Что сохраняют хромосом в анафазе
Что сохраняют хромосом в анафазе
Метафаза. Характерным событием для метафазы является перемещение хромосом в экваториальную плоскость веретена. Здесь они располагаются строго закономерно, образуя метафазную пластинку (при взгляде на веретено деления сбоку). Если рассматривать группу метафазных хромосом со стороны полюсов веретена, то отчетливо выступает фигура, напоминающая звезду (так называемая материнская звезда). В этот период можно определить число, форму и размеры хромосом (d-хромосом, двойных хромосом), составляющих метафазную пластинку.
К концу метафазы продольные половинки хромосом (сестринские хроматиды) обособляются на всем протяжении, кроме зоны первичной перетяжки.
Для каждого вида животных характерно строго постоянное число хромосом в соматических клетках. Для человека оно равно 46. По длине хромосом различают чередование окрашенных и неокрашенных участков. При этом каждая хромосома отличается неповторимым рисунком дифференциальной окраски. Хромосомы человека подразделяются на 7 групп по их размерам и особенностям строения (А, В, С, D, Е, F, G) и каждая хромосома имеет свой номер. Совокупность признаков строения хромосом, их размеров и числа составляет то, что называют кариотипом.
Анафаза включает процесс расхождения хромосом к полюсам делящейся клетки. Механизм движения хромосом объясняется гипотезой скользящих нитей, согласно которой состоящие из микротрубочек нити веретена, взаимодействуя друг с другом и с сократительными белками, тянут хромосомы к полюсам. Скорость движения хромосом достигает 0,2-0,5 мкм/мин, а вся анафаза продолжается 2-3 мин. Анафаза заканчивается перемещением двух идентичных наборов хромосом (s-хромосом, или одиночных хромосом) к полюсам, где они сближаются, образуя фигуры, напоминающие по внешнему виду (если смотреть со стороны полюса) звезды. Эти фигуры называют дочерними звездами.
Часть клеток может выходить из цикла репродукции и вступить на путь дифференцировки. Некоторые клетки могут выходить из клеточного цикла в G1-периоде или после S-периода и находиться в покое (Go-период). Такие покоящиеся клетки сохраняют способность к делению и могут снова входить в цикл размножения.
Что сохраняют хромосом в анафазе
• Нарушение связи между сестринскими хроматидами позволяет им начать движение к противоположным полюсам
• Движение происходит потому, что тянущие усилия, приложенные к сестринским кинетохорам в митозе, более не противодействуют друг другу
• Элонгация митотического веретена в анафазе увеличивает расстояние между расходящимися хромосомами
• Элонгация веретена происходит за счет расталкивающего усилия, приложенного к микротрубочкам его средней части и тянущей силы, действующей на астральные микротрубочки
После прикрепления к веретену последнего кинетохора и до начала расхождения хроматид наступает лаг-период. В течение этого периода секурин и другие белки деградируют. Начавшийся процесс расхождения хроматид через несколько минут завершается. Обычно сестринские хроматиды начинают расходиться в области центромеры, поскольку там на хромосому действуют силы, направленные к противоположным полюсам. После расхождения в центромерной области, по мере движения к полюсам, продолжается разделение сестринских хроматид.
Фаза митоза, в которой два набора только что разделившихся хромосом расходятся к полюсам, называется анафаза А. Она обозначается так, чтобы ее можно было отличить от анафазы В, когда расходятся сами полюса. Процессы, происходящие в анафазе А и В, представлены на рисунке ниже. Эти процессы не являются различными стадиями анафазы, а представляют собой два независимых и одновременно функционирующих механизма разделения хромосом.
Хотя в начале анафазы хромосомы внезапно начинают движение к полюсам, механизм, генерирующий необходимую силу, при переходе от метафазы к анафазе не включается. Это следует из экспериментов с использованием лазерного луча для разрушения одного кинетохора в хромосоме, ориентированной в двух направлениях и находящейся в прометафазе, задолго до начала разделения хроматид. Освобожденная от связи с одним из полюсов хромосома сразу же начинает движение к другому полюсу, так же как это происходит с анафазными хромосомами.
Таким образом, в движении хромосом к полюсам в анафазе А участвует тот же механизм (или механизмы), который перемещает их к полюсам при образовании веретена и при конгрессии. Во время митоза к кинетохорам постоянно приложены силы, направленные к полюсам. Единственное отличие заключается в том, что силы, действующие на сестринские кинетохоры в анафазе, более не противодействуют друг другу и отныне могут действовать независимо. В результате, как только хроматиды разделились, они сразу начинают расходиться к полюсам. Так же как при движении хромосом на ранних стадиях митоза в клетках позвоночных, это движение к полюсам обеспечивается за счет активности кинетохора и текучести субъединиц микротрубочек.
По мере продвижения двух групп хроматид к полюсам в анафазе А, начинается расхождение самих полюсов. Этот процесс представляет собой элонгацию веретена и происходит в анафазе В. В анафазе В две группы хроматид расходятся еще больше, что обеспечивает образование бороздки деления, по которой позже пройдет разделение цитоплазмы с образованием двух новых клеток между образующимися ядрами.
По мере движения хромосом к полюсам (анафаза А), сами полюса отодвигаются друг от друга (анафаза В),
тем самым увеличивая расхождение между двумя группами хромосом.
Движение полюсов обеспечивается усилием, развивающимся астральными микротрубочками, и за счет белковых моторов в центре веретена.
Эти усилия сдвигают перекрывающиеся микротрубочки по отношению к друг другу.
Обе анафазы — А и В, обеспечивают расхождение двух новых ядер, достаточное для того, чтобы между ними произошло разделение клетки на две.
В клетках некоторых организмов анафаза В начинается только после окончания анафазы А. В то же время у позвоночных и в большинстве других клеток расстояние между полюсами веретена начинает увеличиваться, как только произошло разделение хроматид. Таким образом, в данном случае обе фазы совпадают во времени. Вообще говоря, степень элонгации веретена широко варьирует даже в пределах одной популяции клеток.
В некоторых случаях это связано с формой клеток; так, большая степень элонгации веретена характерна для крупных и продолговатых, чем для мелких округлых клеток.
Как показано на рисунке ниже, в расхождении полюсов в анафазе В участвует несколько механизмов. У многих одноклеточных, например у дрожжей, диатомей и грибов, в процессе участвуют силы, которые генерируются в средней области веретена, между двумя расходящимися группами хромосом. В пределах этой области микротрубочки, отходящие от полюсов, перекрываются, и кинезиновые белки сшивают антипараллельные микротрубочки, расположенные рядом.
При продвижении этих моторных белков к плюс-концам микротрубочек, они, толкая соседние микротрубочки друг относительно друга, сдвигают их в направлении полюса, к которому они прикреплены. В результате происходит элонгация веретена. В это время также начинают расти плюс-концы микротрубочек, расположенных вне перекрывающейся области. Таким образом, поддерживается существование перекрывающейся области. Рост этих микротрубочек определяет степень элонгации всего веретена
Эти расталкивающие силы, так же как и действующие в анафазе А, участвуют и в ранних фазах митоза. Однако, до наступление анафазы им противодействуют другие, которые генерируются на веретене и направлены на сближение полюсов. Эти противоположно направленные силы частично генерируются моторами, направленными к минус-концу микротрубочек, которые также связывают расположенные рядом микротрубочки противоположной полярности. Такие же силы генерируются на биориентированных хромосомах сестринскими кинетохорами, которые постоянно работают, подтягивая полюса к метафазной пластинке. Когда при наступлении анафазы хроматиды полностью разделились, баланс нарушается, поскольку силы, сближающие полюса, ослабевают. В результате между полюсами проявляется расталкивающее усилие, и они расходятся.
Каким образом этот «расталкивающий» механизм участвует в элонгации веретена в клетках позвоночных, точно неизвестно. Дело в том, что в этих клетках минус-концы микротрубочек веретена, не связанные с кинетохорами, открепляются от полюсов, как только они расходятся в анафазе В. Таким образом, к середине анафазы полюса веретена в клетках позвоночных не расталкиваются, а, скорее, оттягиваются.
Соответствующие силы возникают при взаимодействии между астральными микротрубочками веретена, которые в анафазе остаются связанными с полюсами, и динеином цитоплазмы, локализованным на периферии клетки (т. е. в кортексе). Молекулы динеина, заякоренные в кортексе, «наматывают» на себя астральные микротрубочки, подтягивая таким образом полюса.
Кадры видеосъемки, которые позволяют наблюдать,
как хромосомы отходят от метафазной пластинки и расходятся. Кадры видеосъемки, иллюстрирующие удлинение веретна в анафазе.
Расхождение полюсов веретена при его элонгации в анафазе В обеспечивается двумя механизмами.
Бифункциональные кинезиновые молекулярные моторы в центре веретена (показаны оранжевым цветом) расталкивают микротрубочки противоположной полярности.
В то же время цитоплазматический динеин (показан пурпурным цветом), прикрепленный к клеточному кортексу, тянет астральные микротрубочки.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Что сохраняют хромосом в анафазе
• При подготовке к расхождению хромосомы конденсируются и мигрируют к центру митотического веретена
• Хромосомы прикрепляются к микротрубочкам, выходящим из противоположных полюсов веретена, с помощью специальных участков, называемых кинетохорами
• Разрываются связи, соединяющие сестринские хроматиды вместе, и происходит их разделение
• Происходит расхождение изолированных сестринских хроматид, что предшествует цитокинезу
Как отмечалось выше, у большинства клеток одним из характерных признаков вступления в митоз является конденсация хромосом. Генетический материал интерфазных клеток упакован не так плотно как в митозе, и в процессе сегрегации хромосом важную роль играет его реорганизация с образованием компактных структур высшего порядка. Как достигается эта компактизация и каким образом она регулируется?
В конденсации хромосом участвует мультибелковый комплекс, который называется конденсин. Этот комплекс состоит из двух суперспирализованных белковых молекул, содержащих АТФазные домены и, в силу исторических причин, относящихся к семейству SMC-белков. Предполагается, что субъединицы конденсина могут «прогуливаться» по ДНК, скрепляя вместе ее различные участки. В состав конденсинового комплекса также входят другие белки, которые, наряду с SMC белками, вызывают в ДНК конформационные и топологические изменения, приводящие к компактизации.
О процессе конденсации хромосом также говорят и другие изменения связанных с ними белков, например фосфорилирование гистонов Н1 и Н3. Известно, что фосфорилирование гистона Н3 происходит с участием киназ Aurora. Фактически, фосфорилирование этого гистона в митозе обычно служит показателем активности киназы Aurora.
Образование связей между сестринскими хроматидами представляет собой процесс, родственный конденсации хромосом. При репликации в S-фазе каждая пара хроматид связывается между собой и находится в связанном состоянии до момента разделения при переходе от метафазы к анафазе. Каким образом и когда устанавливаются связи между хроматидами и как они разрываются в анафазе?
Так же как и конденсиновый комплекс, когезиновый комплекс формирует и поддерживает связи между сестринскими хроматидами, начиная от момента репликации ДНК и до начала их сегрегации. Этот комплекс состоит из двух SMC-белков, которые напоминают SMC-белки конденсина, хотя и отличаются от них, и трех дополнительных белков, Scc1, Scc3 и Pds5, также необходимых для его функционирования.
До наступления метафазы одна из протеаз, под названием сепараза, находится в связанном с секурином состоянии и не проявляет активности.
В метафазе, при действии АРС, секурин подвергается протеолизу, и таким образом происходит деблокирование сепаразы.
После этого активная сепараза расщепляет когезин, что вызывает разделение сестринских хроматид.
Предполагалось, что когезиновый комплекс скрепляет сестринские хроматиды наподобие застежки «молния». Однако недавно было показано, что SMC-белки и субъединица Scc1 обвивают сестринские хроматиды, скрепляя их. Подробности механизма этого скрепления сейчас исследуются.
Предложено два механизма разрушения связей между хроматидами. Согласно одному механизму, в профазе, с плечей хромосомы удаляется большая часть когезина, а связанный с центромерой комплекс остается на месте. Этот первый этап удаления когезина запускается Plk1, которая фосфорилирует Scc1. В то же время связанная с центромерой Scc1 когезиновая субъединица подвергается протеолизу. Если модель скрепления хроматид за счет их обвивания субъединицей Scc1 правильна, то расщепление этой субъединицы должно приводить к раскрытию обвивающего кольца и к физическому разделению сестринских хроматид. Во всяком случае, каким бы ни был механизм скрепления хроматид, очевидно, что разрушение Scc1 вызывает их диссоциацию и обеспечивает наступление анафазы.
Сепараза представляет собой сайт-специфическую протеазу, которая расщепляет Scc1 и вызывает разделение хроматид. В течение большей части клеточного цикла, сепараза поддерживается в неактивном состоянии, находясь в комплексе с другим белком, секурином. При переходе из метафазы в анафазу секурин подвергается убиквитинилированию и атакуется протеазами. При разрушении секурина высвобождается сепараза (также известная под названием сепарин), которая разрушает Scc1.
Процессы, происходящие при разделении хроматид, представлены на рисунке ниже. Таким образом, в этой простой модели ключевым процессом, запускающим сегрегацию хромосом, является протеолиз секурина. В связи с этим возникает интересный вопрос: каким образом регулируется деградация секурина?
Секурин отбирается для деградации при его взаимодействии с ЕЗ-убиквитинлигазой, известной под названием анафазный промоторный комплекс (АРС). Этот комплекс узнает белки, содержащие короткие последовательности, называемые деструктивными и/или KEN доменами (D boxes или KEN boxes). При добавлении этих последовательностей, содержащих около девяти аминокислот, в структуру белков, последние проибретают способность к деградации под действием АРС.
В отличие от SCF, для того чтобы субстрат был узнан АРС, не требуется его предварительного фосфорилирования. У почкующихся дрожжей существенная функция АРС состоит в деградации циклинов и секурина, хотя для этого комплекса известно также много других мишеней.
АРС проявляет активность только в митозе и G1-периоде, когда он предотвращает накопление циклинов и секурина. Как регулируется активность АРС? Во-первых, связывание адаптерных белков (Cdc20 и Cdh1 — обозначаемых как APC cdc20 APC cdh1 ) с APC обеспечивает значительную степень субстратной специфичности комплекса. Адаптерные белки способны связываться с АРС лишь в митозе и G1-периоде цикла. Во-вторых, активность АРС регулируется при специфическом фосфорилировании некоторых из его 13 субъединиц и адаптерных белков.
В фосфорилировании и активации АРС участвуют Cdkl и Plk1. В-третьих, активность АРС может контролироваться сигнальной системой, которая следит за прикреплением хромосом, а также точкой, контролирующей сборку веретена (SAC). Столь многочисленные уровни регуляции гарантируют, что АРС активируется только в митозе и запускает протеолиз секурина и циклина, активирует сепаразу, расщепляет когезин, и, наконец, вызывает разделение сестринских хроматид. В G1-периоде АРС сохраняет свою активность с тем, чтобы поддерживать активность Cdk1 на низком уровне. Низкая активность этой киназы позволяет сформироваться pre-RC, необходимому для следующего раунда репликации ДНК. Схема процессов активации АРС представлена на рисунке ниже.
Когда после разрыва связи сестринские хроматиды отделились друг от друга, они расходятся к противоположным полюсам клетки под действием микротрубочек веретена. Когда хромосомы разошлись и активность Cdk1 снизилась, наступает цитокинез.
Подводя итоги изложенному выше, подчеркнем, что конденсация хромосом происходит с участием белкового комплекса, который называется конденсин, и что сестринские хроматиды удерживаются вместе когезиновым комплексом до тех пор, пока не произойдет их разделение в анафазе. Разрыв связей между хроматидами требует расщепления когезина под действием протеазы, сепаразы. Для активации сепаразы необходим протеолиз ее ингибитора, секурина, который происходит с участием АРС по убиквитиновому механизму.
В интерфазе АРС убиквитин лигаза неактивна.
При наступлении митоза Cdk1 фосфорилирует АРС и он связывается с активатором, Cdc20.
Затем Cdc20 АРС узнает субстраты, например секурин, обеспечивая необратимое прохождение клетки по фазам митоза.
Позже в митозе АРС связывается с активатором Cdh1 и мобилизует другие субстраты, необходимые для выхода из митоза. Первый видеокадр, показывающий хромосомы в начальных стадиях митоза.
Видео процесс и фазы митоза
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Научная электронная библиотека
Юров И. Ю., Ворсанова С. Г., Воинова В. Ю., Чурносов М. И., Юров Ю. Б.,
3.4. Деление клетки
Все клетки человека проходят через цикл деления (клеточный цикл). Известны два типа деления клетки: митотческое и мейотическое, которые представлены на рисунках 6 и 7. Митоз – деление клетки, за счет которого достигается воспроизведение соматических клеток в организме. Мейоз – деление клеток, в ходе которого получаются клетки с редуцированным гаплоидным (n) набором хромосом (половые клетки). Среднее время клеточного цикла у млекопитающих составляет 17–18 часов. Клеточный цикл разделен на четыре основных стадии: G1, S (фаза синтеза ДНК), G2 и митоз (М). Первые три фазы представляют собой интерфазный период или интерфазу. Клетки, которые не делятся, находятся на стадии покоя G0.
Во время стадии G1 (примерно 9 часов) хромосомы имеют вид одиночных хроматид, клетка метаболически активна и в ней происходит синтез белков. Если клетка, находящаяся на G1 стадии, не подвергается последующему делению, то это состояние соответствует G0. Фаза синтеза (или S фаза) длится около 5 часов и характеризуется процессом репликации хромосомной ДНК. На этой стадии хромосомы состоят из двух идентичных сестринских хроматид. G2 стадия длится примерно 3 часа. Во время этой стадии клетка готовится к процессу деления. Завершение G2 соответствует концу интерфазы. Митоз длится не более 1–2 часов и является процессом образования двух генетически идентичных дочерних клеток. В свою очередь, митоз также делится на 4 стадии: профаза, метафаза, анафаза и телофаза (рис. 6).
Рис. 6. Митоз. Схематическое изображение двух пар хромосом во время митоза: а – интерфаза; б – профаза; в – метафаза; г – анафаза; д – телофаза; е – цитокинез; ж – интерфазы разделившихся клеток
Профаза – стадия, во время которой происходит постепенная конденсация (уплотнение) и спирализация хромосом, в результате чего, они имеют вид дискретных структур. Во время профазы образуется веретено деления (двуполюсное веретено, состоящее из пучков микротрубочек, которые тянутся от одного полюса к другому).
Метафаза – стадия, характеризующаяся тем, что полностью осуществляется присоединение хромосом к нитям веретена, и хромосомы собираются в экваториальной плоскости клетки, находящейся на одинаковом расстоянии от обоих полюсов веретена. На этой стадии хромосомы достигают максимальной конденсации.
Анафаза – стадия разделения сестринских хроматид и их расхождения к противоположным полюсам веретена.
Телофаза – последняя стадия митоза. Она начинается, когда все сестринские хроматиды доходят до полюсов веретена. В ходе данной фазы митоза происходит восстановление клеточного ядра и внутриядерных структур. За ней, как правило, следует цитокинез – разделение двуядерной клетки на две с одним ядром в каждой (рис. 6).
Мейоз – деление клеток, в ходе которого получаются клетки с редуцированным гаплоидным набором хромосом (половые клетки). Данный процесс включает в себя две фазы клеточного деления: мейоз 1 и мейоз 2. В ходе мейоза происходит редукция диплоидного хромосомного набора (2n) до гаплоидного (n).
Мейоз 1, в свою очередь также делится на несколько стадий: профаза I, метафаза I, анафаза I и телофаза I (рис. 7). Профаза I является комплексной стадией, которая, в свою очередь, делится на несколько этапов:
лептотена: 46 хромосом состоят из 2-х хроматид и начинают коденсироваться; эта стадия характеризует начало мейоза;
зиготена: гомологичные хромосомы спариваются своими участками – этот этап деления называется синапсом; в результате образуется тройственная структура – синаптонемальный комплекс;
пахитена: стадия завершения синапса, спаренные гомологи, состоящие из 4-х хроматид, формируют бивалент; во время этой стадии происходит кроссинговер – обмен последовательностями ДНК хромосом между несестринскими хроматидами бивалентов. Результатом этого процесса является рекомбинация генетического материала между гомологичными хромосомами, создающая новые комбинации генов в дочерних клетках;
диплотена: на этой стадии хромосомы отталкиваются друг от друга до тех пор, пока гомологи не будут соединены только участками, подверженными кроссинговеру. Такие участки называются хиазмами;
диакинез: хромосомы претерпевают наибольшее сжатие во время этой последней стадии профазы I.
Рис. 7. Мейоз I. Схематическое изображение двух пар хромосом во время мейоза I: а – профаза I; б – метафаза I; в – анафаза I; г – телофаза I; д – клетки, образующиеся в результате первого мейоза
Метафаза I характеризуется исчезновением ядерной мембраны и образованием мейотического веретена деления. Биваленты выравниваются по экваториальной плоскости клетки и их центромеры случайным образом ориентируются к противоположным полюсам. Во время анафазы I биваленты разделяются и расходятся к противоположным полюсам. В ходе телофазы I каждая хромосома из двух гаплоидных наборов достигает противоположных полюсов, и образуются две дочерние клетки, в каждой из которых по 23 хромосомы, состоящие из 2-х хроматид.
Мейоз 2 практически идентичен митотическому делению за исключением того, что в данном случае делящиеся клетки имеют гаплоидный хромосомный набор. Хромосомы выравниваются по экваториальной плоскости клетки на стадии метафазы II, хроматиды разделяются и расходятся к противоположным полюсам на стадии анафазы II, цитокинез происходит на стадии телофазы II. В результате митотического деления (мейоза 1 и 2), как правило, образуются 4 дочерние клетки с гаплоидным набором хромосом, каждая из которых генетически отличается друг от друга за счет процесса кроссинговера и случайного расхождения гомологичных хромосом.
Митоз и мейоз
Жизненный цикл клетки (клеточный цикл)
С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.
Интенсивно образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, клетка растет.
Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.
Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.
ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).
Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).
Мейоз
В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).
Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.
Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.
Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.
Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).
Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.
Бинарное деление надвое
При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.
Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.