Что такое биофизика биохимия радиобиология космическая биология
Биофизика и медфизика
Согласно первой задаче, биофизика призвана выявлять связи между физическими механизмами, лежащими в основе организации живых объектов, и биологическими особенностями их жизнедеятельности (взгляд физика на живую систему изнутри). Согласно второй, биофизика также должна изучать влияние космогеофизических и других внешних физических факторов на течение физических и биохимических реакций (взгляд физика на живую систему снаружи)
Биофизика разрабатывает вопросы термодинамики и биологической кинетики. С этих позиций рассматривается, в частности, проблема адаптации отдельных клеток и целых организмов к различным условиям окружающей среды. Одной из центральных проблем биофизики является проблема структуры и функции биологических мембран.
Разделы страницы по физике органического мира :
Смежные научные дисциплины и исследования:
Читайте также авторские статьи о биофизических и ноофизических проблемах:
Несмотря на сложность и взаимосвязь различных процессов в организме человека, часто среди них можно выделить процессы, близкие к физическим. Например, такой сложный физиологический процесс, как кровообращение, в своей основе является физическим, так как связан с течением жидкости (гидродинамика), распространением упругих колебаний по сосудам (колебания и волны), механической работой сердца (механика), генерацией биопотенциалов (электричество) и т.п. Дыхание связано с движением газа (аэродинамика), теплоотдачей (термодинамика), испарением (фазовые превращения) и т.п.
В организме, кроме физических макропроцессов, как и в неживой природе, имеют место молекулярные процессы, которые в конечном итоге определяют поведение биологических систем. Понимание физики таких микропроцессов необходимо для правильной оценки состояния организма, природы некоторых заболеваний, действия лекарств и т.д.
Во всех этих вопросах физика настолько связана с биологией, что формирует самостоятельную науку — биофизику, которая изучает физические и физико-химические процессы в живых организмах, а также ультраструктуру биологических систем на всех уровнях организации — от субмолекулярного и молекулярного до клетки и целого организма.
История биофизических исследований
Научные основы биофизики начали закладываться еще в XVIII веке. В настоящее время биофизика преподается как самостоятельная дисциплина во всех мединститутах, а в некоторых из них открыты кафедры биофизики. Создан целый ряд научных центров, занимающихся различными аспектами биофизики. Издаются научные журналы, освещающие достижения в этой области человеческого знания.
Можно сказать, что у истоков биофизики как науки стояла работа Эрвина Шрёдингера «Что такое жизнь с точки зрения физики» (1945), где рассматривалось несколько важнейших проблем, таких как
Уже на начальных этапах своего развития биофизика была тесно связана с идеями и методами физики, химии, физической химии и математики и использовала в исследовании биологических объектов точные экспериментальные методы (спектральные, изотопные, дифракционные, радиоспектроскопические). Основной итог этого периода развития биофизики — это экспериментальные доказательства приложимости основных законов физики к биологическим объектам.
В настоящее время интенсивно развиваются биофизика сложных систем и молекулярная биофизика [граничные области]. Современные области исследований биофизики:
Биофизические порталы
Биофизика (биологическая физика) — наука, изучающая физические свойства и явления в целом организме, отдельных его органах, тканях, клетках, а также физико-химические основы процессов жизнедеятельности.
Биофизические конференции
Биофизика изучает физические процессы внутри организмов, физическую основу биологических процессов и физические взаимодействия, которые являются частью или фазой биологических.
Молекулярная биофизика
В задачи молекулярной биофизики входит исследование физических и физико-химических свойств сложных химических соединений, в т. ч. белков и нуклеиновых кислот, входящих в состав живых организмов, а также характера их взаимодействия.
Методы биофизики и молекулярной биологии обеспечили расшифровку структуры крупных биомолекул, выявление пространственного расположения атомов в молекуле и т. д. Значительные успехи достигнуты в изучении механизмов превращения в клетках организмов физической энергии в химическую, в частности при фотосинтезе органических соединений в зеленых растениях под влиянием света.
Биофизика клетки
Задачей биофизики клетки является изучение:
Сверхслабые воздействия неживого на живое
Медицинская физика [медфизика]
Живой организм нормально функционирует, только взаимодействуя с окружающей средой. Он остро реагирует на изменение таких физических характеристик среды, как температура, влажность, давление воздуха и пр. Действие внешней среды на организм учитывается не только как внешний фактор, оно может использоваться для лечения (климатотерапия и баротерапия). Эти примеры свидетельствуют о том, что врач должен уметь оценивать физические свойства и характеристики окружающей среды. Перечисленные выше применения физики в медицине составляют медицинскую физику — комплекс разделов прикладной физики и биофизики, в которых рассматриваются физические законы, явления, процессы и характеристики применительно к решению медицинских задач.
Будучи тесно связанной с медициной, биофизика занимается изучением физико-химических особенностей механизмов возникновения и течения различных патологических процессов. В частности, биофизика внесла свой вклад в теоретические представления о воспалении, отеке, нефрите, механизмах регуляции водно-солевого равновесия и т. д. Широко используются биофизические представления о природе возбуждения и проведении его по нервным волокнам, о фотохимических процессах, происходящих в зрительных органах, и т. д. Большую роль играет биофизика в понимании механизмов лучевого поражения, разработке основ профилактики и лечения этого поражения. Методами биофизики изучают физико-химические и молекулярные механизмы и особенности развития злокачественных опухолей, физико-химические механизмы действия многих лекарственных веществ (наркотики, яды), разрабатывают методы количественной оценки их, токсического действия и др.
Физические методы диагностики заболеваний и исследования биологических систем
Многие методы диагностики и исследования основаны на использовании физических принципов и идей. Большинство современных медицинских по назначению приборов конструктивно является физическими приборами. Чтобы это проиллюстрировать, достаточно рассмотреть некоторые примеры в рамках сведений, известных читателю из курса средней школы. Механическая величина — давление крови — является показателем, используемым для оценки ряда заболеваний. Прослушивание звуков, источники которых находятся внутри организма, позволяет получать информацию о нормальном или патологическом поведении органов. Медицинский термометр, работа которого основана на тепловом расширении ртути, — весьма распространенный диагностический прибор. За последнее десятилетие в связи с развитием электронных устройств широкое распространение получил диагностический метод, основанный на записи биопотенциалов, возникающих в живом организме. Наиболее известен метод электрокардиографии — запись биопотенциалов, отражающих сердечную деятельность. Общеизвестна роль микроскопа для медико-биологических исследований. Современные медицинские приборы, основанные на волоконной оптике, позволяют осматривать внутренние полости организма.
Спектральный анализ используется в судебной медицине, гигиене, фармакологии и биологии; достижения атомной и ядерной физики — для достаточно известных методов диагностики: рентгенодиагностики и метода меченых атомов.
Воздействие физическими факторами на организм с целью лечения
В общем комплексе различных методов лечения, применяемых в медицине, находят место и физические факторы. Укажем некоторые из них. Гипсовая повязка, накладываемая при переломах, является механическим фиксатором положения поврежденных органов. Охлаждение (лед) и нагревание (грелка) с целью лечения основаны на тепловом действии. Электрическое и электромагнитное воздействия широко используются ь физиотерапии. С лечебной целью применяют свет видимый и невидимый (ультрафиолетовое и инфракрасное излучения), рентгеновское и гамма-излучения.
Криобиология и криомедицина
Криобиология (от греч. κρύος — холод, bios — жизнь и logos — наука) — раздел биологии, в котором изучаются эффекты воздействия низких температур на живые организмы. На практике, в рамках криобиологии занимаются исследованиями биологических объектов или систем при температурах ниже нормальных. В качестве объектов могут служить белки́, клетки, ткани, органы, или целые организмы. Используются диапазон температур от умеренно низких до криогенных.
Важнейшие направления исследований:
Радиобиология и радиобиофизика
В радиационной биофизике ведутся работы по изучению превращения энергии при действии на живые организмы ионизирующих излучений.
Воздействие на организмы электромагнитных полей
Крымские исследователи пришли к заключению, что космическая погода влияет на биосферу через электромагнитные поля. Сотрудник КрАО кандидат физ.-мат. наук Б. М. Владимирский впервые предположил, что таким фактором может быть переменное магнитное поле (ПеМП) сверхнизких частот (СНЧ), интенсивность которого наиболее высока по сравнению с интенсивностью поля других частотных полос как в спокойные периоды, так и особенно во время геомагнитных возмущений, когда его интенсивность может возрастать в 10–100 раз, чего не наблюдается в других частотных диапазонах.
Важное значение для доказательства биологической активности столь слабых раздражителей как ПеМП СНЧ имели исследования на систему крови, которые проводились под руководством Н. А. Темурьянц.
Накопленный экспериментальный материал позволял сделать вывод, что если поля указанных параметров биологически эффективны, то их действие на биосубстрат должно быть в высокой степени избирательным. Иначе как реализуется их влияние при высоком уровне внешних шумов — в том числе, индустриального происхождения? Можно было ожидать, что действие этих полей на биосистемы должно быть «резонансным». Н.А. Темурьянц и В.Б. Макеев решили эту масштабную задачу путем перебора всех частот в полосе 0,1-100 Гц (с некоторым шагом). В качестве основного тестпоказателя использовались изменения активности энзимов форменных элементов периферической крови.
Статистический анализ всего накопленного массива данных позволил выявить следующие биологические активные частоты ПеМП (Гц):
Так был получен первый в мире «спектр действия» электромагнитных полей крайне низких частот (зарубежные исследователи, не зная этих результатов, и десятилетия спустя изучали действия слабых переменных полей на одной и той же частоте сети электропитания 60 Гц).
Воздействие космической погоды на биосферу [космоэкология]
Весь спектр влияния космоса на организмы приведён в трудах XIII Международной крымской конференции “КОСМОС И БИОСФЕРА”, 2019 (стр. 11):
|
Квантовая биология
Принято считать, что в условиях тепла и беспорядка, царящих в живых клетках, квантовые эффекты можно, по сути, игнорировать. Между тем некоторые ученые предполагают, что существуют биологические феномены, которые можно объяснить квантовой механикой — и только. На самом деле, квантовая биология сильно влияет на жизненные процессы:
Биофизика для каждого
Биофизика для каждого
Липидный бислой с рецепторами
кадр из анимации с YouTube
Автор
Редакторы
Статья на конкурс «био/мол/текст»: Биофизика — наука на стыке биологии, физики и. химии, а также медицины и математики. Биофизика проникает во все разделы биологии и является бесспорным помощником при анализе результатов. Быть биофизиком — значит уметь читать спектры. Быть биофизиком — значит уметь увидеть за одинокой вспышкой молекулы целую жизнь клетки. Быть биофизиком — значит моделировать сложные биохимические и биофизические процессы в клетках, мембранах, ДНК и даже биостанциях. В этом году состоялся VI Съезд биофизиков России, на котором были обнародованы многие достижения современной биофизики.
Конкурс «био/мол/текст»-2019
Эта работа опубликована в номинации «Свободная тема» конкурса «био/мол/текст»-2019.
Генеральный спонсор конкурса и партнер номинации «Сколтех» — Центр наук о жизни Сколтеха.
Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.
Спонсором приза зрительских симпатий выступила компания BioVitrum.
Немного о биофизике
Когда человек впервые слышит слово «биофизика», в его голове сразу же всплывают сложные образы. Особенно страшные встают перед глазами биологов, ведь, казалось бы, откуда в биологии взяться физике? Ответ прост — все биологические процессы очень тесно связаны с химией и физикой, ведь жизнь биологических объектов осуществляется главным образом за счет передвижения биологических молекул и ионов совместно с протеканием электрических импульсов. Откуда взяться физике при изучении отдельных биологических молекул? Всё опять просто — дело в том, что все биологические молекулы состоят из атомов, а значит, имеют электронное облако, заряд и спин.
Что же такое биология? Согласно определению Джона Бернала, «биология — это в основном описательная наука, больше похожая на географию. Несомненно, должна существовать также подлинная и общая биология. Истинная биология в полном смысле этого слова была бы наукой о природе и активности всех организованных объектов, где бы они ни находились — на нашей планете, на других планетах солнечной системы или в иных звездных системах» [1].
Физика, в свою очередь, это область естествознания: наука о простейших и вместе с тем наиболее общих законах природы, о материи, ее структуре и движении. Законы физики лежат в основе всего естествознания [2].
Определение у такого понятия, как «биофизика», много, вот некоторые из них:
Таким образом, биофизика — это сложная, многозадачная наука, которая изучает организацию и перераспределение вещества и энергии на биологическом уровне организации. Главным инструментом биофизики служат спектральные приборы, способные зарегистрировать спектры от молекул. Например, экологическая биофизика по спектрам флуоресценции хлорофилла (рис. 1) может определить состояние фотосинтетического аппарата фитопланктона, а в сочетании с оптическими спектрами по форме пиков и положению максимумов пигментов, участвующих в фотосинтезе, можно сделать вывод о том, какие именно виды фитопланктона обитают в исследуемой области, а по изменению популяций сделать вывод о произошедших изменениях в экосистеме исследуемой области. С другой стороны, биофизики активно пользуются флуоресценцией от одиночных молекул (например, с методами PALM и STORM подробнее можно ознакомиться в других статьях «Биомолекулы» [5–7]). Есть и совсем высокотехнологичные методы биофизики, способные по физическим сигналам (электронной или рентгеновской дифракции, а также ядерному магнитному резонансу) восстанавливать пространственное (трехмерное) строение биомолекул — эта область получила название структурной биологии [8].
Рисунок 1а. Флуориметр MULTI-COLOR-PAM, позволяющий регистрировать флуоресценцию с живых листьев растений (общий вид)
Рисунок 1б. Флуориметр MULTI-COLOR-PAM в действии
БИОФИЗИКА
БИОФИЗИКА — наука, изучающая физические свойства и явления как в целом организме, так и в отдельных органах, тканях, клетках, а также физ.-хим. основы процессов жизнедеятельности.
На протяжении развития Б. как науки в ней выделилось два раздела, каждый из которых отличается своей методологической направленностью.
Первый раздел (физическое направление, или собственно биологическая физика) изучает физику и физические свойства организма в целом или отдельных составляющих его компонентов. Этот раздел Б. занимается общими проблемами физической термодинамики белка и его превращений, тепломассообменом, физикой мышечного сокращения и физическими свойствами сократительных белков и т. д. Биологические системы при этом изучаются преимущественно как физические, используется физическое и математическое моделирование; сюда же примыкает математическая биофизика.
Второй раздел Б., носящий преимущественно биологическую направленность, изучает физ.-хим. основы процессов жизнедеятельности. В историческом плане он возник на базе физической химии и включает в себя изучение частных вопросов термодинамики, кинетики и катализа биологических процессов; физ.-хим. основы электрических явлений в живой клетке; физикохимию коллоидного состояния протоплазмы и т. д. Данный раздел Б. условно можно отождествить с биофизической химией (см.); он тесно связан с органической химией и биохимией, физиологией, патофизиологией и другими мед.-биол, науками.
На базе достижений Б. и в связи с запросами практической медицины возник ряд новых смежных с Б. дисциплин: медицинская физика (см.) и радиобиология (см.), в основе которых лежит ряд фундаментальных исследований в области взаимодействия атомных, электромагнитных и корпускулярных излучений с живыми объектами.
В Б. выделяют комплекс сведений из различных ее отделов, нашедших применение в медицине под условным названием «медицинская биофизика». Сюда можно отнести изучение последствий радиации на основе анализа физ.-хим. механизмов первичных реакций, возникающих в клетке при действии облучения. К области мед. биофизики относится изучение физ.-хим. свойств отдельных веществ и соединений в клетке и их изменений в норме и патологии, а также изучение влияния на организм таких факторов, как вибрация (см.), ускорение (см.), невесомость (см.) и т. д.
Бурному развитию Б. в середине 20 в. во многом способствовало развитие атомной энергетики, космонавтики и других областей человеческой деятельности, потребовавших разработки способов защиты организма человека от действия ионизирующих излучений, вибрации, ускорений и других физ. факторов.
Оба названных выше направления Б. представлены соответствующими кафедрами на физ. факультетах университетов и в технических вузах, с одной стороны, и на биол, факультетах университетов, медицинских и ветеринарных вузов — с другой, имеющих различные программы и профили подготовляемых специалистов и большие различия по своей научной направленности.
Методы биофизики широко используются в теоретической и практической медицине, они дают возможность получать информацию о физ.-хим. процессах, непосредственно лежащих в основе возникновения патологических процессов. Биофизика наложила большой отпечаток на учение о патологии, на теоретические представления о воспалении, отеке, нефрите, механизмах водного баланса, мембранной проницаемости клеток и их нарушениях при патологии и т. д.
Биофиз. методами изучают терапевтический эффект действия различных физ. факторов, применяемых в физиотерапии. Тесно связаны с Б. электрофизиология и неврология, использующие биофиз. представления о природе возбуждения и проведения в нервах в норме или при интерпретации некоторых патологических проявлений. В офтальмологии широко используют достижения Б. в области фотохимических процессов, происходящих в зрительных органах. Большую роль играет Б. в понимании первичных механизмов лучевого поражения и разработке мер профилактики его лечения.
Б. органически связана с фармакологией и токсикологией, т. к. помогает понять физ.-хим. механизмы действия различных лекарственных веществ (наркотиков, ядов), а также количественные показатели их токсического действия. Б. тесно связана с иммунологией, вирусологией (методы Б., в частности, играют большую роль в выявлении природы вирусов, фагов).
В мед. практике используются также другие биофизические методы (электродиагностика, коллоидно-химические реакции, методы оценки физ.-хим. свойств эритроцитов, спектральные методы, методы электропроводности и т. д.).
«Физическая» Б. в меньшей мере связана с медициной, т. к. долго носила чисто теоретический характер и имела практическое значение лишь в дозиметрии излучений. В наст, время связи этого направления Б. с медициной расширяются, через молекулярную биологию оно вошло в область молекулярной патологии, когда заболевания связываются с нарушениями в строении крупных биополимерных молекул, напр, гемоглобина и др.
История биофизики
Чисто формально попытки применения законов физики к биологии можно отнести к моменту возникновения физики. Однако подобные попытки были наивны с точки зрения их применения и носили явно механистический характер, поскольку основную роль в них играли внешние аналогии — биол, явления, внешне сходные с физ., трактовались как физ. проявления. Так, напр., еще в середине 19 в. в качестве модели объяснения механизма мышечного сокращения предлагался пьезоэлектрический эффект (явление изменения объема кристаллов под влиянием электрического поля), на принципе к-рого была сконструирована модель — каучуковые пленки, переложенные металлическими пластинами, сокращающиеся под влиянием электрического ноля. Вместе с тем попытки применения законов физики и механики имели положительный выход. Так, Дж. Борелли объяснял законами механики все формы движения животных, в т. ч. мышечное сокращение и пищеварение. У. Гарвей на основе количественных измерений и применения законов гидравлики создал учение о кровообращении. Этапом в развитии Б. стали исследования Л. Гальвани (открытие в 1791 г. животного электричества), которые привели в итоге к созданию электрофизиологии (см.), а также вызвали интерес к изучению механизма происхождения биоэлектрических потенциалов и их значения в физиол, процессах (см. Биоэлектрические потенциалы). Первая попытка объяснения механизма возникновения биоэлектрических потенциалов связана с именем Э. Дюбуа-Реймона (середина 19 в.). Он показал связь возбуждения с развитием электрической активности. Непосредственным развитием взглядов Дюбуа-Реймона стало представление о мембранах как о поверхностях раздела, на которых происходит образование электрического заряда, автором к-рого стал Бернштейн (J. Bernstein). Открытие первого закона термодинамики — связи между работой и теплом — послужило мощным толчком для развития биоэнергетики (см.). Большая роль в формировании Б. принадлежит немецкому физиологу и физику Г. Гельмгольцу. Он дал описание глаза как оптической системы, описал работу акустического аппарата с физических позиций, впервые измерил скорость распространения нервного возбуждения. Являясь одним из создателей термодинамики, Гельмгольц первым сделал попытку применить второй закон термодинамики к живым организмам.
Крупным событием для своего времени явилось появление кабельной теории возбуждения и проведения электрического импульса (начало 20 в.), исходившей из факта обнаружения высокого электрического сопротивления нервной оболочки и сравнительно высокой электропроводности сердцевины (см. Возбуждение). Физической моделью этого явления послужил электрический кабель с металлической сердцевиной и внешней оболочкой — изолятором. Эта теория способствовала развитию представлений об электрических свойствах нервной ткани. Большой интерес вызвала модель нервного возбуждения, предложенная Лилли (R. Lillie), который показал, что если в раствор крепкой кислоты поместить металлическую проволоку и механически повредить ее поверхностный (окисный) слой, то в этой системе возникают потенциалы, по своим характеристикам напоминающие электрические явления, которые возникают при распространении возбуждения по нервам. Эта модель подвергалась детальному анализу, широко обсуждалась в литературе и стимулировала дальнейшие исследования электрических свойств нервной ткани.
С появлением в физике квантово-механических представлений о природе излучений (20-е годы) возникла теория [Д. Ли, Альтман (W. I. Altman), H. В. Тимофеев-Ресовский и др.], пытавшаяся с квантовых позиций объяснить закономерности действия излучений на организмы,— так наз. теория мишеней и попаданий. Эта теория объясняла действие различных видов излучений (ультрафиолетового, рентгеновского, а также ядерного) вероятностью попадания активных частиц в так наз. гипотетический чувствительный объем. Эта теория хотя и не достигла своей основной цели в объяснении механизма лучевого поражения, однако сыграла большую роль в выявлении количественных зависимостей между дозой и энергией, поглощенной объектом, а также и в разработке некоторых теоретических вопросов генетики и, в частности, теории гена.
Появление биофиз. химии (хим. биофизики, или физ.-хим. биологии) тесно связано с физической химией, возникшей из необходимости обобщения связей между физ. свойствами молекул и их хим. активностью. Успехи, достигнутые различными разделами физической химии (электрохимии, коллоидной химии, кинетики хим. реакций, термодинамики и т. д.), показали, что многие механизмы биол, явлений могут быть поняты с физ.-хим. точки зрения.
И. М. Сеченов, используя методы физической химии и математический анализ, изучал динамику дыхательного процесса и установил при этом количественные законы растворимости газов в биол, жидкостях. Он же предложил называть область подобного рода исследований молекулярной физиологией.
Большое влияние на развитие биофиз. исследований оказала теория электролитической диссоциации С. Аррениуса (1887). Он показал, что физ.-хим. активность солей связана с появлением заряженных ионов. Сразу же возникло предположение о том, что биол, роль солей связана с их диссоциацией на ионы, и на основе этой теории киевский физиолог 13. Ю. Чаговец построил оригинальную теорию возбуждения — так наз. конденсаторную теорию возбуждения, к-рая быстро завоевала мировую популярность. Одновременно возникло представление о клеточных мембранах как субстрате, на к-ром ионы образуют электрически заряженные слои, создавая при этом потенциал покоя.
Развивая эту идею с количественных позиций, В. Нернст (1899) создаст количественную теорию возбуждения и выводит закон, позволяющий рассчитывать пороги возбуждения в зависимости от времени воздействия при электрическом раздражении. Этот закон позволяет объяснять изменение порога возбудимости в зависимости от частоты переменного тока и рассчитать заранее возможность использования высокочастотных источников электрического тока для глубокого прогревания тканей организма (диатермия).
Теория ионного возбуждения была развита П. П. Лазаревым, который ввел представление о существовании пороговой критической точки коагуляции клеточных белков, ответственной за возникновение возбуждения. В 20-х годах 20 в. эта теория им была окончательно сформулирована. В наст, время она фигурирует в литературе как теория возбуждения Нернста — Лазарева.
В 1910 г. Р. Гебер показал, что электропроводность эритроцитов зависит от частоты переменного тока. Использовав токи высокой частоты, Р. Гебер установил, что на частотах порядка мегагерца электропроводность эритроцитов в несколько десятков раз выше, нежели электропроводность на звуковых частотах, и соответствует электропроводности 0,1 М раствора хлорида калия. Было установлено, что изменение электропроводности в зависимости от частоты приложенного электрического тока является характерным для живых клеток и по значению отношения низкочастотного сопротивления к высокочастотному можно оценить жизнеспособность клеток. Оказалось возможным по этому критерию четко определять момент гибели клеток при действии низких температур, токсических веществ и т. д. Метод электропроводности стали использовать при оценке жизнеспособности эритроцитов и других клеток тканей, при изучении свойств мембран клеток — с позиции оценки их проницаемости для электролитов. В 1911 г. Д. Доннаном была сформулирована теория электролитного равновесия (см. Мембранное равновесие), с помощью к-рой было дано физ.-хим. объяснение наличию ионных (по калию и хлору) градиентов в живых клетках, клеточных электрических потенциалов и разностей осмотического давления. Эта теория продолжает до наст, времени играть ведущую роль в понимании роли мембран и электролитных градиентов.
Многочисленные исследования показали, что, помимо белка, большую роль в клеточных мембранах играют липидные вещества. Возникла очень популярная в 30-х годах теория Натансона о мозаичном строении клеточных мембран и расположении в них липидов и белков.
К 30-м годам 20 в. были установлены основные закономерности проницаемости клеток в связи с химическими и электрическими свойствами веществ. Было показано, что незаряженные молекулы проникают в клетки соответственно своему молекулярному радиусу, заряженные — в зависимости от своих электрических свойств, а липорастворимые — в зависимости от степени растворимости в липидах мембран. Найденные закономерности легли в основу всех последующих теоретических построений и, в частности, при построении моделей строения мембран; появился глубокий интерес к пониманию физ.-хим. строения того субстрата, из к-рого построено живое вещество и мембраны. Возникла точка зрения, что белки и липиды связаны в живых клетках в единый липопротеиновый комплекс, обладающий высокой лабильностью, что живой белок и извлеченный из клеток — не идентичны. Так, В. В. Лепешкин развил концепцию об основном липопротеиновом комплексе, который в чистом виде выделить не удается и который он назвал витаидом.
В. В. Лепешкин высказал предположение о том, что неустойчивость этого комплекса определяет гибель протоплазмы при различных воздействиях, а также, что при разрушении липопротеинового основного комплекса (при разрыве связей липид — белок) должно возникать излучение — хемилюминесценция (см. Биохемилюминесценция). Несмотря на несовершенство техники того времени, ему удалось зафиксировать на фотографической пластинке излучение животных и растительных тканей в момент их гибели под действием сильных кислот.
Одним из первых процессов, ставшим объектом внимания Б. с физ.-хим. позиций, были механизмы, обусловливающие тургор клеток, а первым объектом, на к-ром начали работать в этом направлении,— эритроциты. Так, в результате работ Гамбургера (конец 19 в.) по осмотическим свойствам эритроцитов появилась методика гематокрита, к-рая довольно долго использовалась в клинике. Привлекало к себе внимание и явление гемолиза, исследование которого привело к представлению о гемолитической стойкости эритроцитов как важном показателе патологического состояния. Исследования по набуханию коллоидов под действием различных веществ, особенно кислот и щелочей, привлекли внимание патологов, которые применили коллоидно-химические закономерности к изучению явлений отека. Первая физ.-хим. теория отека была создана в конце прошлого века Фишером (О. Fischer). В своей книге «Отек и нефрит» он рассматривал цитоплазму как гемогенный коллоид и с коллоидно-химических позиций пытался интерпретировать патологические проявления, сопутствующие отеку.
Исследования Шаде (H. Schade), создавшего свою школу в мед. биофизике, привели к созданию теории воспалительного процесса. Воспаление рассматривалось им как активный процесс набухания коллоидов соединительной ткани под действием повышенной кислотности среды (первичные, по его мнению, изменения свойств коллоидов) с последующим изменением их ионного состава и электрического заряда. Результаты своих исследований в этом направлении он обобщил в книге «Физическая химия во внутренней медицине», к-рая вышла в русском переводе в 1911 г. Эта теория была в значительной мере дополнена исследованиями Д. Абрамсона, который объяснял миграцию лейкоцитов из кровеносного русла в воспалительный очаг с позиций активного электротаксиса — под действием электрических потенциалов, возникающих на границе воспалительного очага с нормальной тканью. Принципы этой теории могут быть использованы для развития представлений о сущности воспаления. Существенную роль сыграло открытие осмотического давления белков крови при поддержании осмотического равновесия в кровяном русле. Оно вызвало существенный прогресс в создании искусственных кровезаменителей. Помимо основного положения о необходимости поддержания ионно-антагонистического баланса, возникло требование создания небольшого дополнительного (онкотического) давления при помощи коллоидальных веществ. Это открытие нашло практическое применение при создании кровезаменителей еще в первую мировую войну.
Еще в начале 20 в. один из основателей хим. кинетики С. Аррениус заинтересовался возможностью расшифровки физ.-хим. природы иммунологических реакций путем изучения их кинетики. В сотрудничестве с иммунологами им было установлено, что иммунологические реакции подчиняются законам хим. кинетики — температурному, концентрационному, и что методы физ.-хим. анализа могут быть использованы для изучения реакций, протекающих в живых организмах. Эти достижения позволили добиться существенных успехов в выявлении особенностей протекания хим. процессов при некоторых физиологических и патологических состояниях.
Этапом в развитии Б. было рассмотрение с физ.-хим. точки зрения реакций, возникающих в живых клетках при действии различных фармакол, и токсических веществ, в частности наркотических. В результате многочисленных исследований физ.-хим. свойств клетки (проницаемости, электрических свойств и др.) в норме и их изменений при действии различных наркотических веществ были выявлены закономерности физ.-хим. характера. Так, было установлено, что наркоз снижает проницаемость клеточных мембран. Пытаясь установить корреляцию между физ.-хим. свойствами наркотиков и наркотическим действием, Овертон (Е. Overton, 1899) на модели масло — вода установил, что чем выше наркотическая сила, тем более сдвинуто распределение в сторону масла. Т. о., наркотическое действие вещества тем больше, чем выше его растворимость в липидах. Эта модель привела к построению Овертоном первой биофизической теории наркоза, по которой эффект наркоза обусловлен накоплением наркотических веществ на поверхности клеток в липидной фазе мембран, что приводит к изменению проницаемости и отсюда к снижению обмена веществ. Другая теория (теория Траубе) выдвигала в качестве действующего фактора капиллярноактивные свойства наркотиков. По этой теории должна быть коррелятивная зависимость между поверхностным натяжением и наркотической активностью. Было установлено, что с удлинением углеродной цепи и возрастанием капиллярной активности соответственно возрастает наркотическое действие (так наз. правило Траубе). Работы по изучению физ.-хим. механизма наркотического действия вызвали появление большого количества моделей, которые в сочетании с физиол, экспериментом позволили расширить информацию о строении мембраны, взаимосвязи белков и липидов в ней. Значительное внимание было уделено изучению механизма действия токсического агента на живое вещество. Эти исследования были вызваны необходимостью познания механизмов действия отравляющих веществ, примененных в первой мировой войне, и нахождения способов защиты от них.
В России К. А. Тимирязев изучал фотосинтетическую активность отдельных участков солнечного спектра в связи с распределением энергии в нем и особенностями спектра поглощения хлорофилла (см. Фотосинтез). А. Ф. Самойлов описал акустические свойства среднего уха. М. Н. Шатерников, использовав термодинамические представления, провел изучение энергетического баланса организма (1910—1920). В СССР (1919) по личному указанию В. И. Ленина был создан Ин-т биофизики Наркомздрава СССР, который возглавил П. П. Лазарев. Здесь ставились широкие исследования по изучению проведения и возбуждения нерва, были разработаны ионная теория возбуждения, теория цветного зрения (А. Н. Цветков), механизмы действия лучистой энергии на организмы и другие научные проблемы. Здесь работали С. И. Вавилов (вопросы предельной чувствительности человеческого глаза), П. А. Ребиндер и В. В. Ефимов (изучение физ.-хим. механизмов проницаемости и связи ее с поверхностным натяжением) и др.
Большое влияние на развитие Б. оказал Н. К. Кольцов, по инициативе к-рого при Московском ун-те была создана кафедра физ.-хим. биологии.
Его ученики широко разрабатывали вопросы влияния физ.-хим. факторов внешней среды на жизнедеятельность клетки и ее отдельных структур. В 1931 г. была открыта лаборатория физ.-хим. биологии в Ин-те биохимии им. А. Н. Баха в Москве, к-рой руководил Д. JI. Рубинштейн. При Всесоюзном ин-те экспериментальной медицины (ВИЭМ) был создан отдел биофизики, в к-ром успешно работали П. П. Лазарев, Г. М. Франк и др. В начале 50-х годов был организован Ин-т биологической физики АН СССР и кафедра биофизики биолого-почвенного ф-та МГУ; позднее кафедры биофизики были организованы при Ленинградском университете и других ун-тах.
Современное состояние биофизики
Успехи физики, хим. физики, появление новых экспериментальных методов исследования, а также идей и методов кибернетики (см.) и группирующихся вокруг нее дисциплин открыли широкие возможности для понимания законов функционирования живых систем и определили рост и направление развития современной биофизики.
Методы Б. (ее физического направления) позволили выявить пространственное расположение атомов в молекулах целлюлозы, гемоглобина и др. С Б. связаны успехи в выявлении пространственных нарушений био-молекул при некоторых так наз. молекулярных патологиях (напр., серповидноклеточная анемия). Физ. методами изучают строение нуклеиновых кислот в связи с их ролью в передаче и хранении генетической информации, а также белков и процессы конформации, которые в них происходят. Одной из важнейших проблемных задач Б. является вопрос о механизмах превращений в клетках организмов физ. энергии в химическую (см. Фотобиология, Фотохимия). Сюда же примыкает проблема превращения энергии при действии на организмы ионизирующих излучений, которые индуцируют хим. превращения, вызывающие лучевое поражение. Первичные процессы взаимодействия излучения с живой материей изучает радиационная биофизика. Этот раздел тесно связан с профилактикой лучевого поражения — противорадиационной хим. защитой. Другой стороной этого вопроса является проблема фотосенсибилизации (см.), классическим примером к-рой является сенсибилизация кожных покровов к видимому свету вследствие накопления там продуктов активного распада гематопорфиринов в результате нарушения обмена веществ при заболевании пеллагрой. Изучение механизмов сенсибилизации приобретает в наше время большую активность в связи с появлением в атмосфере и воде веществ, обладающих фотосенсибилизирующим действием, — отбросов хим. индустрии. Б. выявляет механизмы их действия и разрабатывает тонкие методы их обнаружения.
В последние десятилетия произошли сдвиги в представлениях о физ.-хим, и электрических процессах, протекающих в живых системах. Организмы и клетки стали рассматривать как открытые системы, обменивающиеся с внешней средой веществом и энергией, на основе чего возникла концепция о стационарности развития биохим, реакций как необходимом условии нормального существования (И. Пригожин). Сформировано представление о патологии как нарушении стационарности и координации биохим, реакций в клетках, к-рое обусловило разработку новых методов, позволяющих получать информацию о протекании хим. реакций в клетках прижизненно (кинетические методы, основывающиеся на хемолюминесценции, оптической спектроскопии, радиоспектроскопии и т.д.).
С позиции термодинамики открытых систем рассматривается в Б. проблема адаптации клеток и организмов к условиям внешней среды (температура, солевой состав, хим. факторы и т. д.). Пределы адаптации определяются возможностью сохранения стационарности в развитии биохим, реакции (см. Адаптация, биофизические механизмы). Разработаны методы, позволяющие устанавливать в клетках четкие пороги нарушения стационарности и пороги адаптации; их применение создало возможность быстрой оценки адаптационных пределов растительных и животных организмов (напр., оценка оптимальных условий хранения человеческих тканей, предназначенных для трансплантации).
На центральное место выдвинулась проблема строения и функции мембран. Эта проблема уже давно интересовала Б., но ранее она касалась только клеточной мембраны, тогда как в наст, время диапазон расширился и объектом внимания стали мембраны органоидов клеток: лизосом, рибосом, митохондрий, микросом и т. д. В современном биофизическом аспекте мембрана рассматривается как хим. реактор клетки или отдельного ее органоида, который в основном регулирует стационарное развитие биохимических реакций. С точки зрения Б. важнейшей деталью мембранной деятельности является транспорт электронов. В связи с этим большое внимание Б. привлекли липиды и фосфолипиды, являющиеся субстратом переноса электронов. Изучаются вопросы о физ.-хим. структуре этого субстрата и взаимном участии белков и липидов в создании структуры мембран. Основная задача Б.— получение прижизненной информации о свойствах этих образований и их изменениях при различных воздействиях и патологических процессах. Первостепенную роль при этом приобретает разработка методов, которые позволяют анализировать физ.-хим. свойства клеток, не оказывая влияния на них. Интенсивно разрабатываются в этом направлении методы по измерению диэлектрических свойств, электропроводности, электрических потенциалов, спектральных характеристик, хемо люминесценции и т. д.
Значительно расширились возможности получения информации о состоянии мембран с помощью микроэлектродной техники. Открылись возможности измерения внутриклеточных биопотенциалов и выявления механизмов внутриклеточных электрохимических процессов (см. Биоэлектрические потенциалы). Значительно расширилось понимание механизмов активного транспорта и роли электрических градиентов в переносе различных веществ через мембраны клеток. Доминирующую роль играют исследования в направлении выявления природы транспорта ионов натрия, калия, кальция и тех энергетических источников, которые осуществляют его.
В связи с выявлением большой роли липидов в функциях мембран привлекается внимание Б. к липопротеиновым малоустойчивым комплексам, являющимся основным строительным материалом мембран. В последние годы получила распространение точка зрения, что эти липопротеиновые комплексы являются наиболее уязвимыми (ненадежными) деталями клеток. «Ненадежность» мембран объясняют тем, что в их липидной части могут возникать самопроизвольно неферментативные, радикальные, реакции окисления (см. Антиокислители), развивающиеся с самоускорением по цепному механизму. Такие неуправляемые реакции приводят к разрушению липопротеиновых структур и нарушают механизмы транспорта электронов. Это так наз. явление «переокисления мембран» вызвало большой интерес, т. к. с ним связано возникновение многих патологических процессов (при лучевом поражении, при действии токсических веществ и т. д.).
В связи с тем, что имеются большие трудности в использовании метода ЭПР (см. Электронный парамагнитный резонанс) при изучении живых клеток, и тем, что он обнаруживает только долгоживущие малоактивные радикалы, разрабатываются другие методы. Так, наряду с хемолюминесценцией, обнаруживающей короткоживущие радикалы окислительной природы и позволяющей получать непосредственные данные об их присутствии в живых клетках, развиваются методы прижизненного обнаружения радикалов методом сополимеризации (см.). Последняя происходит при введении в клетки мономеров, меченных радиоактивными изотопами, которые способны полимеризоваться по «радикальному» механизму. Полученные данные стимулировали развитие концепции о том, что активные радикалы и «радикальные» реакции являются характерными спутниками патологических процессов (канцерогенез, воспалительные реакции и т. д.).
Все эти исследования поставили новую проблему — проблему изучения механизмов стабилизации внутриклеточных мембран и выявления отдельных факторов, регулирующих окислительные процессы. Внимание было привлечено к антиоксидантам, или антиокислителям, липидов мембран (токоферолу, убихинону и т. д.) и их антагонистов.
Изучение антиокислителей как регуляторов окислительного равновесия в липидных структурах клеток является важнейшей проблемой современной Б.
В СССР во всех университетах (биологические и биолого-почвенные факультеты) и мед. вузах введен курс Б. с практическими занятиями как общеобразовательный предмет.
В 1963 г. во 2-м ММИ создан медикобиологический факультет с отделением биофизики, задача которого — подготовка биофизиков медицинского профиля. Имеется ряд биофиз. научных центров, в которых проводятся научно-исследовательские работы по Б.
В СССР это Ин-т биофизики АН СССР (Пущино-на-Оке), Ин-т биофизики Минздрава СССР, кафедра биофизики биологического ф-та МГУ, кафедра биофизики физического ф-та МГУ, отдел биофизики Ин-та физики Сибирского отделения АН СССР и др.
За рубежом: Великобритания — Лаборатория биофизики Лондонского ун-та, отделы биофизики в Кембриджском и Эдинбургском ун-тах; ГДР — Ин-т биофизики (Берлин); КНР — Ин-т биофизики (Пекин); Польша — Ин-т биохимии и биофизики АН ПНР (Варшава); США — йельский ун-т, Рокфеллеровский ун-т, Гарвардский ун-т, Ун-т им. Вашингтона (Сент-Луи), Массачусетский технологический ин-т; Франция — Ин-т физико-химической биологии (Париж); ФРГ — Ин-т биофизики общества им. Макса Планка (Франкфурт-на-Майне), Ин-т биологической и медицинской физики, Геттингенский ун-т; Чехословакия — Ин-т биофизики (Брно); Япония — университеты в Токио и Осака.
Регулярно собираются (начиная с 1961 г.) международные конгрессы по биофизике, созываемые Международным союзом теоретической и прикладной биофизики, в Центральный совет к-рого входят представители СССР. Общества биофизиков существуют в США, Великобритании. В Москве имеется секция биофизики при Московском обществе испытателей природы.
Моделирование в биофизике
Метод моделирования в Б. применяется для познания физ.-хим. механизмов, лежащих в основе физиологических и патологических процессов. Основная задача такого моделирования — выделение изучаемого явления в «чистом» виде, попытка отфильтровать тот или иной процесс от возмущающих факторов и сопровождающих явлений в сложной системе, показать сущность исследуемого процесса.
В первую очередь для понимания физ.-хим. процессов, протекающих в клетках высших организмов, используются в качестве моделей более простые организмы или клетки, где изучаемые механизмы устроены проще. Так, напр., при изучении роли ионных процессов в проведении возбуждения в нервах высших животных в качестве модели была использована водоросль нителла, а также нервные волокна кальмара. Для понимания процесса мышечного сокращения широко использовались сократительные мионемы простейших и мышечные фибриллы низших организмов. При изучении биол, действия лучистой энергии широко используются культуры клеток, на которых удалось устранить влияние дистанционных факторов, исходящих от систем сложных организмов.
Наряду с перечисленными биологическими моделями применяются и чисто физ.-хим. модели, которые строятся из веществ, близких к тем, из которых строятся биологические субстраты. Такие простые модели могут реально воспроизводить те или иные явления и используются при проверке каких-либо гипотез.
При отсутствии прямой информации о строении биологических мембран искусственные модели сыграли большую роль в развитии представлений о структуре мембран и о роли этой структуры в функции мембран клетки и органоидов. Известно много моделей мембран, построенных из липидов, фосфолипидов, белков в различных структурных комбинациях. В таких мембранах удавалось имитировать, напр., явления избирательной проницаемости. На моделях велось изучение действия наркотиков и удалось вывести законы наркотического эффекта и оценить силу воздействия наркотиков на высшие организмы.
В литературе известно также много моделей клеточного деления, на которых удалось выявить роль в этом процессе веществ, обладающих поверхностной активностью; существуют модели мышечного сокращения, доказавшие роль некоторых физ.-хим. факторов в изменении конфигурации полимеров белка; моделью патологической проницаемости капилляров для лейкоцитов служили искусственно приготовленные гели и т. д.
В Б. используют и чисто физические модели. К таким моделям относятся, напр., комбинации электрических сопротивлений и емкостей, которые при пропускании электрического тока воспроизводят закономерности, характерные для живых систем. Однако в ряде случаев подобные модели не являются моделями в строгом смысле, т. к. ничего не говорят непосредственно о механизме изучаемого биологического явления и воспроизводят только поведение биологической системы. Поэтому они могут быть названы аналогами, в модели же превращаются только при введении ряда дополнительных допущений.
С переходом к рассмотрению организма и его функций как сложной целостной системы началось применение математического моделирования. При этом модели строятся как сумма взаимодействующих процессов, описываемых дифференциальными уравнениями. Такие модели позволяют устанавливать взаимосвязь физ.-хим. процессов. Обсчеты ведутся на ЭВМ; для решения привлекаются и другие математические приемы, в частности теория графов, к-рая позволяет решать подобные задачи, не прибегая к дифференциальным уравнениям. Одновременно используют кибернетические методы, применяемые к анализу сложных биологических систем, напр, связи физ.-хим. строения биологических структур с физиологическими функциями (в частности, липопротеидов в развитии патологических процессов).
Библиография: Аккерман Ю. Биофизика, пер. с англ., М., 1964; Байер В. Биофизика, пер. с нем., М., 1962; Биофизика, под ред. Б. Н. Та-русова и О. Р. Колье, М., 1968; В о л ь-кен штейн М. В. Молекулы и жизнь, М., 1965, библиогр.; П а с ы н с к и й А. Г. Биофизическая химия, М., 1968; G e н т^-ДьердьиА. Биоэнергетика, пер. с англ., М., 1960; Сетлоу Р. и Поллард Э. С. Молекулярная биофизика, пер. с англ., М., 1964, библиогр.; Тару-с о в Б. Н. Основы биофизики и биофизической химии, ч. 1, М., 1960; он же, Сверхслабое свечение живых организмов, М., 1972.
Периодические издания — Биофизика, М., с 1956; Бюллетень экспериментальной биологии и медицины, М., с 1936; Доклады АН СССР, Серия биологическая, М., с 1966; Молекулярная биология, М., с 1967; Научные доклады высшей школы, Биологические науки, М., с 1958; Радиобиология, М., с 1961; Advances in Biological and Medical Physics, N. Y., с 1948; Archives of Biochemistry and Biophysics, N. Y., с 1951 (1942—1950 — Archives of Biochemistry); Biochimica et biophysica acta, Amsterdam, с 1947; Biophysical Journal, N. Y., с 1960; Bulletin of Mathematical Biophysics, Chicago, с 1939; Cold Spring Harbor Symposia on Quantitative Biology, N. Y., с 1933; Progress in Biophysics and Biophysical Chemistry, Oxford, с 1950.
Моделирование в Б. — Математическое моделирование жизненных процессов, под ред. М. Ф. Веденова и др., М., 1968; Моделирование в биологии, пер. с англ., под ред. Н. А. Бернштейна, М., 1963; У т е-у ш Э. В. и У т e у ш 3. В. Введение в кибернетическое моделирование, М., 1971.