Что такое дата деформации
Что такое деформация? Виды деформации
С процессом деформации человек начинает сталкиваться с первых дней своей жизни. Она позволяет нам чувствовать прикосновения. Ярким примером деформации из детства можно вспомнить пластилин. Существуют разные виды деформации. Физика рассматривает и изучает каждый из них. Для начала введём определение самого процесса, а затем постепенно рассмотрим возможные классификации и виды деформации, которые могут возникать в твёрдых объектах.
Определение
Как и любую другую физическую величину, деформацию можно измерить. В простейшем случае используется следующая формула:
Классификация
Неупругие (необратимые) деформации, как вы понимаете, являются противоположным процессом. Любая сила, которую приложили к телу, оставляет следы/деформацию. К этому типу воздействия относится и деформация металлов. При таком типе изменения формы зачастую могут меняться и другие свойства материала. Например, при деформации, вызванной охлаждением, может увеличиться прочность изделия.
Сдвиг
Как уже было сказано, существуют различные виды деформации. Они подразделяются по характеру изменения формы тела. В механике сдвигом называют такое изменение формы, при котором нижняя часть бруса закреплена неподвижно, а сила прикладывается касательно к верхней поверхности. Относительная деформация сдвига определяется по следующей формуле:
Кручение
Если виды механических деформаций разделяли бы по сложности вычислений, то этот занял бы первое место. Такой вид изменения формы тела возникает при воздействии на него двух сил. При этом смещение любой точки тела происходит перпендикулярно к оси воздействующих сил. Говоря о таком типе деформации, следует упомянуть следующие величины, подлежащие вычислению:
Формула выглядит так:
Другая величина, требующая вычисления, это относительный угол закручивания:
Q=Ф/Л (значения берутся из предыдущей формулы).
Изгиб
Растяжение-сжатие
Различные виды деформации, физика которых достаточно хорошо изучена, редко используются для решения различных задач. Однако при обучении в школе один из них зачастую применяется для определения уровня знаний учеников. Кроме этого названия, у данного типа деформации также присутствует другое, которое звучит так: линейное напряженное состояние.
Закон Гука
Основной закон, рассматриваемый при деформации тела. Согласно ему, деформация, возникающая в теле, прямо пропорциональна воздействующей силе. Единственная оговорка заключается в том, что он применим только при малых значениях деформации, поскольку при больших значениях и превышении предела пропорциональности эта связь становится нелинейной. В простейшем случае (для тонкого растяжимого бруска) закон Гука имеет следующий вид:
Если с двумя величинами всё понятно, то коэффициент (к) зависит от нескольких факторов, таких как материал изделия и его размеры. Его значение также можно вычислить по следующей формуле:
Выводы
На самом деле существует множество способов вычисления деформации предмета. Различные виды деформации используют разные коэффициенты. Виды деформации отличаются не только по форме результата, но и по силам, воздействующим на объект, а для вычислений вам потребуются недюжинные усилия и знания в области физики. Надеемся, что эта статья поможет вам разобраться в понимании базовых физических законов, а также позволит продвинуться немного дальше в изучении этого раздела физики.
Деформация
Деформа́ция (от лат. deformatio — «искажение») — изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.
Причины отказа механики |
---|
Прогиб |
Коррозия |
Пластическая деформация |
Усталость материала |
Удар |
Трещина |
Плавление |
Износ |
Деформации разделяют на обратимые (упругие) и необратимые (пластические, ползучести). Упругие деформации исчезают после окончания действия приложенных сил, а необратимые — остаются. В основе упругих деформаций лежат обратимые смещения атомов металлов от положения равновесия(другими словами, атомы не выходят за пределы межатомных связей); в основе необратимых — необратимые перемещения атомов на значительные расстояния от исходных положений равновесия (то есть выход за рамки межатомных связей, после снятия нагрузки переориентация в новое равновесное положение).
Пластические деформации — это необратимые деформации, вызванные изменением напряжений. Деформации ползучести — это необратимые деформации, происходящие с течением времени. Способность веществ пластически деформироваться называется пластичностью. При пластической деформации металла одновременно с изменением формы меняется ряд свойств — в частности, при холодном деформировании повышается прочность.
Содержание
Виды деформации
Наиболее простые виды деформации тела в целом:
В большинстве практических случаев наблюдаемая деформация представляет собой совмещение нескольких одновременных простых деформаций. В конечном счёте, однако, любую деформацию можно свести к двум наиболее простым: растяжению (или сжатию) и сдвигу.
Изучение деформации
Деформация физического тела вполне определяется, если известен вектор перемещения каждой его точки.
Деформация твёрдых тел в связи со структурными особенностями последних изучается физикой твёрдого тела, а движения и напряжения в деформируемых твёрдых телах — теорией упругости и пластичности. У жидкостей и газов, частицы которых легкоподвижны, исследование деформации заменяется изучением мгновенного распределения скоростей.
Причины возникновения деформации твёрдых тел
Деформация твёрдого тела может явиться следствием фазовых превращений, связанных с изменением объёма, теплового расширения, намагничивания (магнитострикция), появления электрического заряда (пьезоэлектрический эффект) или же результатом действия внешних сил.
Упругая и пластическая деформация
Деформация называется упругой, если она исчезает после удаления вызвавшей её нагрузки, и пластической, если после снятия нагрузки она не исчезает (во всяком случае, полностью). Все реальные твёрдые тела при деформации в большей или меньшей мере обладают пластическими свойствами. При некоторых условиях пластическими свойствами тел можно пренебречь, как это и делается в теории упругости. Твёрдое тело с достаточной точностью можно считать упругим, то есть не обнаруживающим заметных пластических деформаций, пока нагрузка не превысит некоторого предела (предел упругости).
Природа пластической деформации может быть различной в зависимости от температуры, продолжительности действия нагрузки или скорости деформации. При неизменной нагрузке, приложенной к телу, деформация изменяется со временем; это явление называется ползучестью. С возрастанием температуры скорость ползучести увеличивается. Частными случаями ползучести являются релаксация и упругое последействие. Одной из теорий, объясняющих механизм пластической деформации, является теория дислокаций в кристаллах.
Сплошность
В теории упругости и пластичности тела рассматриваются как «сплошные». Сплошность (то есть способность заполнять весь объём, занимаемый материалом тела, без всяких пустот) является одним из основных свойств, приписываемых реальным телам. Понятие сплошности относится также к элементарным объёмам, на которые можно мысленно разбить тело. Изменение расстояния между центрами каждых двух смежных бесконечно малых объёмов у тела, не испытывающего разрывов, должно быть малым по сравнению с исходной величиной этого расстояния.
Простейшая элементарная деформация
Простейшей элементарной деформацией является относительное удлинение некоторого элемента:
На практике чаще встречаются малые деформации — такие, что .
Измерение деформации
Измерение деформации производится либо в процессе испытания материалов с целью определения их механических свойств, либо при исследовании сооружения в натуре или на моделях для суждения о величинах напряжений. Упругие деформации весьма малы, и их измерение требует высокой точности. Наиболее распространённый метод исследования деформации — с помощью тензометров. Кроме того, широко применяются тензодатчики сопротивления, поляризационно-оптический метод исследования напряжения, рентгеноструктурный анализ. Для суждения о местных пластических деформациях применяют накатку на поверхности изделия сетки, покрытие поверхности легко растрескивающимся лаком или хрупкими прокладками и т. д.
Примечания
Литература
См. также
Ссылки
Полезное
Смотреть что такое «Деформация» в других словарях:
деформация — деформация: Искажение формы куска мыла по сравнению с предусмотренной в техническом документе. Источник: ГОСТ 28546 2002: Мыло туалетное твердое. Общие технические условия оригинал документа Де … Словарь-справочник терминов нормативно-технической документации
ДЕФОРМАЦИЯ — (фр.) Уродливость; изменение формы. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ДЕФОРМАЦИЯ [лат. deformatio искажение] изменение формы и размеров тела под действием внешних сил. Словарь иностранных слов. Комлев … Словарь иностранных слов русского языка
ДЕФОРМАЦИЯ — (от латинского deformation искажение), изменение взаимного расположения частиц вещества, обусловленное какими либо внешними или внутренними причинами. Наиболее простые виды деформации твердого тела: растяжение, сжатие, сдвиг, изгиб, кручение.… … Современная энциклопедия
Деформация — – изменение формы и/или размеров тела под влиянием внешних сил и разного рода воздействий (изменение температуры и влажности, осадка опор и т. д.); в сопротивлении материалов и теории упругости – количественная мера изменения размеров … Энциклопедия терминов, определений и пояснений строительных материалов
Деформация — (от латинского deformation искажение), изменение взаимного расположения частиц вещества, обусловленное какими либо внешними или внутренними причинами. Наиболее простые виды деформации твердого тела: растяжение, сжатие, сдвиг, изгиб, кручение.… … Иллюстрированный энциклопедический словарь
ДЕФОРМАЦИЯ — (от лат. deformatio искажение) 1) изменение взаимного расположения точек твердого тела, при котором меняется расстояние между ними, в результате внешних воздействий. Деформация называется упругой, если она исчезает после удаления воздействия, и… … Большой Энциклопедический словарь
деформация — См … Словарь синонимов
ДЕФОРМАЦИЯ — (от лат. deformatio искажение), изменение конфигурации к. л. объекта, возникающее в результате внеш. воздействий или внутр. сил. Д. могут испытывать тв. тела (крист., аморфные, органич. происхождения), жидкости, газы, поля физические, живые… … Физическая энциклопедия
деформация — и, ж. déformation f. <лат. deformatio искажение. 1. Изменение размеров, формы твердого тела под воздействие внешних сил (обычно без изменения его массы). БАС 1. || В изобразительных искусствах отступление от воспринимаемой глазом натуральной… … Исторический словарь галлицизмов русского языка
деформация — деформация, деформированный. Произносится [деформация], [деформированный] и устаревающее [дэформация], [дэформированный] … Словарь трудностей произношения и ударения в современном русском языке
Деформация — горных пород (от лат. deformatio изменение формы, искажение * a. rock deformafion; н. Deformation von Gesteinen; ф. deformation des roches; и. deformacion de las rocas) изменение относительного положения частиц пород, вызывающее изменение … Геологическая энциклопедия
Деформация
Из Википедии — свободной энциклопедии
Деформа́ция (от лат. deformatio — «искажение») — изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга за счет приложения усилия, при котором тело искажает свои формы. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.
Виды деформации разделяют на обратимые (упругие) и необратимые (пластические, ползучести). Обратимые деформации исчезают после окончания действия приложенных сил, а необратимые — остаются. В основе обратимых деформаций лежит смещение атомов тела от положения равновесия, в основе необратимых — необратимые перемещения атомов на расстояния от исходных положений равновесия (после снятия нагрузки происходит переориентация в новое равновесное положение). Деформация определяется как отношение изменения длины деформированного объекта к его начальной длине. Деформация не имеет физической размерности. Виды деформации: сдвиг, сжатие, смятие, изгиб, кручение, срез
Деформация: виды деформации, пределы упругости и прочности
Частицы, из которых состоят твердые тела (как аморфные, так и кристаллические) постоянно совершают тепловые колебания около положений равновесия. В таких положениях энергия их взаимодействия минимальная. Если расстояние между частицами уменьшается, начинают действовать силы отталкивания, а если увеличиваться – то силы притяжения. Именно этими двумя силами обусловлены все механические свойства, которыми обладают твердые тела.
Если твердое тело изменяется под воздействием внешних сил, то частицы, из которых оно состоит, меняют свое внутреннее положение. Такое изменение называется деформацией.
Виды деформации
Различают деформации нескольких видов. На изображении показаны некоторые из них.
Если мы разделим величину абсолютного удлинения на первоначальную длину твердого тела, мы получим величину его относительного удлинения (относительной деформации).
Обозначим этот показатель ε и запишем следующую формулу:
Относительная деформация тела растет при его растяжении и соответственно уменьшается при сжатии.
Если учесть, в каком именно направлении внешняя сила действует на тело, то мы можем записать, что F будет больше нуля при растяжении и меньше нуля при сжатии.
Механическое напряжение
Механическое напряжение твердого тела σ – это показатель, равный отношению модуля внешней силы к площади сечения твердого тела.
Величину механического напряжения принято выражать в паскалях ( П а ) и измерять в единицах давления.
Деформация, исчезающая при снятии напряжения, называется упругой.
На данном участке будет выполняться закон Гука:
Предел упругости
Предел упругости – максимальное напряжение, после снятия которого тело восстановит свою форму и размер.
После перехода этого предела восстановления первоначальных параметров тела уже не происходит. Когда мы снимаем напряжение, у тела остается так называемая остаточная (пластическая) деформация.
Предел прочности
Предел прочности – максимальное напряжение, которое способно выдержать твердое тело, не разрушаясь.
В точке e материал разрушается.
Если диаграмма напряжения материала имеет вид, соответствующий тому, что показан на графике, то такой материал называется пластичным. У них обычно деформация, при которой происходит разрушение, заметно больше области упругих деформаций. К пластичным материалам относится большинство металлов.
Если материал разрушается при деформации, которая превосходит область упругих деформаций незначительно, то он называется хрупким. Такими материалами считаются чугун, фарфор, стекло и др.
От значения модуля всестороннего сжатия зависит скорость, с которой звук распространяется в данном веществе.
Содержание:
Деформация тела:
Вспомните ненастный день: дует порывистый ветер, гнутся деревья. Чем сильнее ветер, тем больше гнутся деревья. А вот физики говорят, что деревья деформируются. Когда ветер стихает, деревья возвращаются в свое первоначальное положение — деформация исчезает. Но если ветер достаточно сильный, то ветви деревьев и даже их стволы могут сломаться.
Виды деформации
Уже отмечалось, что результатом действия силы на тело может быть как изменение скорости движения тела, так и его деформация. Например, если толкнуть мячик, то он придет в движение, а некоторые его части при толчке сместятся относительно друг друга — мячик деформируется.
Деформация — изменение формы и (или) размеров тела. В зависимости от того, как именно части тела смещаются относительно друг друга, различают деформации растяжения, сжатия, изгиба, кручения, сдвига (см. таблицу).
Различия упругих и пластических деформаций
Возьмите эспандер (или ластик) и сожмите его — эспандер согнется. Но если прекратить сжимать эспандер, он полностью восстановит свою форму — деформация исчезнет (рис. 19.1). Деформации, которые полностью исчезают после прекращения действия на тело внешних сил, называют упругими.
Делая глиняную фигурку, мастер мнет руками комок глины, и глина сохранит форму, которую придаст ей мастер (рис. 19.2). Тяжелый пресс на монетном дворе чеканит монеты из металлических заготовок, — после прекращения действия пресса монета не восстановит свою прежнюю форму куска металла. И глина, и металл «не помнят» своей формы до деформации и не восстанавливают ее. Деформации, которые сохраняются после прекращения действия на тело внешних сил, называют пластическими. Попробуйте привести другие примеры упругих и пластических деформаций.
Определение силы упругости
При деформации всегда возникает сила, стремящаяся восстановить то состояние тела, в котором оно находилось до деформации. Эту силу называют силой упругости (рис. 19.3).
Сила упругости — это сила, которая возникает во время деформации тела и направлена в сторону, противоположную направлению смещения частей этого тела при деформации. Обычно силу упругости обозначают символом , но в некоторых случаях используют и другие символы. Если тело давит на опору, то опора деформируется (прогибается). Деформация опоры вызывает появление силы упругости, действующей на тело перпендикулярно поверхности опоры. Эту сила называют силой нормальной реакции опоры и обозначаются символом
(рис. 19.4).
Если тело растягивает подвес (нить, жгут, шнур), то возникает сила упругости, направленная вдоль подвеса. Эту силу называют силой натяжения подвеса и обозначают символом (рис. 19.5).
Закон Гука
Научное исследование процессов растяжения и сжатия тел начал Роберт Гук (рис. 19.6) в XVII в. Результатом работы ученого стал закон, который позже получил название закон Гука: При малых упругих деформациях растяжения или сжатия сила упругости прямо пропорциональна удлинению тела и всегда пытается вернуть тело в недеформированное состояние: где
— сила упругости; x — удлинение тела; k — коэффициент пропорциональности, который называют жесткостью тела.
Удлинение — это физическая величина, которая характеризует деформации растяжения и сжатия и равна изменению длины тела в результате деформации. Удлинение х определяется по формуле: где l — длина деформированного тела;
— длина недеформированного тела (рис. 19.7). Жесткость тела можно определить, воспользовавшись законом Гука:
Единица жесткости в СИ — ньютон на метр:
Жесткость — это характеристика тела, поэтому она не зависит ни от силы упругости, ни от удлинения. Жесткость зависит от формы и размеров тела, а также от материала, из которого тело изготовлено. Сила упругости прямо пропорциональна удлинению тела, поэтому график зависимости — прямая (рис. 19.8). Чем больше жесткость тела, тем выше расположен график. Воспользовавшись графиками на рис. 19.8, определите жесткость тел І–ІІІ и убедитесь в справедливости последнего утверждения.
Почему возникает сила упругости
Вы хорошо знаете, что все тела состоят из частиц (атомов, молекул, ионов). В твердых телах частицы колеблются около положений равновесия и взаимодействуют межмолекулярными силами притяжения и отталкивания. В положениях равновесия данные силы уравновешены. При деформации тела во взаимном расположении его частиц происходят изменения. Если расстояние между частицами увеличивается, то межмолекулярные силы притяжения становятся больше сил отталкивания. Если же частицы сближаются, то больше становятся межмолекулярные силы отталкивания. Другими словами: при деформации частицы «стремятся» вернуться в положение равновесия. Силы, возникающие при изменении положения одной частицы, очень малы. Но когда тело деформируется, изменяется взаимное расположение огромного количества частиц. В результате сложение сил дает заметную равнодействующую, которая противостоит деформации тела. Это и есть сила упругости. Итак, сила упругости — проявление действия межмолекулярных сил.
Приборы для измерения силы
Сила — это физическая величина, поэтому ее можно измерить. Приборы для измерения силы называют динамометрами. Основная составляющая простейших динамометров — пружина. Рассмотрим принцип действия таких динамометров на простом примере. Чтобы с помощью пружины, жесткость k которой известна, измерить силу F, с которой кот тянет тележку (рис. 19.9), необходимо:
1) измерить удлинение x пружины; 2) воспользовавшись законом Гука, определить силу упругости которая действует на кота со стороны пружины и по значению равна силе F тяги кота:
Понятно, что каждый раз измерять удлинение пружины и рассчитывать силу неудобно. Поэтому пружину закрепляют на панели со шкалой, проградуированной в единицах силы. Именно так устроены простейшие школьные лабораторные динамометры (рис. 19.10). Существуют и другие виды пружинных динамометров (см., например, рис. 19.11).
Пример №1
Действуя на пружину силой 40 Н, мальчик растянул ее на 8 см. Определите жесткость пружины. Какую силу нужно приложить мальчику, чтобы растянуть эту пружину еще на 6 см? Деформацию пружины считайте малой упругой. Анализ физической проблемы. Сила, которую прикладывает мальчик, по значению равна силе упругости, возникающей при растяжении пружины: F= уFпр (рис. 19.12). Деформация является малой упругой, поэтому воспользуемся законом Гука. Задачу будем решать в единицах СИ.
,
,
,
Решение:
1. Вычислим жесткость пружины:
поэтому
2. Найдем силу, которую нужно приложить мальчику, чтобы дополнительно растянуть пружину:
По условию ,поэтому
следовательно,
Анализ результатов. Для удлинения пружины на 8 см мальчик прикладывал силу 40 Н; для удлинения пружины еще на 6 см ему нужно увеличить силу на 30 Н — это правдоподобный результат.
Ответ:
Пример №2
Выполняя экпериментальное задание, девочка увеличивала нагрузку на резиновый шнур. Каждый раз она измеряла силу, действующую на шнур, и соответствующее удлинение шнура. Воспользовавшись таблицей, составленной девочкой, постройте график уFпр(x). С помощью графика определите: 1) жесткость шнура; 2) удлинение шнура, когда к нему приложена сила 5 Н; 3) силу, которую нужно приложить к шнуру, чтобы его удлинение было равно 6 см.
Анализ физической проблемы. При растяжении шнура возникает сила упругости, которая по значению равна силе, действующей на шнур: Для построения графика зависимости
начертим две взаимно перпендикулярных оси. На горизонтальной оси будем откладывать удлинение x шнура, а на вертикальной — соответствующее значение силы упругости
Решение:
Построив указанные в таблице точки (см. рисунок), увидим, что все они принадлежат одной прямой, значит, для любой точки графика имеем:
1) Выбрав точку А графика, найдем жесткость шнура:
2) Удлинение шнура в результате действия силы 5 Н найдем по графику: если
3) Силу, которую нужно приложить к шнуру, чтобы его удлинение было равно 0,06 м, найдем по закону Гука:
Ответ:
Итоги:
Деформацией называют изменение формы и (или) размеров тела. Если после прекращения действия на тело внешних сил деформация полностью исчезает, то это упругая деформация; если деформация сохраняется, то это пластическая деформация.
Сила упругости — это сила, которая возникает во время деформации тела и направлена в сторону, противоположную направлению смещения частей этого тела при деформации.
Сила упругости — проявление действия межмолекулярных сил. При малых упругих деформациях растяжения и сжатия выполняется закон Гука: сила упругости прямо пропорциональна удлинению тела и всегда пытается вернуть тело в недеформированное состояние: Приборы для измерения силы называют динамометрами. Простейшие из них — пружинные динамометры.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
- Что такое дата государственной регистрации
- Что такое дата дефростации на тортах