Что такое большие данные в цифровой экономике

Что такое big data. Объясняем простыми словами

Big data (англ. «большие данные») — массивы данных большого объёма и значительного многообразия, анализируемые с помощью специальных компьютерных технологий.

Источники больших данных — интернет вещей, соцсети, блоги, СМИ, показания приборов и датчиков (например, данные метеостанций), статистика, архивы, базы данных. Хранятся они в data lake — «озёрах данных» — в облачных хранилищах.

Анализ больших данных уже применяется во многих сферах — для обеспечения безопасности, диагностики и профилактики заболеваний, предсказания аварий и катастроф. В бизнесе и маркетинге на основании больших данных предсказывают поведение клиентов, оптимизируют расходы и процесс производства, оценивают платежеспособность, прогнозируют увольнение сотрудников.

Пример употребления на «Секрете»

«Вот приходите вы на приём к психиатру, он вам ставит диагноз на основе собственного субъективного мнения, а не анализа больших данных. Это должно измениться. Сфера образования, кстати, тоже меня удивляет. Мы пытаемся всех заставить учиться одним и тем же способом. Мне кажется, что большие данные могли бы повысить эффективность в сфере образования: например, если у ребёнка какие-то особые способности к обучению, мы могли бы оптимизировать и персонализировать обучение для него».

(Психолог Йорган Каллебаут — о применении больших данных.)

Нюансы

В основе описания больших данных лежит три основных характеристики (VVV):

История

Термин «большие данные» стал широко использоваться в 1990-е. Проблемами растущего объёма информации, однако, стали задаваться гораздо раньше. Так, в результате переписи населения в США в 1880 году получился такой объём данных, что для анализа понадобилось бы 8 лет. Тогда инженер Герман Холлерит создал табулятор, автоматически обрабатывавший числовую и буквенную информацию и выдававший результат на бумажную ленту.

Критика

Критика больших данных в основном связана с тем, что при их анализе используются непрозрачные алгоритмы, которые нельзя оценить и проверить — неясно, какие данные были учтены, почему и как сделан вывод. Кроме того, сбор, хранение и обработка больших объёмов разнообразной информации создаёт много возможностей для утечек и нарушения конфиденциальности.

Источник

Аналитический обзор рынка Big Data

ЧТО ТАКОЕ BIG DATA?

Ключевые характеристики

Большие Данные, на сегодняшний момент, являются одним из ключевых драйверов развития информационных технологий. Это направление, относительно новое для российского бизнеса, получило широкое распространение в западных странах. Связано это с тем, что в эпоху информационных технологий, особенно после бума социальных сетей, по каждому пользователю интернета стало накапливаться значительное количество информации, что в конечном счете дало развитие направлению Big Data.

Термин «Большие Данные» вызывает множество споров, многие полагают, что он означает лишь объем накопленной информации, но не стоит забывать и о технической стороне, данное направление включает в себя технологии хранения, вычисления, а также сервисные услуги.

Следует отметить, что к данной сфере относится обработка именно большого объема информации, который затруднительно обрабатывать традиционными способами*.

Ниже представлена сравнительная таблица традиционной и базы Больших Данных.
Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Сфера Больших Данных характеризуется следующими признаками:
Volume – объем, накопленная база данных представляет собой большой объем информации, который трудоемко обрабатывать и хранить традиционными способами, для них требуются новый подход и усовершенствованные инструменты.
Velocity – скорость, данный признак указывает как на увеличивающуюся скорость накопления данных (90% информации было собрано за последние 2 года), так и на скорость обработки данных, в последнее время стали более востребованы технологии обработки данных в реальном времени.
Variety – многообразие, т.е. возможность одновременной обработки структурированной и неструктурированной разноформатной информации. Главное отличие структурированной информации – это то, что она может быть классифицирована. Примером такой информации может служить информация о клиентских транзакциях.
Неструктурированная информация включает в себя видео, аудио файлы, свободный текст, информацию, поступающую из социальных сетей. На сегодняшний день 80% информации входит в группу неструктурированной. Данная информация нуждается в комплексном анализе, чтобы сделать ее полезной для дальнейшей обработки.
Veracity – достоверность данных, все большее значение пользователи стали придавать значимость достоверности имеющихся данных. Так, у интернет-компаний есть проблема по разделению действий, проводимых роботом и человеком на сайте компании, что приводит в конечном счете к затруднению анализа данных.
Value – ценность накопленной информации. Большие Данные должны быть полезны компании и приносить определенную ценность для нее. К примеру, помогать в усовершенствовании бизнес-процессов, составлении отчетности или оптимизации расходов.

При соблюдении указанных выше 5 условий, накопленные объемы данных можно относить к числу больших.

Сферы применения Больших Данных

Сфера использования технологий Больших Данных обширна. Так, с помощью Больших Данных можно узнать о предпочтениях клиентов, об эффективности маркетинговых кампаний или провести анализ рисков. Ниже представлены результаты опроса IBM Institute, о направлениях использования Big Data в компаниях.

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Как видно из диаграммы, большинство компаний используют Большие Данные в сфере клиентского сервиса, второе по популярности направление – операционная эффективность, в сфере управления рисками Большие Данные менее распространены на текущий момент.

Следует также отметить, что Big Data являются одной из самых быстрорастущих сфер информационных технологий, согласно статистике, общий объем получаемых и хранимых данных удваивается каждые 1,2 года.
За период с 2012 по 2014 год количество данных, ежемесячно передаваемых мобильными сетями, выросло на 81%. По оценкам Cisco, в 2014 году объем мобильного трафика составил 2,5 эксабайта (единица измерения количества информации, равная 10^18 стандартным байтам) в месяц, а уже в 2019 году он будет равен 24,3 эксабайтам.
Таким образом, Большие Данные – это уже устоявшаяся сфера технологий, даже несмотря на относительно молодой ее возраст, получившая распространение во многих сферах бизнеса и играющая немаловажную роль в развитии компаний.

Технологии Больших Данных

К наиболее распространенным подходам обработки данных (ПО) относятся:
SQL – язык структурированных запросов, позволяющий работать с базами данных. С помощью SQL можно создавать и модифицировать данные, а управлением массива данных занимается соответствующая система управления базами данных.
NoSQL – термин расшифровывается как Not Only SQL (не только SQL). Включает в себя ряд подходов, направленных на реализацию базы данных, имеющих отличия от моделей, используемых в традиционных, реляционных СУБД. Их удобно использовать при постоянно меняющейся структуре данных. Например, для сбора и хранения информации в социальных сетях.
MapReduce – модель распределения вычислений. Используется для параллельных вычислений над очень большими наборами данных (петабайты* и более). В программном интерфейсе не данные передаются на обработку программе, а программа – данным. Таким образом запрос представляет собой отдельную программу. Принцип работы заключается в последовательной обработке данных двумя методами Map и Reduce. Map выбирает предварительные данные, Reduce агрегирует их.
Hadoop – используется для реализации поисковых и контекстных механизмов высоконагруженных сайтов – Facebook, eBay, Amazon и др. Отличительной особенностью является то, что система защищена от выхода из строя любого из узлов кластера, так как каждый блок имеет, как минимум, одну копию данных на другом узле.
SAP HANA – высокопроизводительная NewSQL платформа для хранения и обработки данных. Обеспечивает высокую скорость обработки запросов. Еще одним отличительным признаком является то, что SAP HANA упрощает системный ландшафт, уменьшая затраты на поддержку аналитических систем.

Сервисные услуги.
Сервисные услуги включают в себя услуги по построению архитектуры системы базы данных, обустройству и оптимизации инфраструктуры и обеспечению безопасности хранения данных.

Программное обеспечение, оборудование, а также сервисные услуги вместе образуют комплексные платформы для хранения и анализа данных. Такие компании, как Microsoft, HP, EMC предлагают услуги по разработке, развертыванию решений Больших Данных и управления ими.

Применение в отраслях

Большие Данные получили широкое распространение во многих отраслях бизнеса. Их используют в здравоохранении, телекоммуникациях, торговле, логистике, в финансовых компаниях, а также в государственном управлении.
Ниже представлено несколько примеров применения Больших Данных в некоторых из отраслей.

Розничная торговля
В базах данных розничных магазинов может быть накоплено множество информации о клиентах, системе управления запасами, поставками товарной продукции. Данная информация может быть полезна во всех сферах деятельности магазинов.

Так, с помощью накопленной информации можно управлять поставками товара, его хранением и продажей. На основании накопленной информации можно прогнозировать спрос и поставки товара. Также система обработки и анализа данных может решить и другие проблемы ритейлера, например, оптимизировать затраты или подготовить отчетность.

Финансовые услуги
Большие Данные дают возможность проанализировать кредитоспособность заемщика, также они полезны для кредитного скоринга* и андеррайтинга**. Внедрение технологий Больших Данных позволит сократить время рассмотрения кредитных заявок. С помощью Больших Данных можно проанализировать операции конкретного клиента и предложить подходящие именно ему банковские услуги.

Телеком
В телекоммуникационной отрасли широкое распространение Большие Данных получили у сотовых операторов.
Операторы сотовой связи наравне с финансовыми организациями имеют одни из самых объемных баз данных, что позволяет им проводить наиболее глубокий анализ накопленной информации.
Главной целью анализа данных является удержание существующих клиентов и привлечение новых. Для этого компании проводят сегментацию клиентов, анализируют их трафики, определяют социальную принадлежность абонента.

Помимо использования Big Data в маркетинговых целях, технологии применяются для предотвращения мошеннических финансовых операций.

Горнодобывающая и нефтяная промышленности
Большие Данные используются как при добыче полезных ископаемых, так и при их переработке и сбыте. Предприятия могут на основании поступившей информации делать выводы об эффективности разработки месторождения, отслеживать график капитального ремонта и состояния оборудования, прогнозировать спрос на продукцию и цены.

По данным опроса Tech Pro Research, наибольшее распространение Большие Данные получили в телекоммуникационной отрасли, а также в инжиниринге, ИТ, в финансовых и государственных предприятиях. По результатам данного опроса, менее популярны Большие Данные в образовании и здравоохранении. Результаты опроса представлены ниже:

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Примеры использования Big Data в компаниях

На сегодняшний день Big Data активно внедряются в зарубежных компаниях. Такие компании, как Nasdaq, Facebook, Google, IBM, VISA, Master Card, Bank of America, HSBC, AT&T, Coca Cola, Starbucks и Netflix уже используют ресурсы Больших Данных.

Сферы применения обработанной информации разнообразны и варьируются в зависимости от отрасли и задач, которые необходимо выполнить.
Далее будут представлены примеры применения технологий Больших Данных на практике.

HSBC использует технологии Больших Данных для противодействия мошеннических операций с пластиковыми картами. С помощью Big Data компания увеличила эффективность службы безопасности в 3 раза, распознавание мошеннических инцидентов – в 10 раз. Экономический эффект от внедрения данных технологий превысил 10 млн долл. США.

Антифрод* VISA позволяет в автоматическом режиме вычислить операции мошеннического характера, система на данный момент помогает предотвратить мошеннические платежи на сумму 2 млрд долл. США ежегодно.

Суперкомпьютер Watson компании IBM анализирует в реальном времени поток данных по денежным транзакциям. По данным IBM, Watson на 15% увеличил количество выявленных мошеннических операций, на 50% сократил ложные срабатывания системы и на 60% увеличил сумму денежных средств, защищенных от транзакций такого характера.

Procter & Gamble с помощью Больших Данных проектируют новые продукты и составляют глобальные маркетинговые кампании. P&G создал специализированные офисы Business Spheres, где можно просматривать информацию в реальном времени.
Таким образом, у менеджмента компании появилась возможность мгновенно проверять гипотезы и проводить эксперименты. P&G считают, что Большие Данные помогают в прогнозировании деятельности компании.

Ритейлер офисных принадлежностей OfficeMax с помощью технологий Больших Данных анализируют поведение клиентов. Анализ Big Data позволил увеличить B2B выручку на 13%, уменьшить затраты на 400 000 долларов США в год.

По мнению Caterpillar, ее дистрибьюторы ежегодно упускают от 9 до 18 млрд долл. США прибыли только из-за того, что не внедряют технологии обработки Больших Данных. Big Data позволили бы клиентам более эффективно управлять парком машин, за счет анализа информации, поступающей с датчиков, установленных на машинах.

На сегодняшний день уже есть возможность анализировать состояние ключевых узлов, их степени износа, управлять затратами на топливо и техническое обслуживание.

Luxottica group является производителем спортивных очков, таким марок, как Ray-Ban, Persol и Oakley. Технологии Больших Данных компания применяет для анализа поведения потенциальных клиентов и «умного» смс-маркетинга. В результате Big Data Luxottica group выделила более 100 миллионов наиболее ценных клиентов и повысила эффективность маркетинговой кампании на 10%.

С помощью Yandex Data Factory разработчики игры World of Tanks анализируют поведение игроков. Технологии Больших Данных позволили проанализировать поведение 100 тысяч игроков World of Tanks с использованием более 100 параметров (информация о покупках, играх, опыт и др.). В результате анализа был получен прогноз оттока пользователей. Данная информация позволяет уменьшить уход пользователей и работать с участниками игры адресно. Разработанная модель оказалась на 20-30% эффективнее стандартных инструментов анализа игровой индустрии.

Министерство труда Германии использует Большие Данные в работе, связанной с анализом поступающих заявок на выдачу пособий по безработице. Так, проанализировав информацию, стало понятно, что 20% пособий выплачивалось незаслуженно. С помощью Big Data министерство труда сократило расходы на 10 млрд евро.

Детская больница Торонто внедрила проект Project Artemis. Это информационная система, которая собирает и анализирует данные по младенцам в реальном времени. Система ежесекундно отслеживает 1260 показателей состояния каждого ребенка. Project Artemis позволяет прогнозировать нестабильное состояние ребенка и начать профилактику заболеваний у детей.

ОБЗОР МИРОВОГО РЫНКА БОЛЬШИХ ДАННЫХ

Текущее состояние мирового рынка

В 2014 г. Большие Данные, по мнению Data Collective, стали одними из приоритетных направлений инвестирования в сфере венчурной индустрии. Согласно данным информационного портала Компьютерра, связано это с тем, что разработки из данного направления начали приносить значительные результаты для их пользователей. За прошедший год количество компаний с реализованными проектами в сфере управления большими данными увеличилось на 125%, объем рынка вырос на 45% по сравнению с 2013 годом.

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Большую часть выручки рынка Big Data, по мнению Wikibon, в 2014 году составили сервисные услуги, их доля была равно 40% в общем объеме выручки (см. диаграмму ниже):

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Если рассматривать Big Data за 2014 год по подтипам, то рынок будет выглядеть следующим образом:

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Согласно данным Wikibon, приложения и аналитика составляет 36% выручки Big Data в 2014 году принесли приложения и аналитика Больших Данных, 17% — вычислительное оборудование и 15% — технологии хранения данных. Меньше всего выручки было сгенерировано NoSQL технологиями, инфраструктурным оборудованием и обеспечением сетью компаний (корпоративные сети).

Наибольшей популярностью пользуются такие технологии Big Data, как in-memory платформы компаний SAP, HANA, Oracle и др. Результаты опроса T-Systems показали, что их выбрали 30% опрошенных компаний. Вторыми по популярности стали NoSQL платформы (18% пользователей), также компании использовали аналитические платформы компаний Splunk и Dell, их выбрало 15% компаний. Наименее полезными для решения проблем Больших Данных, по результатам опроса оказались продукты Hadoop/MapReduce.

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

По данным опроса Accenture, в более чем 50% компаниях, использующих технологии Больших Данных, затраты на Big Data составляют от 21% до 30%.
Согласно следующими анализу Accenture, 76% компаний, считают, что данные расходы увеличатся в 2015 году, а 24% компаний не изменят своего бюджета на технологии Больших Данных. Это говорит о том, что в данных компаниях Big Data стали уже устоявшимся направлением ИТ, ставшим неотъемлемой частью развития компании.

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Результаты опроса Economist Intelligence Unit survey подтверждают положительный эффект от внедрения Big Data. 46% компаний заявляют, что с помощью технологий Больших Данных они улучшили клиентский сервис более, чем на 10%, 33% компаний оптимизировали запасы и улучшили продуктивность основных активов, 32% компаний улучшили процессы планирования.

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Большие Данные в разных странах мира

На сегодняшний день технологии Больших Данных чаще всего внедряются в компаниях США, но уже сейчас и другие страны мира начали проявлять интерес. В 2014 году, по данным IDC, на страны Европы, Ближнего Востока, Азии (за исключением Японии) и Африки пришлось 45% рынка ПО, услуг и оборудования в сфере Big Data.

Также, согласно опросу CIO, компании из стран Азиатско-Тихоокеанского региона быстрыми темпами осваивают новые решения в области анализа Больших Данных, безопасного хранения и облачных технологий. Латинская Америка находится на втором месте по количеству инвестиций в развитие технологий Больших Данных, опережая страны Европы и США.
Далее будет представлено описание и прогнозы развития рынка Больших Данных нескольких стран.

Китай
Объем информации Китая составляет 909 эксабайт, что равно 10% общего объема информации в мире, к 2020 году объем информации достигнет 8060 эксабайт, увеличится и доля информации в общемировой статистике, через 5 лет она будет равна 18%. Потенциальный рост Big Data Китая имеет одну из самых быстрорастущих динамик.

Бразилия
Бразилия по итогам 2014 года накопила информации на 212 эксабайт, что составляет 3% от общемирового объема. К 2020 году объем информации вырастет до 1600 эксабайт, что составит 4% информации всего мира.

Индия
По данным EMC, объем накопленных данных Индии по итогам 2014 года составляет 326 эксабайт, что составляет 5% от общего объема информации. К 2020 году объем информации вырастет до 2800 эксабайт, что составит 6% информации всего мира.

Япония
Объем накопленных данных Японии по итогам 2014 года составляет 495 эксабайт, что составляет 8% от общего объема информации. К 2020 году объем информации вырастет до 2200 эксабайт, но уменьшится доля рынка Японии и составит 5% об общего объема информации всего мира.
Таким образом, объем рынка Японии уменьшится на более, чем 30%.

Германия
По данным EMC, объем накопленных данных в Германии по итогам 2014 года составляет 230 эксабайт, что составляет 4% от общего объема информации в мире. К 2020 году объем информации вырастет до 1100 эксабайт и составит 2%.
На рынке Германии большую долю выручки, по прогнозам Experton Group, будет генерировать сегмент сервисных услуг, доля которых в 2015 году составит 54%, а в 2019 году увеличится до 59%, доли программного обеспечения и оборудования, наоборот, уменьшатся.

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

В целом, объем рынка вырастет с 1, 345 млрд евро в 2015 году до 3,198 млрд евро в 2019 году, средний темп роста составит 24%.
Таким образом, на основании аналитики CIO и EMC, можно сделать вывод о том, что развивающиеся страны мира в ближайшие годы станут рынками активного развития технологий Больших Данных.

Основные тенденции рынка

По мнению IDG Enterprise, в 2015 расходы компаний на сферу Больших Данных составят в среднем 7,4 млн долл. США на компанию, крупные компании намерены потратить примерно 13,8 млн долл. США, малые и средние – 1,6 млн долл. США.
Больше всего будет инвестировано в такие области, как анализ и визуализация данных и их сбор.
Согласно текущим тенденциям и спросу на рынке, инвестиции в 2015 году будут использованы на улучшение качества данных, совершенствование планирования и прогнозирования, а также на увеличение скорости обработки данных.
Компаниями финансового сектора, по данным Bain Company’s Insights Analysis, будут произведены значительные инвестиции, так в 2015 году планируется потратить 6,4 млрд долл. США на технологии Big Data, средний темп роста инвестиций составит 22% до 2020 года. Интернет-компании планируют потратить 2,8 млрд долл. США, средний темп роста увеличения затрат на Большие Данные составит 26%.
При проведении опроса Economist Intelligence Unit survey, были выявлены приоритетные направления развития Big Data в 2014 году и в ближайшие 3 года, распределение ответов выглядит следующим образом:

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Драйверы и ограничители рынка

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Wikibon прогнозирует, что объем рынка Big Data вырастет в 2015 году до 38,4 млрд долл. США и увеличится по сравнению с предыдущим годом на 36%. В ближайшие годы будет наблюдаться спад темпов роста до 10% в 2017 году. С учетом данных прогнозов, объем рынка в 2020 году будет равен 68,7 млрд долл. США.

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Распределение общемирового рынка Больших Данных по бизнес-категориям будет выглядеть следующим образом:

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Как видно из диаграммы, большую часть рынка будет занимать технологии из сферы улучшения клиентского сервиса. Точечный маркетинг будет на втором месте по приоритетности у компаний вплоть до 2019 года, в 2020 году, по прогнозу Heavy Reading, он уступит место решениям по улучшению операционной эффективности.
Самый высокий темп роста также будет у сегмента «улучшение клиентского сервиса», прирост — 49% ежегодно.
Прогноз рынка по подтипам Big Data будет выглядеть следующим образом:

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Энергетические компании будут инвестировать в данные технологии сравнительно небольшую сумму — 800 млн долл. США, но темп роста будет одним из самых высоких – 54% ежегодно.
Таким образом, большую долю рынка Big Data в 2020 году займут компании финансовой отрасли, а самым быстрорастущим сектором будет энергетика.
Следуя прогнозам аналитиков, общий объем рынка в ближайшие годы будет увеличиваться. Рост рынка будет обеспечен за счет внедрения технологий Больших Данных в развивающихся странах мира, как видно из представленного ниже графика.

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Прогнозируемый объем рынка будет зависеть от того, как развивающиеся страны воспримут технологии Больших Данных, будет ли они также популярны как в развитых странах. В 2014 году развивающиеся страны мира занимали 40% от объема накопленной информации. По прогнозу EMC, нынешняя структура рынка, с преобладанием развитых стран, изменится уже в 2017 году. Согласно аналитике EMC, в 2020 году доля развивающихся стран будет более 60%.
По мнению Cisco и EMC, развивающиеся страны мира будут достаточно активно работать с Big Data, во многом это будет связано с доступностью технологий и накоплением достаточного объема информации до уровня Big Data. На карте мира, представленной на следующей странице, будет показан прогноз увеличения объема и темп роста Больших Данных по регионам.

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

АНАЛИЗ РОССИЙСКОГО РЫНКА

Текущее состояние российского рынка
Обзор рынка по отраслям и опыт применения Больших Данных в компаниях

По данным CNews, в России лишь 10% компаний начали использовать технологии Больших Данных, когда в мире доля таких компаний составляет порядка 30%. Готовность к проектам Big Data растет во многих отраслях экономики России — свидетельствует отчет СNews Analytics и Oracle. Более трети опрошенных компаний (37%) приступили к работе с технологиями Big Data, среди которых 20% уже используют такие решения, а 17% начинают экспериментировать с ними. Вторая треть респондентов в настоящий момент рассматривают такую возможность.

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

В России большей популярностью технологии Больших Данных пользуются в банковской сфере и телекоме, но они также востребованы в сфере добывающей промышленности, энергетике, ритейле, в логистических компаниях и госсекторе.
Далее будут рассмотрены примеры применения Больших Данных в российских реалиях.

Телеком
Телеком-операторы имеют одни из самых объемных баз данных, что позволяет им проводить наиболее глубокий анализ накопленной информации.
Одной из сфер применения технологии Больших Данных является управление лояльностью абонентов.
Главной целью анализа данных является удержание существующих клиентов и привлечение новых. Для этого компании проводят сегментацию клиентов, анализируют их трафики, определяют социальную принадлежность абонента. Помимо использования информации в маркетинговых целях, в телекоме технологии применяются для предотвращения мошеннических финансовых операций.
Одним из ярких примеров данной отрасли является Вымпелком. Компания применяет Большие Данные для повышения качества обслуживания на уровне каждого абонента, составления отчетности, анализа данных для развития сети, борьбы со спамом и персонализации услуг.

Банки
Значительную долю пользователей Big Data занимают специалисты из финансовой отрасли. Одним из успешных опытов был проведен в Уральском банке реконструкции и развития, где информационную базу стали использовать для анализа клиентов, банк начал предлагать специализированные кредитные предложения, вклады и другие услуги. За год использования данных технологий розничный кредитный портфель компании вырос на 55%.
В Альфа-Банке анализируют информацию из социальных сетей, обрабатывают заявки на получение кредита, анализируют поведение пользователей сайта компании.
Сбербанк также приступил к обработке массива данных с целью сегментации клиентов, предотвращения мошеннических действий, перекрестных продаж и управления рисками. В дальнейшем планируется усовершенствовать сервис и анализировать действия клиентов в режиме реального времени.
Всероссийский банк развития регионов анализирует поведение владельцев пластиковых карт. Это позволяет выявить нетипичные для конкретного клиента операции, тем самым повышается вероятность выявления воровства денежных средств с пластиковых карточек.

Розничная торговля
В России технологии Больших Данных были внедрены компаниями как онлайн, так и офлайн торговли. На сегодняшний день, по данным CNews Analytics, Big Data используют 20% ритейлеров. 75% специалистов розничной торговли считают Большие Данные необходимыми для развития конкурентоспособной стратегии продвижения компании. По статистике Hadoop после внедрения технологии Больших Данных прибыль в торговых организациях вырастает на 7-10%.
Специалисты М.Видео говорят об улучшении логистического планирования после внедрения SAP HANA, также, в результате ее внедрения, подготовка годовой отчетности сократилась с 10 дней до 3, скорость ежедневной загрузки данных сократилась с 3 часов до 30 минут.
Wikimart используют данные технологии для формирования рекомендаций посетителям сайта.
Одним из первых офлайн-магазинов внедривших анализ Больших Данных в России, была «Лента». С помощью Big Data ритейл стал изучать информацию о покупателях из кассовых чеков. Ритейлер собирает информацию для составления поведенческих моделей, что дает возможность более обоснованно принимать решения на уровне операционной и коммерческой деятельности.

Нефтегазовая отрасль
В данной отрасли сфера применения Больших Данных достаточно широка. Технологии Больших Данных могут быть применены при добычи полезных ископаемых из недр. С их помощью можно анализировать сам процесс добычи и наиболее эффективные способы его извлечения, отслеживать процесс бурения, анализ качества сырья, а также обработку и сбыт конечной продукции. В России данными технологиями стали уже пользоваться Транснефть и Роснефть.

Государственные органы
В таких странах, как Германия, Австралия, Испания, Япония, Бразилия и Пакистан технологии Больших Данных используются для решения вопросов национального масштаба. Данные технологии помогают органам государственной власти более эффективно предоставлять услуги населению, оказывать адресную социальную поддержку.
В России данные технологии стали осваивать такие государственные органы, как Пенсионный Фонд, Федеральная Налоговая Служба и Фонда обязательного медицинского страхования. Потенциал реализации проектов с использованием Big Data большой, данные технологии могли бы помочь в улучшении качества сервисов, и, как следствие, уровня жизни населения.

Логистика и транспорт
Big Data также могут быть использованы транспортными компаниями. С помощью технологий Больших Данных можно отслеживать парк автомобилей, учитывать расходы на топливо, проводить мониторинг заявок клиентов.
РЖД внедрили технологии Big Data совместно с компанией SAP. Данные технологии помогли сократить срок подготовки отчетности в 43,5 раза (с 14,5 часов до 20 минут), повысить точность распределения затрат в 40 раз. Также Big Data были внедрены в процессы планирования и тарифного регулирования. Всего компаний используется более 300 систем на базе решений SAP, задействовано 4 дата-центра, а количество пользователей составило 220 000.

Далее будет приведен список технологий используемых крупными российскими компаниями, с указанием функционала, который используется на данных предприятиях.

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Основные драйверы и ограничители рынка
Прогноз российского рынка

По состоянию на сегодняшний день, российский рынок Больших Данных не настолько популярен как в развитых странах. Большинство российских компаний проявляют интерес к нему, но воспользоваться их возможностями не решаются.
Примеры крупных компаний, которые уже извлекли выгоду от использования технологий Больших Данных, расширяют осознание возможностей данных технологий.
У аналитиков также достаточно оптимистичные прогнозы относительно российского рынка. IDC считает, что доля российского рынка за следующие 5 лет увеличится, в отличии от рынка Германии и Японии.
К 2020 году объем Big Data России вырастет с нынешних 1,8% до 2,2% от общемирового объема данных. Количество информации вырастет, по данным EMC, с нынешних 155 эксабайт до 980 эксабайт в 2020 году.
В настоящий момент в России продолжается накопление объема информации до уровня Больших Данных.
Согласно опросу CNews Analytics, 44% опрошенных компаний работают с данными не более 100 терабайт* и лишь 13% работают с объемами выше 500 терабайт.

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Тем не менее российский рынок, следуя мировым тенденциям, будет увеличиваться. По состоянию на 2014 год объем рынка компания IDC оценивает в 340 млн долл. США.
Темп роста рынка за предыдущие годы составлял 50% в год, если он останется на прежнем уровне, то уже в 2018 году объем рынка достигнет 1,7 млрд долл. США. Доля российского рынка в мировом составит около 3%, увеличившись с нынешних 1,2%.

Что такое большие данные в цифровой экономике. Смотреть фото Что такое большие данные в цифровой экономике. Смотреть картинку Что такое большие данные в цифровой экономике. Картинка про Что такое большие данные в цифровой экономике. Фото Что такое большие данные в цифровой экономике

Основные результаты анализа рынка

Мировой рынок
Российский рынок

Спасибо, что уделили время прочтению этой объемной работы, подписывайтесь на наш блог — обещаем много новых интересных публикаций!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *