширине щели, зависит от угла φ.
Условие минимума при дифракции Френеля:
Если число зон Френеля четное
то в т. Р наблюдается дифракционный минимум.
Если число зон Френеля нечетное
то наблюдается дифракционный максимум.
При φ’=0, Δ = 0 в щели укладывается одна зона Френеля и, следовательно, в т. Р главный (центральный) максимум нулевого порядка.
§5 Дифракционная решетка.
Дифракционная решетка представляет собой совокупность большого числа N одинаковых по ширине и параллельных друг другу щелей, разделенных непрозрачными промежутками, также одинаковыми по ширине
Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция. Т.к. щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, будут для данного направления φ одинаковы в пределах всей дифракционной решетки.
(1)
В направлениях, в которых наблюдается минимум для одной щели, будут минимумы и в случае N щелей, т.е. условие главных минимумов дифракционной решетки будет аналогично условию минимумов для щели:
(2)
— условие главных минимумов.
Условие максимумов; те случаи φ, которые удовлетворяют максимумам для одной щели, могут быть либо максимумами, либо минимумами, т.к. всё зависит от разности хода между лучами. Условие главных максимумов:
(3)
Эти максимумы будут расположены симметрично относительно центрального (нулевого k = 0) максимума.
Условие дополнительных максимумов:
Между главными максимума будут располагаться ( N — 1) дополнительных минимумов.
Условие дополнительных минимумов:
Таким образом, дифракционная картина при дифракции на дифракционной решетке будет иметь вид:
Дифракция Фраунгофера на дифракционной решетке
Дифракция Фраунгофера от щели. Дифракционная решетка.
Дифракция Фраунгофера. Дифракция Фраунгофера от бесконечно длинной щели.
Дифракция Фраунгофера — случай дифракции, при котором дифракционная картина наблюдается на значительном расстоянии от отверстия или преграды.
Дифракция Фраунгофера на одиночной щели Параллельный пучок монохроматического света падает нормально на непрозрачную преграду, (рисунок 6.4.1), в котором прорезана узкая щель ВС, имеющая постоянную ширину и длину
. Условие
позволяет рассматривать эту щель, как узкую щель бесконечной длины. В соответствии с принципом Гюйгенса – Френеля точки щели являются вторичными источниками волн, колеблющимися в одной фазе, так как плоскость щели совпадает с фронтом падающей волны. При дифракции Фраунгофера на одной щели для дифракционной картины на экране наблюдений имеем: условие минимума:
; условие максимума:
, где
Угловая ширина центрального максимума,
, равна
Рисунок 6.4.1. – Установка получения дифракции Фраунгофера на одной щели.
47. Дифракция Фраунгофера на дифракционной решетке.
Дифракция Фраунгофера на дифракционной решетке
Рисунок 6.4.2. – Схема установки для дифракции Фраунгофера на дифракционной решетке.
Дифракционной решеткой называется совокупность большого числа узких одинаковых, отстоящих друг от друга на одно и то же расстояние, щелей (рисунок 6.4.2). Расстояние d между серединами соседних щелей называется периодом решетки. Период решетки равен сумме ширины щели а и расстояния между щелями b, т.е. . Решетка также характеризуется числом штрихов на единицу длины
, где N – полное число штрихов в решетке,
– длина решетки.
48. Дифракция на пространственной решетке. Формула Вульфа-Брэггов.
Пространственной, или трехмерной, дифракционной решеткой называется такая оптически неоднородная среда, в которой неоднородности периодически повторяются при изменении всех трех пространственных координат.
Условия прохождения света через обычную дифракционную решетку периодически изменяются только в одном направлении, перпендикулярном к оси щели. Поэтому такую решетку называют одномерной.
Простейшую двумерную решетку можно получить, сложив две одномерные решетки так, чтобы их щели были взаимно перпендикулярны. Главные максимумы двумерной решетки должны одновременно удовлетворять условию максимума для каждой из решеток:
и
,
Дифракционная картина представляет собой систему светлых пятен, расположенных в определенном порядке на плоскости экрана. Размеры этих пятен уменьшаются при увеличении числа щелей, а яркость возрастает. Такая же картина получается, если на одно стекло нанести ряд взаимно перпендикулярных полос.
Дифракция наблюдается также и на трехмерных структурах. Всякий монокристалл состоит из упорядоченно расположенных атомов (ионов), образующих пространственную трехмерную решетку (естественная пространственная решетка).
Период атомной решетки порядка ; длина волны света
. При таких условиях никаких дифракционных явлений на атомных дифракционных решетках с видимым светом не будет. Нужно излучение с меньшей длиной волны, например рентгеновское. Для рентгеновских лучей кристаллы твердых тел являются идеальными дифракционными решетками.
В 1913 г. русский физик Г.В. Вульф и английские ученые отец и сын Генри и Лоуренс Брэгги, независимо друг от друга, предложили простой метод расчета дифракции рентгеновских лучей в кристаллах. Они полагали, что дифракцию рентгеновских лучей можно рассматривать как результат отражения рентгеновских лучей от плоскостей кристалла. Это отражение, в отличие от обычного, происходит лишь при таких условиях падения лучей на кристалл, которые соответствуют максимуму интерференции для лучей, отраженных от разных плоскостей.
Направим пучок рентгеновских лучей 1 и 2 на две соседние плоскости кристалла и
(рис. 9.9).
Абсолютный показатель преломления всех веществ для рентгеновских лучей равен 1. Поэтому оптическая разность хода между лучами и
,
где θ – угол между падающими и отраженными лучами и плоскостью кристалла (угол скольжения). Интерференционные максимумы должны удовлетворять условию Вульфа–Брэггов:
Из формулы (9.5.1) видно, что дифракция будет наблюдаться лишь при . Т. е. при условии
будут отсутствовать дифракционные максимумы. Поэтому условие
называют условием оптической однородности кристалла.
Из (9.5.1) следует, что наблюдение дифракционных максимумов возможно только при определенных соотношениях между λ и θ. Этот результат лежит в основе спектрального анализарентгеновского излучения, так как длину волны определяют по известным d, m и измеренному на опыте углу
Что такое дифракция фраунгофера
До сих пор мы рассматривали дифракцию сферических волн, изучая дифракционную картину в точке наблюдения, лежащей на конечном расстоянии от препятствия (дифракция Френеля).
Тип дифракции, при котором дифракционная картина образуется параллельными пучками, называется дифракцией Фраунгофера. Параллельные лучи проявятся, если источник и экран находятся в бесконечности. Практически используется две линзы: в фокусе одной – источник света, а в фокусе другой – экран.
Хотя принципиально дифракция Фраунгофера не отличается от дифракции Френеля, но практически именно этот случай важен, так как именно этот тип дифракции используется во многих дифракционных приборах (дифракционная решетка, например). Кроме того, здесь математический расчет проще и позволяет решать количественную задачу до конца (дифракцию Френеля мы рассматривали качественно).
Дифракция света на одной щели
Пусть в непрерывном экране есть щель: ширина щели , длина щели (перпендикулярно плоскости листа)
(рис. 9.5). На щель падают параллельные лучи света. Для облегчения расчета считаем, что в плоскости щели АВ амплитуды и фазы падающих волн одинаковы.
Разобьем щель на зоны Френеля так, чтобы оптическая разность хода между лучами, идущими от соседних зон, была равна .
Если на ширине щели укладывается четное число таких зон, то в точке (побочный фокус линзы) будет наблюдаться минимум интенсивности, а если нечетное число зон, то максимум интенсивности:
Картина будет симметричной относительно главного фокуса точки . Знак плюс и минус соответствует углам, отсчитанным в ту или иную сторону.
Интенсивность света . Как видно из рис. 9.5, центральный максимум по интенсивности превосходит все остальные.
Рассмотрим влияние ширины щели.
Т.к. условие минимума имеет вид , отсюда
Из этой формулы видно, что с увеличением ширины щели b положения минимумов сдвигаются к центру, центральный максимум становится резче.
При уменьшении ширины щели b вся картина расширяется, расплывается, центральная полоска тоже расширяется, захватывая все большую часть экрана, а интенсивность ее уменьшается.
Дифракция света на дифракционной решетке
Одномерная дифракционная решетка представляет собой систему из большого числа N одинаковых по ширине и параллельных друг другу щелей в экране, разделенных также одинаковыми по ширине непрозрачными промежутками (рис. 9.6).
Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.
Обозначим: b – ширина щели решетки; а – расстояние между щелями; – постоянная дифракционной решетки.
Линза собирает все лучи, падающие на нее под одним углом и не вносит никакой дополнительной разности хода.
Рис. 9.6 | Рис. 9.7 |
Пусть луч 1 падает на линзу под углом φ (угол дифракции). Световая волна, идущая под этим углом от щели, создает в точке максимум интенсивности. Второй луч, идущий от соседней щели под этим же углом φ, придет в ту же точку
. Оба эти луча придут в фазе и будут усиливать друг друга, если оптическая разность хода будет равна mλ:
Условие максимума для дифракционной решетки будет иметь вид:
Максимумы, соответствующие этому условию, называются главными максимумами. Значение величины m, соответствующее тому или иному максимуму называется порядком дифракционного максимума.
В точке F0 всегда будет наблюдаться нулевой или центральный дифракционный максимум.
Так как свет, падающий на экран, проходит только через щели в дифракционной решетке, то условие минимума для щели и будет условием главного дифракционного минимума для решетки:
Конечно, при большом числе щелей, в точки экрана, соответствующие главным дифракционным минимумам, от некоторых щелей свет будет попадать и там будут образовываться побочные дифракционные максимумы и минимумы (рис. 9.7). Но их интенсивность, по сравнению с главными максимумами, мала (≈ 1/22).
При условии ,
волны, посылаемые каждой щелью, будут гаситься в результате интерференции и появятся дополнительные минимумы.
Количество щелей определяет световой поток через решетку. Чем их больше, тем большая энергия переносится волной через нее. Кроме того, чем больше число щелей, тем больше дополнительных минимумов помещается между соседними максимумами. Следовательно, максимумы будут более узкими и более интенсивными (рис. 9.8).
Из (9.4.3) видно, что угол дифракции пропорционален длине волны λ. Значит, дифракционная решетка разлагает белый свет на составляющие, причем отклоняет свет с большей длиной волны (красный) на больший угол (в отличие от призмы, где все происходит наоборот).
Это свойство дифракционных решеток используется для определения спектрального состава света (дифракционные спектрографы, спектроскопы, спектрометры).