Для чего запускают космические спутники
Как устроены спутники?
Не так давно спутники были экзотикой и сверх-секретными устройствами. В основном они использовались в военных целях, навигации и шпионаже. Теперь же они является неотъемлемой частью современной жизни. Мы может увидеть их в прогнозировании погоды, телевидении и даже в обычных телефонных звонках. Спутники также часто играют вспомогательную роль в некоторых областях:
Что такое Спутник?
Спутник в общем — это объект, которые вращается вокруг планеты по круговой или эллиптической орбите. Например, Луна — это природный естественный спутник Земли, однако существует еще много сделанных человеком (искусственных) спутников, которые как правило ближе к Земле.
Путь по которому следует спутник называется орбитой. Самая далекая от Земли точка орбиты называется апогеем, ближайшая — перигеем.
Искусственные спутники не являются продуктами массового производства. Большинство спутников были специально произведены для выполнения предназначенных им функций. Исключение составляют спутники GPS/ГЛОНАСС (которых около 20 копий для каждой из систем) и спутники системы Iridium (которых больше 60 копий, они используются для передачи голосовой связт).
Существует также около 23 000 объектов, которые являются космическим мусором. Эти объекты имеют достаточный размер для того, чтобы улавливаться радаром. Они либо случайно оказались на орбите, либо исчерпали свою полезность. Точное число зависит от того, кто считает. Полезный груз, который попал на неправильную орбиту, спутники у которых сели батареи и также остатки разгонных блоков ракет — все это составляет космический мусор. Например, этот онлайн каталог спутников насчитывает около 26 000 объектов.
Хотя любой объект на орбите земли вообще-то можно назвать спутником, термин «спутник» обычно используется для описания полезного объекта размещенного на орбите для выполнения некоторых важных задач. Нам часто приходится слышать о погодных спутниках, спутниках связи и научных спутниках.
Чей спутник первым оказался на орбите Земли?
Вообще, самым первым спутником Земли по праву стоит считать Луну 🙂
Для нашей общей радости, первым искусственным спутником Земли был «Спутник 1», запущенный Советским Союзом 4 октября 1957 года. Ура, товарищи!
Однако, из-за существовавшей в то время строжайшей секретности, в свободном доступе нет фотографий того знаменитого запуска. Спутник-1 имел длину 23-дюйма (58 сантиметров), весил 184 фунта (83 килограмма) и имел форму металлического шара. Однако, для того времени это было важное достижение. Содержимое спутника по современным меркам кажется скудным:
После 92 дней, гравитация сделала свое дело и Спутник-1 сгорел в атмосфере Земли. Тридцать дней спустя после запуска Спутник-1, собака Лайка совершила полет на полутонном спутнике с воздухом. Этот спутник сгорел в атмосфере в апреле 1958 года.
Спутник-1 это хороший пример того, каким простым может быть спутник. Как мы увидим дальше, современные спутники гораздо более сложными, но основная идея проста.
Как спутники запускают на орбиту?
Все современные спутники попадают на орбиту с помощью ракет. Некоторые доставлялись на орбиту в грузовом отсеке шаттлов. Возможность запуска спутников на орбиту имеют несколько стран и даже коммерческих компаний, и теперь нет ничего необычного в доставке на орбиту спутника весом несколько тонн.
Для большинства запланированных запусков, ракета как правило располагается вертикально вверх. Это позволяет ей пройти плотные слои атмосферы быстро и с минимальными затратами топлива.
После того, как ракета запущена вертикально вверх, система управления ракетой используется инерциальную систему наведения для управления соплами ракеты и наводит ее на расчетную траекторию. В большинстве случаев ракета направляется на восток, потому что сама Земля вращается на восток, что позволяет добавить ракете «бесплатное» ускорение. Сила такого «бесплатного» ускорения зависит от скорости вращения Земли в месте запуска. Самое большое ускорение — на экваторе, там где расстояние вокруг Земли наибольшее, а следственно и скорость вращения тоже.
Насколько велико ускорение при экваториальном запуске? Для грубой оценки мы можем вычислить длину экватора Земли путем умножения ее диаметра на число пи (3.141592654. ). Диаметр земли примерно 12 753 километра. Умножая на пи получаем длину окружности около 40 065 километров. Для прохождения всей окружности в 24 часа точка на поверхности Земли должна двигаться со скоростью 1 669 км/ч. Запуск с Байконура в Казахстане не дает такого большого ускорения от вращения Земли. Скорость вращения Земли в районе Байконура около 1 134 км/ч, а в районе Плесецка вообще 760 км/ч. Таким образом запуск с экватора дает большее «бесплатное» ускорение. Вообще Земля имеет не совсем форму сферы — она приплюснута. Поэтому наша оценка Длины окружности Земли несколько неточна.
Но подождите, скажете Вы, если ракеты способы достигать скоростей в тысячи километров в час, то что даст небольшой прирост? Ответ состоит в том, что ракеты, вместе с топливом и полезным грузом, очень тяжелые. Например, ракета-носитель протон согласно данным википедии имеет стартовую массу 705 тонн. Для ускорения такой массы даже до 1 134 км/ч требуется огромное количество энергии, а следовательно и большой объем топлива. Поэтому запуск с экватора дает ощутимые выгоды.
Когда ракета достигает очень разреженного воздуха на высоте примерно 193 километра, система управления ракетой включает небольшие двигатели, достаточные для поворота ракеты в горизонтальное положение. Затем спутник отделяется от ракеты. Затем ракета снова включает двигатели для обеспечения некоторого разделения ракеты и спутника.
Инерциальный системы наведения
Ракета должна управляться очень точно для выведения спутника на требуемую орбиту, и ошибки в этом деле очень дорого стоят (вспомните неудачи Роскосмоса со спутниками ГЛОНАСС или зондом Фобос-Грунт, которые оказались не на той орбите, на какой следовало бы). Инерциальные системы наведения внутри ракет делают такое управление возможным. Такая система определяет точное положение ракеты и ее направления путем измерения ускорения ракеты с использованием гироскопов и акселерометров. Расположенные в кардановом подвесе, оси гироскопа всегда показывают в одном направлении. Кроме того, платформа гироскопов содержит акселерометры, которые измеряют ускорение в трех разных осях. Если системе управления известно первоначальное местоположение ракеты в момент запуск и ускорения в момент полета, она сможет рассчитать положение ракеты и ориентацию в пространстве.
Орбитальная скорость и высота
Ракета должна разогнаться до скорости как минимум 40 320 км/ч (11.2 км/с) чтобы полностью выйти из Земной гравитации и отправиться в космос. Эта скорость называется второй космической скоростью и для разных небесных тел она разная.
Вторая космическая скорость земли куда больше, чем скорость требуемая для помещения спутников на орбиту. Спутникам не требуется выходить из гравитации Земли, им нужно балансировать относительно нее. Орбитальная скорость — это скорость требуемая для достижения равновесия между гравитационным притяжением и инерцией движения спутника. В среднем эта скорость составляет 27 359 км/ч на высоте примерно 242 километра. Без гравитации, инерция спутника будет выталкивать его в космос. Хотя даже если гравитация присутствует, то слишком большая скорость спутника выведет его с орбиты Земли в открытый космос. С другой стороны, если спутник будет двигаться медленно, то под действием гравитации он упадет обратно на Землю. Если спутник будет иметь определенную правильную скорость, то гравитации будет уравновешена инерцией спутника, сила тяжести Земли будет достаточна для того, чтобы спутник двигался по круговой или эллиптической орбите, а не улетел в космос по прямой линии.
Орбитальная скорость спутника зависит от того, на какой высоте последний находится. Чем ближе к Земли — тем больше требуемая скорость. На высоте 200 километров, требуемая орбитальная скорость составляет около 27 400 км/ч. Для поддержания орбиты в 35 786 км, спутник должен двигаться по орбите со скоростью около 11 300 км/ч. Такая орбитальная скорость позволит спутнику сделать один оборот вокруг Земли за 24 часа. Так как сама Земля вращается со скоростью 24 часа, спутник на высоте 35 786 км будет оставаться строго над одной и той же точкой на поверхности Земли. Такая орбита носит название «геостационарная». Геостационарные орбиты идеальны для погодных спутников и спутников связи.
Луна имеет «высоту» относительно Земли 384 400 километров, а ее орбитальная скорость составляет 3 700 км/ч. Она совершает полный оборот по своей орбите за 27.322 дня. Заметьте, что ее орбитальная скорость ниже, потому что она находится дальше искусственных спутников.
Вообщем, чем выше орбита, тем дольше спутник может находится на орбите. На низких высотах, спутник входит в слои атмосферы, которая создает трение. Трение отнимает часть энергии движения спутника, и он попадает в более плотные слои и, падая на Землю, сгорает в атмосфере. На больших высотах, где почти вакуум, трения не возникает и спутник может оставаться на орбите веками (возьмем Луну, например).
Спутники, как правило, сначала имеют эллиптическую орбиту. Наземные станции управления используют небольшие реактивные двигатели спутника для корректировки орбиты. Цель — сделать орбиту круговой настолько, насколько это возможно. Включение реактивного двигателя в апогее орбиты (наиболее удаленная точка), и приложение силы в направлении полета смещают перигей дальше от Земли. В результате орбита приближается по форме к круговой.
Разведка без боя: чем в космосе занимаются военные России и мира
Сколько военных наверху
Под космосом обычно понимают все, что находится выше 100 км от Земли. На околоземной орбите и выше летом 2021 года 2 666 искусственных спутников, из них 154 принадлежат американским военным, около 100 — российским, 63 — китайской армии. В других странах, таких как Франция, Израиль, Германия, Италия, Индия, Великобритания, Турция, Мексика, Испания и Япония, их количество составляет менее десяти. Существуют и государства, например, в Африке, у которых нет ни одного армейского спутника.
Цифры эти не окончательные. Из-за секретности и существования ряда летательных космических аппаратов двойного использования (их применяют и армия, и коммерсанты) невозможно назвать точное количество военных спутников. Однако каждый год число ИСЗ (искусственных спутников Земли) увеличивается, на околоземную орбиту запускаются новые, которые умеют собирать еще больше информации и выполнять еще больше функций.
Космические силы США, например, 13 июня 2021 года отправили в космос своего сверхсекретного «Одиссея». Odyssey — новейший разведывательный американский спутник. По официальной версии, он предназначен для отслеживания космического мусора: обломков других аппаратов и отслуживших свое, неуправляемых ИСЗ. Odyssey был сконструирован и построен в рекордные сроки — за 11 месяцев вместо привычных пяти лет.
К чему такая спешка
«Вы можете воевать исключительно из космоса: тот, кто контролирует космос, контролирует и то, что происходит на суше, на море и в воздухе, — говорит бывший чиновник НАТО Джейми Ши, который сейчас является сотрудником аналитического центра Friends of Europe в Брюсселе. — Если вы не контролируете космос, вы не контролируете и другие сферы».
Космические солдаты
СССР и Америка в XX веке были в этой области безусловными лидерами. Естественно, что и космические войска появились в этих государствах первыми.
Прообраз отечественных космических войск возник еще в 1955 году с принятием решения о строительстве в Казахстане полигона для запуска межконтинентальных баллистических ракет (сегодняшний Байконур). После многочисленных пертурбаций со структурой и названием, в 2015 году Воздушно-космические силы (ВКС) появились в армии РФ в сегодняшнем виде.
В США закон о создании нового рода войск — космических — был подписан президентом Дональдом Трампом только в 2019 году. До этого присутствием на орбите занимались 60 различных армейских служб. Свою задачу сегодняшние космические войска видят в «планировании, интегрировании, проведении и оценке глобальных космических операций».
В разных видах космические силы существуют во всех странах, которые умеют летать за пределы стратосферы. Как они называются и каким армейским ведомствам подчиняются — не так принципиально. Через свои спутники военные могут отследить любое перемещение на планете: на суше, в воде, по воздуху. Они обеспечивают разведку, связь, навигацию, должны защищать мирное население от угроз из космоса и различных космических аварий, но самая главная их задача — успеть отследить вероятное ракетное нападение другого государства.
Как армейские спутники попадают в космос
Для запуска спутников военным нужны космодромы с комплексом сооружений и высокоточной аппаратуры. Все они построены далеко от мест заселения, чтобы при взлете ракет случайно не навредить мирному населению. Эксперты National Geographic посчитали, что за всю историю человечества запуски проводились с 29 космодромов, 23 из них действуют до сих пор.
Поскольку космос все больше коммерциализируется, недалек тот день, когда откроются частные космопорты. Например, такой строит Илон Маск и его компания SpaceX в Браунсвилле, штат Техас. Однако до сих пор монополистами в этой сфере остаются военные, для отправки спутников у крупнейших держав существуют собственные космодромы:
Космодромы есть и в других странах: Франции, Италии, Израиле, Германии, Бразилии, Южной Корее. Однако из их космических гаваней на орбиту уходят не только армейские аппараты, поэтому считать их чисто военными нельзя.
Ядерные боеголовки на орбите — реальность?
Однако космическая военная сфера малопрозрачна и сверхсекретна. В отсутствие ядерных боеголовок на околоземной орбите можно верить только на слово. В мае 2021 года генеральный директор концерна ВКО «Алмаз-Антей» Ян Новиков рассказал, что к 2025 году США увеличит количество своих космических аппаратов Boeing X-37 до восьми единиц: «Официально заявлено, что эти аппараты созданы для научных целей — ну и для разведки. Но мы понимаем, что, имея такие свободные емкости и возможности, по нашим оценкам, малый аппарат может нести до трех ядерных боеголовок, большой — до шести».
Пока одна армия пытается что-то спрятать в космосе, другая это ищет. В 2019 году Минобороны запустило ракету-носитель «Союз-2.1В», которая вывела на орбиту четыре аппарата, включая «Космос 2542». Военные заявили, что это спутник-инспектор, который может «увидеть» любой космический аппарат, парящий на околоземной орбите.
Однако западные военные тут же опознали в российском спутнике шпиона и крайне озадачились. «Космос-2542» преследовал аппарат USA 245 (в популярной литературе »Замочная скважина»), принадлежащий национальному управлению военно-космической разведки США, следил за ним и фотографировал с разных сторон.
Защитят ли космические войска от астероида?
66 млн лет назад на мексиканский полуостров Юкатан упал огромный метеорит диаметром около 10–15 км. Ученые считают, что гигантский космический гость стал причиной массового вымирания динозавров и других животных и растений мезозоя.
«Астероид упал под очень крутым углом, около 60° к горизонту. Это самый опасный сценарий падения, так как в результате в атмосферу попало максимальное количество пыли. Она рассеялась по всей планете, что и привело к наступлению полноценной «ядерной зимы», — рассказал геолог из Имперского колледжа Лондона Гарет Коллинс.
Готовы ли к подобному сценарию военные? Смогут ли они спасти человечество от такой глобальной угрозы из космоса? Вряд ли.
В 2013 году на Землю упал небесный объект, названный позже Челябинским метеоритом, крупнейший за последние 100 лет, что долетал до нас. Пострадало 1615 человек, ударной волной были выбиты стекла, разрушены дома, в основном старые. В ПВО просто не знали о нем, пока он не приблизился вплотную к Земле.
«Вокруг Москвы давно создана система противовоздушной обороны, и она в готовности поразить любой объект: самолет, ракету или неопознанный космический объект. Они (военные. — РБК Тренды) могут его ухватить и в случае необходимости уничтожить. Вероятность падения на землю летающих объектов в тех районах, где развернут «зонтик», минимальна. Информация о том, где, кроме Москвы, есть такие зонтики — военная тайна», — заявил тогда Георгий Шпак, бывший командующий Воздушно-десантными войсками.
Мусорные бомбы
Упасть на Землю может не только комета. Военные следят также и за космическим мусором, который скопился на орбите за 60 лет освоения космоса. Это отслужившие свое космические аппараты, отсоединившиеся от ракет-носителей ступени, разгонные блоки, осколки от взрывов.
Особо опасны старые военные спутники с урановыми ядерными энергетическими установками. Их использовали на низкой орбите для радиолокационной разведки, а затем поднимали выше 800 км, чтобы захоронить. Однако иногда они падали. 24 января 1978 года советский «Космос-945» рухнул на территорию Канады. Это привело к международному скандалу.
Однако крупный мусор — не самая великая неприятность, от него можно уклониться, сманеврировать. Гораздо больше проблем несут мелкие искусственные частицы, заметить их заранее невозможно и при космических скоростях около 10 км/c попадание даже пятнышка обычной краски, которой покрывают космические корабли, гарантированно повредит спутник. Для сравнения: скорость пули, выпущенной из автомата Калашникова (АК-74), в десять раз меньше и составляет 910 м/с.
Сейчас датчики космического наблюдения Министерства обороны США отслеживают более 27 тыс. единиц орбитального мусора диаметром свыше 10 см. По разным оценкам, на орбите двигаются еще около 700 тыс. искусственных осколков величиной 1 см и больше.
Космическая битва
Как убрать весь мусор с орбиты, человечество пока не придумало. Зато додумалось, как сбивать космические спутники. Сегодня на это способны армии четырех стран: США, России, Китая и с 2019 года Индии.
В 2007 году Китай сбил свой вышедший из строя спутник перехватчиком SC-19 на высоте 800 км. Годом позже собственный переставший реагировать на команды орбитальный аппарат противоракетной системы SM-3 уничтожили космические войска США. В 2019 году к «антиспутниковому» клубу присоединилась Индия, заявив, что сумела поразить свой низкоорбитальный спутник, летящий на высоте 300 км, за 3 минуты.
Ликвидация орбитальных группировок будет означать не только глобальное наземное столкновение, но и то, что военным вновь придется вернуться к старому проверенному способу — бумажным картам.
Чем будут воевать в стратосфере завтра
Для чего запускают космические спутники
Мы привыкли к космическим полётам. Запуск очередной ракеты попадёт в новости, только если что-то пойдёт не так. На орбите Земли работает больше 2000 спутников — они обеспечивают связь, работу навигаторов, используются в научных экспериментах.
Долгие годы космические программы могли позволить себе только самые богатые и технически развитые страны. В начале XXI веке ситуация резко изменилась, на орбите появились спутники частных компаний и даже учебные заведений.
Вы задумывались, что можете собрать спутник своими руками, а потом — отправить его в космос?
Сегодня мы расскажем как.
Шаг первый: выбираем размер
Если вы хотите запустить свой космический телескоп или орбитальную лабораторию, потребуется индивидуальный проект и бюджет, сопоставимый с ВВП страны третьего мира. Мы расскажем о более доступных вариантах: фемто- и пикоспутниках.
Фемтоспутники
Фемтоспутники — это космические аппараты весом меньше ста грамм. Их размеры редко превышают пару сантиметров. Это буквально одна-две электронные платы и компактный источник питания — солнечная батарея.
На борту чаще всего размещают радиопередатчики и миниатюрные цифровые сенсоры. У спутников нет механических частей и аккумуляторов, это экономит вес и упрощает конструкцию.
На орбиту фемтоспутники попадают вместе с большими собратьями, как попутная нагрузка. Билет в космос обойдётся как путешествие из Москвы в Нью-Йорк бизнес-классом — около полутора-двух тысяч долларов.
Пикоспутники
Пикоспутники гораздо крупнее, их масса может достигать полутора килограмм. Кроме электронных компонентов на борту присутствуют механические элементы: раскладные солнечные панели, гироскопы, системы ориентации и даже солнечные паруса.
Часто спутники оборудуют аккумуляторами, поэтому растут требования к теплоизоляции: за один оборот вокруг Земли температура спутника меняется почти на триста градусов: от –170°C до 125°C.
Иногда такие аппараты играют роль носителя фемтоспутников. Пикоспутник выводят в космос с помощью ракеты, а на орбите, в заранее определённых точках, спутник выпускает рой крошечных аппаратов.
Стоимость создания и запуска пикоспутника сопоставима с покупкой электромобиля Tesla X — цены начинаются от 80 тысяч долларов. Но даже здесь можно существенно сэкономить. Как? Расскажем дальше.
Шаг второй: выбираем платформу
Итак, размер выбрали. Теперь определим, какие задачи сможет решить наш спутник.
Фемтоспутник
Фемтоспутники могут выполнять и простые научные задачи: измерять магнитное поле, окружающую температуру, ускорение и передавать эти данные на Землю. Так можно получить интересные данные о верхних слоях атмосферы и получить представление об условиях жизни на МКС.
Для фемтоспутника не нужны сложные и редкие компоненты, подойдут чипы, которые используются в бытовой электронике: смартфонах или планшетах.
KickSat Sprite — открытый проект: всё необходимое для сборки своего спутника — чертежи, модели и программный код — можно бесплатно скачать с GitHub. Хотите готовое устройство, тогда следите за страницей проекта на KickStarter.
Пикоспутники
гораздо технологичнее. На борту могут быть уникальные измерительные приборы, механические устройства и даже собственные двигатели.
Собирать такой спутник «с нуля» — задача крайне трудоёмкая: придётся углубится в дебри сопромата и термеха, повозится с натурными испытаниями и пробиться через семь кругов согласований с будущим «космическим извозчиком».
Имейте ввиду, компании, которая доставит такой спутник на орбиту, понадобится как минимум два одинаковых устройства. Первое будут испытывать на Земле: оно пройдёт через барокамеру, вибростенд, подвергнется шоковой заморозке и побывает в печи. Только после успешных испытаний дублёра, перевозчик пустит на борт ваш спутник.
Разработка существенно ускорится и упростится, если вы решите строить свой спутник на базе существующих платформ: CubeSat или TubeSat.
CubeSat
Первый стандарт любительской космонавтики, он появился ещё в 1999 году. Сейчас это самая популярная платформа для создания студенческих спутников.Залогом успеха стали чёткие спецификации и упрощением процедуры запуска.
Спутники стандарта CubeSat собираются в контейнеры и уже в них крепятся на ракетоноситель. Если спутник соответствует требованиям платформы, программа испытаний существенно сокращается.
Кроме того, предусмотрен альтернативный вариант запуска. Аппараты попадают на Международную Космическую Станцию на борту грузовых кораблей. А потом космонавты в прямом смысле выкидывают их за борт во время плановых выходов в космос.
Для CubeSat выпущено множество сертифицированных компонентов: несущие рамы и силовые конструкции, бортовые компьютеры и электронные модули, сборки аккумуляторов и солнечные панели. Вы можете собрать спутник из деталей разных производителей, это существенно удешевит сборку спутника. А ещё можете купить набор для сборки: конструктор с уже включённой доставкой спутника на орбиту обойдётся в 20 тысяч долларов.
TubeSat
создавался как дешёвая альтернатива CubeSat.
Спутник строится на базе круглых печатных плат. Платы с электроникой соединяются между собой металлическими втулками.
Внешний корпус собирается из прямоугольных плат с солнечными панелями и внешними сенсорами. Получается простая и лёгкая конструкция.
Набор для сборки такого спутника намного бюджетнее: компоненты и запуск обойдутся примерно в 12 тысяч долларов. Спутник получится вдвое легче аналогичного CubeSat, а стоимость запуска напрямую зависит именно от веса.
Стандарт TubeSat развивает некоммерческая компания Interorbital Systems, которая занимается выведением таких спутников на околоземную орбиту.
Шаг третий: ищем бюджет
Всё просто. Покупаем набор, собираем спутник, запускаем в космос. Вот только где взять деньги на собственную космическую программу?
Не торопитесь продавать машину или квартиру. Есть как минимум два более интересных варианта.
Краудфандинг
или «народное финансирование». Бюджет на космическую программу можно найти на сайтах boomstarter или Planeta.ru. Главное — придумать запоминающуюся и яркую идею.
Это получилось у авторов проекта «Маяк». Запустить спутник, который будет виден в ночном небе ярче, чем любая звезда, захотели почти три тысячи спонсоров.
Проект собрал почти два миллиона рублей. 14 июля 2018 года аппарат был запущен в космос. К сожалению, во время запуска произошла авария, в контейнер со спутником попало топливо из сбойнувшего двигателя. «Маяк» вышел на орбиту, но не смог раскрыть солнечный отражатель. Запуск признали частично удавшимся.
Центры детского творчества
Проектированием и запуском космических спутников занимаются детские образовательные учреждения. Первой ласточкой стал сочинский «Сириус»: о запуске спутников, которые школьники собрали в детском лагере, рассказали во всех новостях. Сейчас похожие программы появляются в крупных центрах детского творчества.
Если вы уже вышли из школьного и даже институтского возраста, можете прийти со своим проектом к руководству такого центра. «Роскосмос» поддерживает образовательные программы по всей стране.
Если у вас вместе с детишками получится собрать что-то похожее на спутник, появится шанс запустить его в космос с борта МКС. Запуск при этом вам не будет стоить ни копейки.
Если вы с детства мечтали о космосе, не сдавайтесь Сегодня мечта может стать явью. Главное, сделайте первый шаг.