Что такое базовая станция
Базовая станция сотовой связи
На сегодняшний день почти все пользуются мобильной связью. Количество активных sim-карт в 2017 году в РФ составило 255,41 миллиона.
Развеем мифы об опасности базовых станций.
Если у вас на крыше есть такое устройство, то оно безвредно для жителей дома. Антенны базовых станций имеют направленное действие. Под себя они не «светят».
По законам физики излучение угасает пропорционально квадрату расстояния. Тогда, если расстояние от базовой станции увеличилось в 2 раза, то излучение уменьшилось в 4 раза. Базовые станции обычно находятся на определенном расстоянии от жилья. Это исключает воздействие излучения на здоровье человека. Поверьте, поднесенный к голове сотовый телефон излучает на вас значительно более сильно, чем установленная на крыше антенна.
Базовая станция GSM состоит:
Основной блок BTS, блок приемопередатчиков – TRX, антенно-фидерная система связи. Более подробно расположение блоков на схеме базовой станции.
Недостаток базовой станции GSM – это небольшой радиус действия, GSM телефон не может работать при расстоянии от базовой станции в 35 км.
Как же устроена базовая станция?
Базовые станции 4 и 5 поколения – к ним подводят скоростные волоконно-оптические каналы связи.
Сопутствующее оборудование – системы климат-контроля, электроснабжения, вентиляции, безопасности, усилители сотовой связи, и прочее в самом здании или рядом, в специальных контейнерах или корпусах.
Есть мнение, если антенн будет много, и они будут высоко, а передатчик будет работать «на полную катушку», то связь будет лучше, но это не так. Часто сознательно уменьшают зону действия некоторых базовых станций.
Используют различные типы базовых станций:
макросоты с радиусом действия до 100 км.,
микросоты с радиусом до 5 км.,
пикосоты или фемтосоты, которые устанавливают в местности с большой плотностью населения (по форме напоминает ноутбук).
Связь базовых станций:
Небольшие базовые станции передают сигнал друг другу посредством оптоволоконной кабельной системы.
Габаритные базовые станции,которые покрывают большие расстояния, связываются между собой через радиорелейные тарелки.
Роскомнадзор сообщил, что операторы «большой четвёрки» продолжают увеличивать число базовых станций в России. В первом полугодии 2018 года стало уже 624 800 базовых станций всех сотовых операторов, что на 9 % больше, чем в первой половине 2017 года.
Строительство базовых станций – это сложный и трудоемкий процесс, включает в себя:
Подбор площадки и заключение договора аренды.
Оформление разрешительной документации, санитарно-эпидемиологическое заключение о безопасности станции для окружающих, документации на оборудование, на металлоконструкции.
Производство конструкций антенных опор.
Монтаж металлоконструкций мачт.
Изготовление и установка контейнера для оборудования.
Монтаж антенно-фидерных устройств.
Монтаж оборудования базовой станции и ЭПУ.
Подключение электропитания и пуско-наладочные работы.
Недавно начали использовать бесфидерные базовые станции. Они удешевляют стоимость аппаратуры и ее монтажа, их используют для связи в формате 3G.
Часто устанавливают базовые станции на крышах жилых домов. Это разрешено законом, но необходимо соблюдение некоторых правил:
Уровень электромагнитного поля (ЭПМ) в прилегающей зоне не должен превысить 10 мВт/см2;
антенна должна возводиться на уровне от 1,5 до 5 метров от поверхности крыши и на расстоянии 10–25 метров от других строений;
Возможность доступа людей на крышу должна быть ограничена.
Размещение базовой станции происходит после собрания собственников помещения (в соответствии со статьей 44 ЖК РФ), и проголосовать должно не менее 1/2 жильцов.
Многие считают, что сотовые операторы гребут миллиарды, практически не вкладывая свои средства, но это не так.
Операторы вкладывают деньги в строительство вышек сотовой связи, установку базовых станций. Тратят средства на лицензию на частоты (2G дороже, чем 4G), на аренду, содержание и обслуживание БС.
Цена комплекта оборудования для базовой станции одного оператора зависит от стандарта связи (последнее поколение дешевле), региона и высоты сооружения. Стоимость 1 комплекта составляет примерно 24 000. руб. в месяц в Поволжье и на Северном Кавказе и до 41 000 руб. на Дальнем Востоке.
Африканские операторы устанавливают базовые станции сотовой связи в реках
на специальных плотах. Так увеличивается зона покрытия на близлежащие
селения, и саму реку. Ввиду отсутствия дорог, все основные транспортные пути идут по воде. Также уменьшается вероятность кражи оборудования.
Базовая станция, работающая на солнечной энергии в Краснодарском крае и в Западной Австралии.
В Великобритании, в центре Абердинширского леса установлена автономная базовая станция с источником питания на водородно-топливных элементах. Такая же станция установлена в Шотландии, возле центра по лыжному спорту.
Сотовая связь. Часть 1 Базовая станция.
Как и обещал ранее, сегодня я расскажу вам что же именно из себя представляет базовая станция и как она работает. Многие люди считают, что для функционирования связи достаточно развесить в разных направлениях некоторое количество антенн, подключить их к сети и все будет работать, но не все так просто в нашей жизни)
Те самые антенны, которые мы каждый день видим на крышах домов и на мачтах, это лишь верхушка айсберга всей сотовой связи) За ними кроются основные платы управления, которые регламентируют работу всего радио-оборудования, о них я вам сегодня и поведаю.
Рабочий экспонат не пришлось долго искать, благо прямо на чердаке моего офиса имеется коммерческая базовая станция, которая в данный момент предоставляет услуги для двух сотен людей 🙂
При входе в чердачное помещение нас встречает металлический бокс, с сияющей рыжей эмблемой (кто живет в Татарстане, тот с легкостью поймет о какой компании идет речь). Как раз в этой каморке и находится оборудование базовой станции, которое мы будем ломать изучать.
Рядом находится пчелиный бокс конкурентов, а также бокс мегафона)
Вступление немного затянулось, поэтому пора переходить к мясу, а именно к управляющим платам!
Вот в таком беспорядке пребывает 99% всех базовых станций у любого оператора) В данном случае перед нами стоит оборудование компании Ericsson. Многие люди знают о знаменитых телефонах Ericsson, которые были популярны в нулевых, но шведы не ограничились выпуском трубок и пошли дальше. В данный момент это один из основных вендоров-поставщиков оборудования для сотовых операторов.
Сама база монтируется в стандартную 19ти дюймовую стойку при помощи корзины-шасси. Данная корзина способна вмещать в себя два юнита (две платы управления)
Основные порты здесь те же самые, только в плане транспортного подключения реализованы два оптических порта TN B и TN C (пропускная способность оптических портов на порядок выше, что как раз нам и необходимо при работе LTE)
Пока что на этом все, дорогие друзья 🙂 надеюсь, что вам не было скучно и вы смогли почерпнуть в этом посте что-то интересное для себя)
Чо какой рукожопый обжим под ешку для дуга и почему по одной ешке только:)?
жлобы, бытовой сплит для негров ставят
Привет с высоты. Выше всех
80 метров, кому интересно
Снова в бой
Для всех, кто боится высоты.
Делали замену 4G. Высота 65 метров.
Красота
Правительство утвердило использование радиочастот 24 ГГц для 5G
В частности, постановление вносит в документ следующие дополнение: «Полоса радиочастот 24,25-25,25 ГГц может использоваться сетями связи стандарта 5G/IMT-2020».
На упомянутом заседании ГКРЧ по результатам научно-исследовательской работы определила перспективными для 5G диапазоны радиочастот 694-790 МГц, 2300-2400 МГц, 2570-2620 МГц, 4400-4990 МГц и 24,25-27,5 ГГц.
Первую в РФ лицензию на оказание услуг мобильной связи стандарта 5G/IMT-2020 в диапазоне 24,25-24,65 ГГц в июле 2020 года получила МТС.
Наиболее перспективным для 5G является диапазон частот 3,4-3,8 ГГц, но в РФ он активно используется силовыми ведомствами, и пока обсуждения с силовиками по его расчистке не дали результатов. В качестве альтернативы Минцифры предлагает операторам расчищать спектр в диапазонах 700 МГц, 4,4-4,99 ГГц и 24,25-29,5 ГГц во всех регионах России.
Сотовая связь. Часть 2
Базовые станции (БС)
Базовые станции они повсюду. Их много и количество только увеличивается, ввиду потребностей абонентов. Все эти конструкции на невысоких зданиях, все эти красно-белые башни на трассах, эти фонарные столбы в городе, обвешанные оборудованием как новогодние елки, все это инфраструктура базовых станции.
Несмотря на разные носители и компоновку, сформированы они практически всегда из четырех составляющих. (см.рисунок)
1. Климатический шкаф с оборудованием.
2. Приемо-передающие радиомодули.
4. Инфраструктура транспортной сети.
Ну и конечно всякие проводочки кабелёчки
Опытный чувак, по внешнему виду блоков, шкафов и их комбинаций вполне может определить принадлежность станции к оператору, что облегчает работу ремонтным бригадам, приезжающим устранять аварию по координатам и обнаруживающим на этом месте всех операторов разом. Часто маркировка отсутствует, либо приходит в негодность, учитывая лютость нашей погоды. Иногда случаются действительно анекдотичные ситуации, когда бригада приезжает на демонтаж или перенос станции к примеру МТС, а демонтирует в итоге станцию, например Билайн. Случай действительно имел место (бренды операторов изменены).
Как правило, сами сооружения принадлежат различным компаниям, которые сдают на них место в аренду операторам связи. Есть, конечно, опоры и носители, принадлежащие самим операторам, но на сколько я знаю, операторы предпочитают аренду, так как при возникновении каких-либо траблов с земельными или строительными вопросами, оператору легче снять свои железки и спокойно перевесить их в другое место.
Особо удачным решением, в крупных городах стали так называемые опоры двойного назначения (ОДН), представляющие собой железный столб, на котором спокойно размещается оборудование операторов (на одной опоре можно разместить до трех операторов связи единовременно) и фонари уличного освещения, потому и называется двойного назначения. Когда я говорил «удачным решением», то удачное оно исключительно с коммерческой точки зрения. Цена за аренду относительно не высока и так как опорами этими владеют всего несколько организаций, этот факт сильно упрощает процесс заключения договора аренды или ее продление.
Ну а что касается эксплуатации станций на этих опорах… О, все богатство русского языка не сможет выразить и части «восхищения» этими опорами, от сотрудников ремонтных бригад. Самая попа в том, что при производстве работ на средних и верхних сегментах столбов, необходимо привлечение и использование автовышек, которые нужно раскорячить на проезжей части, перекрывая движение, что, как вы понимаете влечет за собой определенные трудности. Если плановые работы еще можно согласовать с ГИБДД и еще черти знает с кем, то аварию на станции предугадать довольно сложно, ввиду чего отчаянные, но ответственные сотрудники на свой страх и риск оперативно разворачивают автовышки и на скорость устраняют аварии. В общем, если вы попали в небольшой затор из-за перегородившей полосу автовышки, будьте терпимы, это не прихоть и не каприз – это необходимость.
Если возникли вопросы, задавайте в комментариях. Следующий пост планирую написать о безопасности БС в городской застройке, поэтому эти вопросы пока не задавайте, дождитесь продолжения.
Базовые станции: как все начиналось
Первые ископаемые останки базовых станций семейства мобильных телесистем московского региона датируются 1994 годом. Это были настоящие динозавры – огромные и с маленьким объемом головного мозга функционала. Внешне они походили на большой холодильник, работали только в одном стандарте и в одном частотном диапазоне. Первая базовая станция МТС в Москве работала в стандарте GSM и только в диапазоне частот 900 МГц.
Из чего же состояли «динозавры» сотовой связи и как они эволюционировали до сегодняшнего дня расскажет эксперт отдела архитектуры сети радиодоступа компании МТС Константин Лучков. Его ник Luchkov Передаем ему слово.
Привет! Давайте сразу заглянем в этот «холодильник».
На верхней полке вмонтированы блоки питания, платы управления и транспортная карта. Чуть ниже, в «морозильном отделении», штабелями лежат приемопередатчики и дуплексеры.
А вот и типичная малогабаритная (но очень уютная) «кухня» тех времен, в которой жил наш «динозавр».
«Кухня» была плотно заставлена телекоммуникационным оборудованием. Это и система питания, система кондиционирования, стойка с транспортным оборудованием (например, радиорелейное оборудование). Каждая из этих систем, соизмеримая по размерам с БС, представляла собой отдельный шкаф. Кстати, на каждой «кухне» были стол и стул (слева на фото).
Но вернемся к нашему «динозавру». От верхней крышки базовой станции тянулись толстые фидера (в два пальца толщиной), которые выходили из контейнера к антеннам. Типичная длина фидерной трассы была порядка 70 метров, к каждой антенне подводились два фидера (использовался разнесенный прием). Антенн на типичной однодиапазонной станции было три. То есть на первых станциях прокладывали шесть фидерных трасс, а позже (при появлении нового диапазона GSM1800) еще шесть.
Одним из основных недостатков применения фидерных трасс были потери мощности сигнала, которые прямо пропорциональны длине фидерной трассы и используемому диапазону частот. Эти недостатки подтолкнули эволюцию оборудования базовых станций на новый виток развития.
Через десять лет после появления первой базовой станции сотовой связи в московском регионе, в 2004 году, произошли критические изменения в телекоммуникационной среде обитания. Появился новый интерфейс взаимодействия контроллера с радиомодулями БС — CPRI (Common Public Radio Interface).
Глава 2. Настоящее
На смену старым «холодильникам» пришел новый тип базовой станции — с распределенной архитектурой. Стали не нужны громоздкие фидерные трассы. Базовая станция распалась на системный модуль (мозг БС) размером с кейс офисного менеджера и приемопередатчик (он же RRU – remote radio unit), связанные между собой по оптической линии через радиоинтерфейс CPRI. От фидера остались только рудименты в виде коротких джамперов (1-3 метра), связывающие приемопередатчик с антенной. В дополнение к существующему GSM были внедрены стандарты UMTS и LTE. Появились базовые станции outdoor-исполнения, для размещения которых более не требовалось помещение («кухня»).
Распределенные БС оказались гораздо более приспособленными к жизни. Они стали меньше, и их стало легче размещать. Сократилось потребление электроэнергии, так как пропали потери мощности в фидере. Появился новый функционал.
До определенного времени для работы каждого стандарта требовалось свое оборудование – отдельные приемопередатчики (RRU), отдельные системные модули (SM), отдельные антенны. По прошествии еще почти десяти лет, в 2013 году, Минкомсвязь России разрешила технологическую нейтральность, что позволяло реализовывать стандарт LTE на частотах GSM900/1800. Также следует отметить, что еще раньше, в 2011 году, была разрешена техническая нейтральность GSM/UMTS900. К оборудованию базовой станции были предъявлены новые требования, которым нужно было соответствовать – размеры станций уменьшались, а мозг функционал рос.
Приемопередатчики научились поддерживать работу в трех стандартах: GSM/UMTS/LTE. Сейчас типичным случаем является одновременная работа приемопередатчика в двух стандартах, например, в GSM/LTE1800. Такой режим работы называется RF-sharing.
Затем появилась необходимость одновременной работы в разных стандартах системных модулей. Данный функционал называется single RAN (единое оборудование радиоподсистемы для нескольких стандартов) и он уже реализован на сети МТС.
Появление новых стандартов (таких как LTE), а также более сложного функционала привело к повышению требований к точности синхронизации. Потребовалась точность фазовой (она же временная) синхронизации, что незамедлительно сказалось на составе базовой станции. В ее состав добавился модуль спутниковой синхронизации GPS/Glonass.
Появился новый подвид компактных базовых станций – small cell. Он представляет собой компактную базовую станцию размером не больше коробки из-под кроссовок, объединяющей в едином корпусе системный модуль, приемопередатчик, модуль GPS/Glonass и, как правило, антенну.
Компактность small cell позволила МТС устанавливать станции практически в любом месте: в вагонах метро, кафе и офисных зданиях. Кстати, при желании, компактную базовую станцию может купить каждый абонент МТС. К ядру сети станция подключится автоматически при подсоединении к интернету.
Глава 3. Будущее
Светлое будущее сотовой связи — стандарт 5G (про него вы можете прочитать подробнее здесь). Базовым станциям неизбежно придется измениться еще раз, так как стандарт 5G подразумевает использование бОльших порядков MIMO, что делает невозможным подключение приемопередатчика к антенне через джампер. Слишком много джамперов понадобится: 16, 32, а, может быть, 64. Радиомодуль будет интегрирован в антенну. Такое решение называется активной антенной системой (AAS – active antenna system).
По внешнему виду AAS не отличим от обычной антенны сотовой связи, но посмотрите, сколько элементов базовой станции находится у нее внутри.
Базовая станция, реализованная на решении AAS, теперь представляет из себя системный модуль (SM), подключенный к «антенне» (к AAS). Возможен и гибридный вариант, когда активная антенная система включает несколько активных диапазонов (несколько приемопередатчиков активных диапазонов) и одновременно с этим поддерживает подключение нескольких пассивных диапазонов. При этом для пассивных диапазонов используются отдельные RRU, не входящие в состав активной антенной системы.
Но на этом эволюция оборудования базовых станций, наверняка, не остановится. Одним из возможных сценариев в будущем может стать переход к облачной (cloud) архитектуре оборудования базовой станции. Возможно, в один прекрасный момент мы сможем полностью отказаться от использования системного модуля. На базовой станции останется только один блок — активная антенная система с интегрированным функционалом системного модуля, которая будет подключаться по оптической транспортной линии в ядро сети.
В заключении хочу с гордостью отметить, что компания МТС занимает передовые позиции в тестировании 5G и уже сейчас активно использует на сети:
• оборудование БС 5G-ready;
• оборудование БС cloud-ready;
• оборудование AAS (сеть нескольких городов России полностью реализована на AAS).
Базовые станции сотовой связи и их антенная часть
И вновь немного общеобразовательного материала. На этот раз речь пойдет о базовых станциях. Рассмотрим различные технические моменты по их размещению, конструкции и дальности действия, а также заглянем внутрь самого антенного блока.
Базовые станции. Общие сведения
Так выглядят антенны сотовой связи, установленные на крышах зданий. Эти антенны являются элементом базовой станции (БС), а конкретно – устройством для приема и передачи радиосигнала от одного абонента к другому, и далее через усилитель к контроллеру базовой станции и другим устройствам. Являясь наиболее заметной частью БС, они устанавливаются на антенных мачтах, крышах жилых и производственных зданий и даже дымовых трубах. Сегодня можно встретить и более экзотические варианты их установки, в России их уже устанавливают на столбах освещения, а в Египте их даже «маскируют» под пальмы.
Подключение базовой станции к сети оператора связи может производиться по радиорелейной связи, поэтому рядом с «прямоугольными» антеннами блоками БС можно увидеть радиорелейную тарелку:
С переходом на более современные стандарты четвертого и пятого поколений, для удовлетворения их требований подключать станции нужно будет исключительно по волоконной оптике. В современных конструкциях БС оптоволокно становится неотъемлемой средой передачи информации даже между узлами и блоками самой БС. К примеру, на рисунке ниже показано устройство современной базовой станции, где оптоволоконный кабель используется для передачи данных от RRU (выносные управляемые модули) антенны до самой базовой станции (показано оранжевой линией).
Оборудование базовой станции располагается в нежилых помещениях здания, либо устанавливается в специализированные контейнеры (закрепленные на стенах или столбах), ведь современное оборудования выполняется довольно компактно и может запросто поместиться в системный блок серверного компьютера. Часто радиомодуль устанавливают рядом с антенным блоком, это позволяет уменьшить потери и рассеивание передаваемой в антенну мощности. Так выглядят три установленных радиомодуля оборудования базовой станции Flexi Multiradio, закрепленные прямо на мачте:
Зона обслуживания базовых станций
Для начала следует отметить, что бывают различные типы базовых станций: макро, микро, пико и фемтосоты. Начнем с малого. И, если кратко, то фемтосота не является базовой станцией. Это, скорее, Access Point (точка доступа). Данное оборудование изначально ориентируется на домашнего или офисного пользователя и владельцем такого оборудования является частное или юр. лицо, не относящееся к оператору. Главное отличие такого оборудования заключается в том, что оно имеет полностью автоматическую конфигурацию, начиная от оценки радиопараметров и заканчивая подключением к сети оператора. Фемтосота имеет габариты домашнего роутера:
Пикосота – это БС малой мощности, принадлежащая оператору и использующая в качестве транспортной сети IP/Ethernet. Обычно устанавливается в местах возможной локальной концентрации пользователей. Устройство по размерам сравнимо с небольшим ноутбуком:
И наконец, макросота – стандартная базовая станция, на базе которой строятся мобильные сети. Она характеризуется мощностями порядка 50 W и радиусом покрытия до 100 км (в пределе). Масса стойки может достигать 300 кг.
Зона покрытия каждой БС зависит от высоты подвеса антенной секции, от рельефа местности и количества препятствий на пути до абонента. При установке базовой станции далеко не всегда на первый план выносится радиус покрытия. По мере роста абонентской базы может не хватить максимальной пропускной способности БС, в этом случае на экране телефона появляется сообщение «сеть занята». Тогда оператор со временем на этой территории может сознательно уменьшить радиус действия базовой станции и установить несколько дополнительных станций в местах наибольшей нагрузки.
Когда нужно увеличить емкость сети и снизить нагрузку на отдельные базовые станции, тогда и приходят на помощь микросоты. В условиях мегаполиса зона радиопокрытия одной микросоты может составлять всего 500 метров.
В условиях города, как ни странно, встречаются такие места, где оператору нужно локально подключить участок с большим количеством трафика (районы станций метро, крупные центральные улицы и др.). В этом случае применяются маломощные микросоты и пикосоты, антенные блоки которых можно располагать на низких зданиях и на столбах уличного освещения. Когда возникает вопрос организации качественного радиопокрытия внутри закрытых зданий (торговые и бизнес центры, гипермаркеты и др.) тогда на помощь приходят пикосотовые базовые станции.
За пределами городов на первый план выходит дальность работы отдельных базовых станций, так установка каждой базовой станции в удалении от города становится все более дорогостоящим предприятием в связи с необходимостью построения линий электропередач, дорог и вышек в сложных климатических и технологических условиях. Для увеличения зоны покрытия желательно устанавливать БС на более высоких мачтах, использовать направленные секторные излучатели, и более низкие частоты, менее подверженные затуханию.
Так, например, в диапазоне 1800 МГц дальность действия БС не превышает 6-7 километров, а в случае использования 900–мегагерцового диапазона зона покрытия может достигать 32 километров, при прочих равных условиях.
Антенны базовых станций. Заглянем внутрь
В сотовой связи чаще всего используют секторные панельные антенны, которые имеют диаграмму направленности шириной в 120, 90, 60 и 30 градусов. Соответственно для организации связи во всех направлениях (от 0 до 360) может потребоваться 3 (ширина ДН 120 градусов) либо 6 (ширина ДН 60 градусов) антенных блоков. Пример организации равномерного покрытия во всех направлениях показан на рисунке ниже:
А ниже вид типовых диаграмм направленности в логарифмическом масштабе.
Большинство антенн базовых станций широкополосные, позволяющие работать в одном, двух или трех диапазонах частот. Начиная с сетей UMTS, в отличие от GSM, антенны базовых станций умеют изменять площадь радиопокрытия в зависимости от нагрузки на сеть. Один из самых эффективных методов управления излучаемой мощностью – это управление углом наклона антенны, таким способом изменяется площадь облучения диаграммы направленности.
Антенны могут иметь фиксированный угол наклона, либо имеют возможность дистанционной регулировки с помощью специального программного обеспечения, располагаемого в блоке управления БС, и встроенных фазовращателей. Существуют также решения, позволяющие изменять зону обслуживания, от общей системы управления сети передачи данных. Таким образом, можно регулировать зону обслуживания всего сектора базовой станции.
В антеннах базовых станций применяется как механическое управление диаграммой, так и электрическое. Механическое управление проще реализуется, но часто приводит к искажению формы диаграммы направленности из-за влияния конструктивных частей. Большинство антенн БС имеет систему электрической регулировки угла наклона.
Современный антенный блок представляет собой группу излучающих элементов антенной решетки. Расстояние между элементами решетки выбирается таким образом, чтобы получить наименьший уровень боковых лепестков диаграммы направленности. Наиболее часто встречаются длины панельных антенн от 0,7 до 2,6 метров (для многодиапазонных антенных панелей). Коэффициент усиления варьируется от 12 до 20 dBi.
На рисунке ниже (слева) представлена конструкция одной из наиболее распространенных (но уже устаревающих) антенных панелей.
Здесь излучатели антенной панели представляют собой полуволновые симметричные электрические вибраторы над проводящим экраном, расположенные под углом 45 градусов. Такая конструкция позволяет формировать диаграмму с шириной главного лепестка 65 или 90 градусов. В такой конструкции выпускаются двух- и даже трехдиапазонные антенные блоки (правда, довольно крупногабаритные). Например, трехдиапазонная антенная панель такой конструкции (900, 1800, 2100 МГц) отличается от однодиапазонной, примерно в два раза большим размером и массой, что, конечно же, затрудняет ее обслуживание.
Альтернативная технология изготовления таких антенн предполагает выполнение полосковых антенных излучателей (металлические пластины квадратной формы), на рисунке выше справа.
А вот еще один вариант, когда в качестве излучателя используются полуволновые щелевые магнитные вибраторы. Линия питания, щели и экран выполняются на одной печатной плате с двухсторонним фольгированным стеклотекстолитом:
С учетом современных реалий развития беспроводных технологий, базовые станции должны поддерживать работу 2G, 3G и LTE сетей. И если блоки управления базовых станций сетей разных поколений удается вместить в один коммутационный шкаф без увеличения габаритного размера, то с антенной частью возникают значительные трудности.
Например, в многодиапазонных антенных панелях количество коаксиальных соединительных линий достигает 100 метров! Столь значительная длина кабеля и количество паяных соединений неизбежно приводит к потерям в линиях и снижению коэффициента усиления:
С целью снижения электрических потерь и уменьшения точек пайки часто делают микрополосковые линии, это позволяет выполнить диполи и систему запитки всей антенны по единой печатной технологии. Данная технологиях проста в производстве и обеспечивает высокую повторяемость характеристик антенны при ее серийном выпуске.
Многодиапазонные антенны
С развитием сетей связи третьего и четвертого поколений требуется модернизация антенной части как базовых станций, так и сотовых телефонов. Антенны должны работать в новых дополнительных диапазонах, превышающих 2.2 ГГц. Более того, работа в двух и даже трех диапазонах должна производиться одновременно. Вследствие этого антенная часть включает в себя довольно сложные электромеханические схемы, которые должны обеспечивать должное функционирование в сложных климатических условиях.
В качестве примера рассмотрим конструкцию излучателей двухдиапазонной антенны базовой станции сотовой связи Powerwave, работающей в диапазонах 824-960, МГц и 1710-2170, МГц. Ее внешний вид показан на рисунке ниже:
Этот двухдиапазонный облучатель состоит из двух металлических пластин. Та, что большего размера работает в нижнем диапазоне 900 МГц, над ней расположена пластина с щелевым излучателем меньшего размера. Обе антенны возбуждаются щелевыми излучателями и таким образом имеют единую линию запитки.
Если в качестве излучателей используются дипольные антенны, то необходимо ставить отдельный диполь для каждого диапазона волн. Отдельные диполи должны иметь свою линию запитки, что, конечно же, снижает общую надежность системы и увеличивает энергопотребление. Примером такой конструкции является антенна Kathrein для того же диапазона частот, что и рассмотренная выше:
Таким образом, диполи для нижнего диапазона частот находятся как бы внутри диполей верхнего диапазона.
Для реализации трех- (и более) диапазонного режимов работы наибольшей технологичностью обладают печатные многослойные антенны. В таких антеннах каждый новый слой работает в довольно узком диапазоне частот. Такая «многоэтажная» конструкция изготавливается из печатных антенн с индивидуальными излучателями, каждая антенна настраивается на отдельные частоты рабочего диапазона. Конструкция поясняется рисунком ниже:
Как и в любых других многоэлементных антеннах в такой конструкции происходит взаимодействие элементов, работающих в разных диапазонах частот. Само собой это взаимодействие оказывает влияние на направленность и согласование антенн, но данное взаимодействие может быть устранено методами, применяемыми в ФАР (фазированных антенных решетках). Например, одним из наиболее эффективных методов является изменение конструктивных параметров элементов путем смещения возбуждающего устройства, а также изменение размеров самого облучателя и толщины разделительного диэлектрического слоя.
Важным моментом является то, что все современные беспроводные технологии широкополосные, и ширина полосы рабочих частот составляет не менее 0,2 ГГц. Широкой рабочей полосой частот обладают антенны на основе взаимодополняющих структур, типичным примером которых являются антенны типа «bow-tie» (бабочка). Согласование такой антенны с линией передачи осуществляется подбором точки возбуждения и оптимизацией ее конфигурации. Чтобы расширить полосу рабочих частот по согласованию «бабочку» дополняют входным сопротивлением емкостного характера.
Моделирование и расчет подобных антенн производят в специализированных программных пакетах САПР. Современные программы позволяют моделировать антенну в полупрозрачном корпусе при наличии влияния различных конструктивных элементов антенной системы и позволяют тем самым произвести достаточно точный инженерный анализ.
Проектирование многодиапазонной антенны производят поэтапно. Сначала рассчитывают и проектируют микрополосковую печатную антенну с широкой полосой пропускания для каждого рабочего диапазона частот отдельно. Далее печатные антенны разных диапазонов совмещают (наложением друг на друга) и рассматривают их совместную работу, устраняя по возможности причины взаимного влияния.
Широкополосная антенна типа «бабочка» может быть удачно использована как основа для трехдиапазонной печатной антенны. На рисунке ниже изображены четыре различных варианта ее конфигурации.
Приведенные конструкции антенн отличаются формой реактивного элемента, который применяется для расширения рабочей полосы частот по согласованию. Каждый слой такой трехдиапазонной антенны представляет собой микрополосковый излучатель заданных геометрических размеров. Чем ниже частоты – тем больше относительный размер такого излучателя. Каждый слой печатной платы отделен от другого с помощью диэлектрика. Приведенная конструкция может работать в диапазоне GSM 1900 (1850-1990 МГц) – принимает нижний слой; WiMAX (2,5 – 2,69 ГГц) – принимает средний слой; WiMAX (3,3 – 3,5 ГГц) – принимает верхний слой. Подобная конструкция антенной системы позволит принимать и передавать радиосигнал без использования дополнительного активного оборудования, не увеличивая тем самым габаритных размеров блока антенны.
И в заключении немного о вреде БС
Порой, базовые станции операторов сотовой связи устанавливают прямо на крышах жилых домов, чем конкретно деморализуют некоторых их обитателей. У хозяев квартир перестают «рожать кошки», а на голове у бабушки начинают быстрее появляться седые волосы. А тем временем, от установленной базовой станции жители этого дома электромагнитного поля почти не получают, ибо «вниз» базовая станция не излучает. Да и, к слову сказать, нормы СаНПиНа для электромагнитного излучения в РФ на порядок ниже, чем в «развитых» странах запада, и поэтому в черте города базовые станции никогда на полную мощность не работают. Тем самым, вреда от БС нет, если только вы не устраиваетесь позагорать на крыше в паре метров от них. Зачастую, с десяток точек доступа, установленных в квартирах жителей, а также микроволновые печи и сотовые телефоны (прижатые к голове) оказывают на вас намного большее воздействие, нежели базовая станция, установленная в 100 метрах за пределами здания.