Для чего в состав моющих средств вводят ингибиторы коррозии

Особенности состава и использования антикоррозионных моющих средств

Состав и форма выпуска

Очистительная продукция, предназначенная, в том числе, и для борьбы с ржавчиной, состоит из длинного перечня ингредиентов. Часто такой препарат просто сделан на базе растворимого ингибитора коррозии. Также в состав добавляются следующие компоненты:

Скорость ржавления и атмосферной коррозии замедляется при включении в состав фосфатов, ПАВ и силикатов натрия. Добавление подобных ингибиторов снижает кислотно-щелочную и соляную активность химических растворов:

Также большой популярностью пользуются противокоррозионные очищающие товары с добавлением органических ингибиторов вроде моноэтаноламина, катапина, уротропина, дифениламина и т.д.

Обработка поверхности химическими веществами, направленными на борьбу с грязью, ржавчиной и жиром, приводит к появлению белого налёта, который предохраняет металл от коррозии. Данная защитная плёнка представляет результат химической реакции с участием ингибитора, металла и коррозионно активных веществ. Перед последующими операциями плёночное покрытие легко удаляется с помощью воды.

Препараты с очищающими свойствами могут быть как жидкими, так и сухими. Во втором случае концентрированные порошки разводятся водным раствором определённой температуры в конкретных пропорциях. Поскольку средства с антикоррозийными свойствами раздражают кожу и слизистые оболочки, при работе с ними требуется надевать спецодежду и индивидуальную защиту.

Преимущества использования моющих средств с антикоррозийной защитой

Сфера использования

Очищающие препараты против ржавчины применяют во многих промышленных направлениях:

Антикоррозийное моющее средство используют для очистки и обеззараживания различного оборудования, труб, транспортных конструкций, а также перед проведением ремонта и сервисного обслуживания Препарат удаляет отложения ржавчины, остатки масла, жира, органических соединений и даже мазута.

Источник

Ингибитор коррозии. Ингибиторная защита трубопроводов

Реализация программ ингибирования требует в несколько раз меньше средств, чем замена трубопроводов.
Ингибиторы для защиты от коррозии используются в нефтегазовой отрасли промышленности с 1940 х гг.

По механизму действия ингибиторы делятся на адсорбционные и пассивационные.
Ингибиторы-пассиваторы вызывают формирование на поверхности металла защитной пленки и способствуют переходу металла в пассивное состояние.

Наиболее широко пассиваторы применяются для борьбы с коррозией в нейтральных или близких к ним средах, где коррозия протекает преимущественно с кислородной деполяризацией.

Механизм действия таких ингибиторов различен и в значительной степени определяется их химическим составом и строением.

Различают несколько видов пассивирующих ингибиторов, например, неорганические вещества с окислительными свойствами (нитриты, молибдаты, хроматы).
Последние способны создавать защитные оксидные пленки на поверхности корродирующего металла.
В этом случае, как правило, наблюдается смещение потенциала в сторону положительных значений до величины, отвечающей выделению кислорода из молекул воды или ионов гидроксила.
При этом на металле хемосорбируются образующиеся атомы кислорода, которые блокируют наиболее активные центры поверхности металла и создают добавочный скачок потенциала, замедляющий растворение металла.
Возникающий хемосорбционный слой близок по составу к поверхностному оксиду.
Большую группу составляют пассиваторы, образующие с ионами корродирующего металла труднорастворимые соединения.
Формирующийся в этом случае осадок соли, если он достаточно плотный и хорошо сцеплен с поверхностью металла, защищает ее от контакта с агрессивной средой.
К таким ингибиторам относятся полифосфаты, силикаты, карбонаты щелочных металлов.

Отдельную группу составляют органические соединения, которые не являются окислителями, но способствует адсорбции растворенного кислорода, что приводит к пассивации.
К их числу для нейтральных сред относятся бензонат натрия, натриевая соль коричной кислоты.
В деаэрированной воде ингибирующее действие бензоата на коррозию железа не наблюдается.
Частицы адсорбционных ингибиторов (в зависимости от строения ингибитора и состава среды они могут быть в виде катионов, анионов и нейтральных молекул), электростатически или химически взаимодействуя с поверхностью металла (физическая адсорбция или хемосорбция соответственно) закрепляются на ней, что приводит к торможению коррозионного процесса.

Следовательно, эффективность ингибирующего действия большинства органических соединений определяется их адсорбционной способностью при контакте с поверхностью металла.

Как правило, эта способность достаточно велика из-за наличия в молекулах атомов или функциональных групп, обеспечивающих активное адсорбционное взаимодействие ингибитора с металлом.

Такими активными группами могут быть азот-, серо-, кислород- и фосфорсодержащие группы, которые адсорбируются на металле благодаря донорно-акцепторным и водородным связям.

Наиболее широко распространенными являются ингибиторы на основе азотсодержащих соединений.

Защитный эффект проявляют:

алифатические амины и их соли,

азотсодержащие 5-членные (бензимидозолы, имидазолины, бензотриазолы и т.д.) и 6-членные (пиридины, хинолины, пиперидины и т.д.) гетероциклы.

Большой интерес представляют соединения, содержащие в молекуле атомы серы.
К ним относятся тиолы, полисульфиды, тиосемикарбазиды, сульфиды, сульфоксиды, сульфонаты, тиобензамиды, тиокарбаматы, тиомочевины, тиосульфокислоты, тиофены, серосодержащие триазолы и тетразолы, тиоционаты, меркаптаны, серосодержащие альдегиды, кетосульфиды, тиоэфиры, дитиацикланы и т.д.

Из фосфорсодержащих соединений в качестве ингибиторов коррозии используются тиофосфаты, пирофосфаты, фосфорамиды, фосфоновые кислоты, фосфонаты, диалкил- и диарилфосфаты.

Кислород обладает наименьшими защитными свойствами в ряду гетероатомов: кислород, азот, сера, селен, но на основе кислородсодержащих соединений возможно создание высокоэффективных ингибиторных композиций.
Нашли применение пираны, пирины, диоксаны, фенолы, циклические и линейные эфиры, эфиры аллиловых спиртов, бензальдегиды и бензойные кислоты, димочевины, спирты, фураны, диоксоланы, ацетали, диоксоцикланы и др.

В последние годы при разработке ингибиторов коррозии наметилась тенденция к применению сырья, содержащего переходные металлы, комплексы на их основе и комплексообразующие соединения, которые взаимодействуют с переходными металлами, присутствующими в электролите или на защищаемой поверхности.
Доказано, что на основе таких соединений и комплексов, используя в качестве сырья отходы катализаторных производств и отработанные катализаторы, можно создать высокоэффективные экологически чистые ингибиторы коррозии углеродистых сталей в водных средах.

Источник

Антикоррозионные моющие композиции и их использование для очистки стоматологических и медицинских инструментов

Владельцы патента RU 2388797:

Данное изобретение относится в целом к способам очистки стоматологических и медицинских инструментов. В частности, данное изобретение согласно одному из аспектов направлено на новый способ проведения очистки стоматологических и хирургических инструментов с целью оптимизации как защиты от коррозии, так и эффективности очистки.

Согласно другому аспекту данное изобретение направлено на новые антикоррозионные композиции, включающие моющие средства, для медицинских и хирургических инструментов, которые особенно пригодны для использования в процессе очистки по данному изобретению.

Несмотря на то что стоматологические и медицинские инструменты изготавливают из нержавеющей стали, они подвержены коррозии при цикле их обработки (мытье, дезинфекция, стерилизация). Стоматологические инструменты обычно больше подвержены коррозии из-за более высокого содержания углерода в них. Чтобы получить желаемые характеристики инструментов, такие как поверхностная твердость и износостойкость, изготовители инструментов часто прибегают к таким способам изготовления, как термообработка, которая имеет также нежелательный эффект, подвергая риску стойкость инструментов к коррозии. Чтобы снизить величину и скорость процесса коррозии, или даже совсем предохранить от нее, следует предпринять некоторые действия для активной защиты от коррозии.

Такие процессы создают необходимость в применении большого количества различных химических веществ в ходе цикла мытья. Стоимость отдельных химикатов, работы с ними и систем дозаторов химических веществ делает процесс очистки дорогим и сложным.

Типичный цикл очистки медицинских инструментов состоит из ряда последовательных стадий: предварительное мытье, мытье, ополаскивание (обычно два) и сушка. Стадию предварительного мытья используют для того, чтобы растворить кровь на инструментах, и ее осуществляют холодной водой для предотвращения свертывания крови. Собственно мытье проводят горячей/теплой водой и моющим средством. Время мытья, температура воды и моющее средство подбирают в соответствии с требованиями. Несколько ополаскиваний используют для удаления жира, растворенного на стадии мытья, а также оставшегося моющего средства.

Ряд моющих средств, улучшенных ингибиторами образования ржавчины, разработан специально для использования в ультразвуковых моющих установках, где ополаскивание инструментов не рекомендуется, чтобы поддерживать присутствие моющего средства на поверхности инструментов. Пример представляет Ultrasonic Solution (раствор для ультразвуковой обработки), изготовленный Health Sonic Corporation. Ингибиторы образования ржавчины остаются на поверхности инструментов после того, как цикл очистки завершен. Эта защита от образования ржавчины имеет ограниченное во времени действие и может испаряться с поверхности или выгорать при обычном высокотемпературном процессе стерилизации, так что на поверхности инструмента практически не остается осадков, когда после этого его применяют на пациенте.

К несчастью, избегая стадии ополаскивания, чтобы получить максимальный защитный эффект таких ингибиторов образования ржавчины, мы можем подвергать риску чистоту инструментов. Основной задачей стадии ополаскивания является смыть грязь, высвободившуюся и растворившуюся на стадии мытья, и удалить ее вместе с использованным моющим средством.

Термин «антикоррозионное моющее средство, не требующее ополаскивания» будет применяться для обозначения моющего средства, улучшенного ингибиторами образования ржавчины, которое остается на поверхности инструментов после завершения цикла очистки, где защита от образования ржавчины имеет ограниченное во времени действие, и испаряется с поверхности или выжигается при высокотемпературном процессе стерилизации так, что практически никаких осадков не остается на поверхности инструмента при использовании его на пациенте.

Заявители обнаружили, что ряд таких не требующих ополаскивания антикоррозионных моющих средств можно, фактически, использовать в цикле мытья, который включает стадии мытья, ополаскивания и сушки (как, например, в распылительной моющей установке с контролем процесса), для защиты от коррозии, причем не подвергая риску эффективность очистки. Это моющее средство используют на стадии мытья цикла очистки, чтобы очистить и предотвратить коррозию (как это происходит при использовании ультразвуковой моющей установки), но его добавляют также, при более низких концентрациях, на последующих стадиях ополаскивания, особенно на последней стадии ополаскивания. Это поддерживает высокий уровень защиты от коррозии без отказа от ополаскивания, которое важно для качественной очистки. Этот новый способ очистки инструментов, в котором по меньшей мере окончательное ополаскивание содержит моющее средство, устраняет необходимость использования большого количества химикатов (чистящее средство, вспомогательное средство для ополаскивания, «хирургическое молочко»).

Заявители разработали также семейство специально составленных композиций антикоррозионных моющих средств, содержащих поверхностно-активное вещество с низкой пенообразующей способностью и алкилпирролидоны или определенные алкиламины, которые позволяют осуществить контроль коррозии во время мытья/дезинфекции медицинских инструментов в автоматических моющих системах, имеющих программируемые стадии мытья и ополаскивания.

Как указано выше, заявители обнаружили, что подходящие моющие средства, улучшенные ингибиторами образования ржавчины (главным образом теми, для которых защита от образования ржавчины имеет ограниченное во времени действие, и которые испаряются с поверхности или легко выгорают в ходе последующей стерилизации), можно использовать в распылительных моющих машинах с контролируемым процессом не только во время стадии мытья, но и в одной или более стадий ополаскивания, чтобы оптимизировать как очистку, так и защиту от коррозии. Примером таких моющих машин для инструментов являются моющие машины для инструментов HYDRIM (торговая марка), выпускаемые SciCan.

Таблица 1 иллюстрирует типичную программу дозирования моющего средства для стадий предварительного мытья, мытья и второго ополаскивания в циклах очистки моющей машины HYDRIM CS1W Instrument, изготовленной SciCan. Для этой машины общий объем воды, применяемый в цикле очистки, составляет 3 л. Общий объем моющего средства, дозируемого в ходе стадий предварительного мытья, мытья и второго ополаскивания, составляет, соответственно, 5,7 мл, 37 мл и 11,37 мл.

Таблица 1
Дозировка моющего средства (мл), Hydrim CS1W
ЦиклПредварительное мытьеМытье2-е ополаскивание
Начало стадии предварительного мытьяНачало стадии мытьяПри 45°СНачало 2-го ополаскивания
Р1 (норм.)5,718,518,511,37
Р2 (усилен.)5,718,518,511,37

Первое ополаскивание проводят без всякого моющего средства. Это короткая фаза, на которой моющее средство, оставшееся от фазы мытья, еще защищает инструмент.

В соответствии со способом по данному изобретению можно использовать большое количество имеющихся в продаже не требующих ополаскивания антикоррозионных моющих средств, которые предполагаются для использования в ультразвуковых установках для очистки. То есть их тоже можно добавлять на стадиях, следующих за стадией мытья цикла очистки. Однако заявители разработали специально составленный слабопенящийся концентрат защищающего от коррозии чистящего раствора, содержащий поверхностно-активное вещество с низкой пенообразующей способностью и алкилпирролидон или алкиламин, который обеспечивает прекрасные свойства по очистке и защите от коррозии.

Было неожиданно обнаружено, что чистящий концентрат по данному изобретению и разбавленные растворы, содержащие по меньшей мере 0,005% поверхностно-активного вещества с низкой пенообразующей способностью и по меньшей мере 0,005% С4-С16 алкилпирролидона или С1-С18 алкиламина, проявляют превосходные чистящие/защитные от коррозии свойства, особенно при очистке металлических стоматологических инструментов. Некоторые такие инструменты часто ржавеют после мытья и ополаскивания, но составы по данному изобретению предотвращают образование ржавчины и коррозию.

Концентрат чистящего раствора по данному изобретению имеет рН от нейтрального до щелочного, предпочтительно от 7 до 12. Согласно спецификации концентрации компонентов в водных чистящих композициях установлены в массовых процентах. Активные компоненты слабопенящихся, защищающих от коррозии чистящих растворов по данному изобретению представляют собой следующее:

(a) примерно от 0,005 до 10% от состава составляет поверхностно-активное вещество с низкой пенообразующей способностью, выбранное из блок-сополимеров полиоксиэтилена/полиоксипропилена, где молекулярная масса полиоксипропилена составляет примерно от 1500 до 8500, и в которых менее примерно 30% общей молекулярной массы обусловлено полиоксипропиленом;

(b) от 0,005 до 10% от состава составляет соединение, выбранное из С4-С16 алкилпирролидонов и С1-С18 алкиламинов, в качестве ингибирующего коррозию соединения;

(c) примерно от 0,01 до 15% от состава составляет по меньшей мере одна модифицирующая добавка, выбранная из группы фосфоновых кислот, таких как 1-гидроксиэтилиден 1,1-дифосфоновая кислота, аминотри(метилен фосфоновая кислота), диэтилентриаминпента(метиленфосфоновая кислота), 2-гидроксиэтилимино-бис-(метиленфосфоновая кислота), этилендиаминтетра (метиленфосфоновая кислота), ЭДТА (этилендиаминтетрауксусная кислота), ДТПА (диэтилентриаминпентауксусная кислота), ГЭДТА (N-(гидроксиэтил)этилендиаминтетрауксусная кислота), НТА (нитрилтриуксусная кислота), 2-гидроксиэтилиминодиуксусная кислота, триполифосфат натрия или калия, лимонная кислота, тетрафосфат натрия, гексаметафосфат натрия и их смеси, и

(d) примерно от 0% до 20% от состава составляет по меньшей мере один гидротроп, выбранный из группы, включающей ксиленсульфонат натрия, кумолсульфонат натрия, С6-С18 алкилсульфоновые кислоты и их соли, С6-С20 алкилполиглюкозиды и С6-С16 дифенилоксиддисульфонаты.

Термин «модифицирующая добавка» обычно используют в области составов моющих средств для обозначения молекулы, которая может уловить и удалить из воды поливалентные катионы, такие как кальций и магний. Такие катионы имеют тенденцию осаждать поверхностно-активное вещество, образуя нежелательные грязь или осадок.

«Гидротропы» представляют собой соединения, применяемые для увеличения растворимости поверхностно-активных веществ в водных растворах. Их применение описано в учебниках и литературе в данной области, например в «Книге о поверхностно-активных веществах и явлениях на поверхности раздела» (Book of Surfactants and Interfacial Phenomena), автор Milton Rosen.

Хотя в качестве поверхностно-активных веществ использовали большое количество алкилпирролидонов, их эффективная роль в качестве ингибиторов коррозии является новой и неожиданной. Можно предположить, что это вытекает из способности С4-С16 алкилпирролидонов превращаться в растворе в цвиттер-ионы, со способностью абсорбироваться на положительно или отрицательно заряженных металлических поверхностях, обеспечивая таким образом однородную защиту против коррозии.

Что касается С1-С18 алкиламинов, то при нейтральном или слабощелочном рН эти соединения ионизируются до четвертичной аммониевой формы, и этот положительный ион может адсорбироваться на отрицательно заряженных поверхностях металла, опять-таки усиливая защиту от коррозии.

Композиции по данному изобретению могут содержать в качестве возможных дополнительных ингредиентов:

— по меньшей мере один растворитель в количестве примерно от 0,001 до 20% от состава, выбранный из группы гликолей, простых эфиров гликолей, С1-С6 линейных или разветвленных спиртов и ароматических спиртов;

— по меньшей мере один буфер поддержания рН в количестве примерно от 0,001 до 10% от состава, выбранный из борной кислоты, лимонной кислоты, фосфорной кислоты и их солей;

— по меньшей мере одно дополнительное поверхностно-активное вещество в количестве от 0,01 до 10% от состава, выбранное из неионных, анионных, амфотерных и катионных ПАВ; и

— по меньшей мере один ингибитор коррозии в количестве примерно от 0,001% до 10% от состава, выбранный из группы молибдатов (например, молибдат натрия), нитритов (например, нитрит натрия), триазолов (например, 1,2,3-бензатриазол), глюконатов и карбоновых кислот.

Совокупность испытаний на моющую способность была проведена на стержнях из нержавеющей стали, имеющих высокое (мин. 0,15%) содержание углерода. Этот материал был подвергнут термообработке для снижения стойкости к коррозии. Поверхности этих стержней исследовали на предмет появления «ржавчины».

В то время как обычные, не требующие ополаскивания антикоррозионные моющие средства дают более 25% поверхности, покрытой ржавчиной/продуктами коррозии, все предложенные заявителями составы Таблицы 2 давали менее 5% покрытия продуктами коррозии; пример реализации антикоррозионного моющего состава по данному изобретению, являющийся предпочтительным в настоящее время, приведенный в Таблице 3, не дает визуально обнаруживаемой ржавчины или продуктов коррозии на поверхности испытуемых стальных стержней.

Специалисты в данной области должны понимать, что могут быть осуществлены различные модификации данного способа и композиций, описанных выше, в пределах сущности и объема данного изобретения. Соответственно, предполагается, что приведенные здесь конкретные примеры реализации следует рассматривать только как иллюстрации, а изобретение ограничено только приведенной здесь формулой изобретения.

Таблица 2
4472447344744475460846734677467946804690
Исходный материалмас.%мас.%мас.%мас.%мас.%мас.%мас.%мас.%мас.%мас.%
Деионизированная вода 1до 100%50,6045,6047,3058,3062,3033,24
Dequest 2010 28,008,008,008,008,008,0012,80
КОН (45%) 311,5011,5011,5011,5010,509,0016,80
Пропиленгликоль 47,008,0012,0012,0010,009,5016,00
Ксилолсульфонат натрия 58,40
Pluronic 17R2 60,050,500,700,500,500,80
Bioterge PAS-8S 71,401,401,40
Cobratec 35 G 83,50
Молибдат натрия 91,501,501,501,50
Борная кислота 1022,002,002,000,200,200,20
Октиламин 111000
Surfadone LP-100 1202002,004,002,002,002,003,20
Триэтаноламин 130050
SXS 1414,5014,0014,0010,008,0016,00
Etox 2400 151,000,500,500,96
ИТОГО:100100100100100100100100100100

Примечания к таблице 2:

2 1-гидроксиэтилиден, 1,1 дифосфоновая кислота (модифицирующая добавка)

3 гидроксид калия (для корректировки рН)

6 торговая марка BASF для сополимера полиоксиэтилена/полиоксипропилена (вещество, подавляющее образование пены)

7 торговая марка Stepan для октилсульфоната (анионное поверхностно-активное вещество)

8 1,2,3-бензотриазол (антикоррозионный агент для меди)

9 ингибитор коррозии

10 нетоксичный буфер поддержания рН

11 ингибитор коррозии

12 торговая марка ISP для М-октил-2-пирролидона (ингибитор коррозии)

13 ингибитор коррозии и вещество для регулирования рН

14 товарный знак Stepan для ксилолсульфоната натрия (гидротроп)

15 торговая марка Etox для этиленоксидного/пропиленоксидного сополимера (неионное поверхностно-активное вещество)

1. Антикоррозионная моющая композиция для применения при очистке стоматологических и медицинских инструментов, включающая в водном растворе:
(a) от 0,005 до 10% поверхностно-активного вещества с низкой пенообразующей способностью;
(b) от 0,005 до 10% ингибирующего коррозию соединения, выбранного из С4-С16 алкилпирролидонов и С1-С18 алкиламинов;
(c) от 0,01 до 15% модифицирующей добавки для предотвращения образования осадков при реакции ионов металла в водном растворе с указанным поверхностно-активным веществом и
(d) от 0 до 20% гидротропа,
где рН указанной антикоррозионной моющей композиции находится в диапазоне от нейтрального до щелочного.

2. Антикоррозионная моющая композиция по п.1, имеющая рН от 7 до 12.

3. Антикоррозионная моющая композиция по п.1 или 2, в которой указанное поверхностно-активное вещество с низкой пенообразующей способностью выбрано из группы, состоящей из блоксополимеров полиоксиэтилена/полиоксипропилена, где молекулярная масса полиоксипропилена составляет примерно от 1500 до 8500, и в которых менее примерно 30%т общей молекулярной массы обусловлено полиоксипропиленом.

4. Антикоррозионная моющая композиция по п.2, в которой указанная модифицирующая добавка выбрана из группы, состоящей из 1-гидроксиэтилиден 1,1-дифосфоновой кислоты, амино три-(метилен-фосфоновой кислоты), диэтилентриаминпента (метиленфосфоновой кислоты), 2-гидроксиэтилимино-бис (метиленфосфоновой кислоты), этилендиаминтетра(метиленфосфоновой кислоты), ЭДТА (этилендиаминтетрауксусной кислоты), ДТПА (диэтилентриаминпентауксусной кислоты), ГЭДТА (N-(гидроксиэтил)-этилендиаминтриуксусной кислоты), НТА (нитрилтриуксусной кислоты), 2-гидроксиэтилиминодиуксусной кислоты, триполифосфата натрия или калия, лимонной кислоты, гликолевой кислоты, тетрафосфата натрия, гексаметафосфата натрия и их смесей.

5. Антикоррозионная моющая композиция по п.2, в которой указанный гидротроп выбран из группы, состоящей из ксилолсульфоната натрия, кумолсульфоната натрия, С6-С18 алкилсульфоновых кислот и их солей, С6-С20 алкилполигликозидов и С6-С16 дифенилоксид дисульфонатов.

6. Антикоррозионная моющая композиция для использования при очистке стоматологических и медицинских инструментов, включающая в водном растворе:
(a) от 0,005 до 10% поверхностно-активного вещества с низкой пенообразующей способностью, выбранного из группы, состоящей из блоксополимеров полиоксиэтилена/полиоксипропилена, где молекулярная масса полиоксипропилена составляет примерно от 1500 до 8500, и в которых менее примерно 30% общей молекулярной массы обусловлено полиоксипропиленом;
(b) от 0,005 до 10% ингибирующего коррозию соединения, выбранного из С4-С16 алкилпирролидонов или С1-С18 алкиламинов;
(c) модифицирующей добавки для предотвращения образования осадков при реакции металла в водном растворе с поверхностно-активным веществом, выбранной из группы, состоящей из 1-гидроксиэтилиден 1,1-дифосфоновой кислоты, амино три(метиленфосфоновой кислоты), диэтилентриаминпента(метиленфосфоновой кислоты), 2-гидроксиэтилимино-бис(метиленфосфоновой кислоты), этилендиаминтетра(метиленфосфоновой кислоты), ЭДТА (этилендиаминтетрауксусной кислоты), ДТПА (диэтилентриаминпентауксусной кислоты), ГЭДТА (N-(гидроксиэтил)-этилендиаминтриуксусной кислоты), НТА (нитрилтриуксусной кислоты), 2-гидроксиэтилиминодиуксусной кислоты, триполифосфата натрия или калия, лимонной кислоты, тетрафосфата натрия, гексаметафосфата натрия и их смесей;
(d) от 0 до 20% гидротропа, выбранного из группы, состоящей из ксилолсульфоната натрия, кумолсульфоната натрия, С6-С18 алкилсульфоновых кислот и их солей, С6-С20 алкилполигликозидов и С6-С16 дифенилоксид дисульфонатов, где рН этого водного раствора составляет от 7 до 12.

7. Антикоррозионная моющая композиция по п.6, дополнительно включающая от 0,001 до 20% растворителя, выбранного из группы, состоящей из гликолей, простых эфиров гликолей, С1-С6 линейных или разветвленных спиртов и ароматических спиртов.

8. Антикоррозионная моющая композиция по п.6, дополнительно включающая от 0,001 до 10% буфера, выбранного из группы, состоящей из борной кислоты, лимонной кислоты, фосфорной кислоты и их солей.

9. Антикоррозионная моющая композиция по п.6, включающая от 0,01 до 10% дополнительного поверхностно-активного вещества, выбранного из неионных, анионных, катионных или амфотерных поверхностно-активных веществ.

10. Антикоррозионная моющая композиция по п.6, включающая от 0,01 до 10% дополнительного антикоррозионного соединения, выбранного из группы, состоящей из молибдатов щелочных металлов, нитритов щелочных металлов, триазолов, глюконатов и карбоновых кислот.

11. Способ очистки металлических медицинских и стоматологических инструментов для удаления с них загрязнений и замедления коррозии, включающий:
(a) на стадии мытья мытье инструментов в водном растворе, содержащем антикоррозионную моющую композицию по любому из пп.1-5, с последующим стоком жидкости с инструментов;
(b) осуществление по меньшей мере одной стадии ополаскивания с последующим стоком жидкости, с использованием водной жидкости для ополаскивания, при этом указанная водная жидкость для ополаскивания включает заданную концентрацию указанного моющего средства по меньшей мере на заключительной стадии ополаскивания.

12. Способ по п.11, включающий стадию предварительного мытья с использованием водного раствора, содержащего более низкую концентрацию указанного моющего средства, чем оно присутствует на указанной стадии мытья.

13. Способ очистки металлических медицинских и стоматологических инструментов для удаления с них загрязнений и замедления коррозии, включающий:
(a) на стадии мытья мытье инструментов в водном растворе, содержащем антикоррозионную моющую композицию по любому из пп.6-10, с последующим стоком жидкости с инструментов;
(b) осуществление по меньшей мере одной стадии ополаскивания с последующим стоком жидкости, с использованием водной жидкости для ополаскивания, при этом указанная водная жидкость для ополаскивания включает заданную концентрацию указанного моющего средства по меньшей мере на заключительной стадии ополаскивания.

14. Способ по п.13, включающий стадию предварительного мытья с использованием водного раствора, содержащего более низкую концентрацию указанного моющего средства, чем оно присутствует на указанной стадии мытья.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *