Для чего нужен полиморфизм

Полиморфизм: влияние на качество лекарственных средств и актуальные методы анализа

Полный текст:

Аннотация

Ключевые слова

##article.ConflictsofInterestDisclosure##:

##article.articleInfo##:

Депонировано (дата): 16.05.2018

##article.reviewInfo##:

##article.editorialComment##:

Для цитирования:

Гильдеева Г.Н. Полиморфизм: влияние на качество лекарственных средств и актуальные методы анализа. Качественная Клиническая Практика. 2017;(1):56-60.

For citation:

Gildeeva G.N. Polymorphism: the influence on the quality of drugs and actual methods of analysis. Kachestvennaya Klinicheskaya Praktika = Good Clinical Practice. 2017;(1):56-60. (In Russ.)

Введение

Полиморфизм во многом определяет свойства веществ. Во многих отраслях науки и техники это свойство вещества активно исследуется. Полиморфные модификации (ПМ) образуют многие химические, в том числе и лекарственные, вещества. Полиморфизм объясняется тем, что одни и те же атомы вещества могут образовывать различные устойчивые кристаллические решётки [2, 3].

Образование различных полиморфов одного и того же лекарственного вещества обычно происходит при изменении условий кристаллизации, при введении в жидкие или мягкие лекарственные формы различных вспомогательных веществ, при сушке и т.д. Учёт и рациональное использование явления полиморфизма веществ имеют большое значение для медицинской практики. Практически от того, какая кристаллическая модификация субстанций содержится в лекарственном препарате, зависит его стабильность и эффективность [4].

По этой причине лекарственные субстанции, полученные на разных заводах-изготовителях, иногда даже в пределах одной серии на одном и том же за-воде-изготовителе, могут различаться по физико-химическим свойствам, что определяется особенностями технологии их получения, особенно на этапе кристаллизации, а также возможностью полиморфных переходов при транспортировке и хранении. Такие переходы возможны как при производстве готовых лекарственных средств, так и при их хранении, что может влиять на свойства готовой продукции.

В фармации явление полиморфизма стало изучаться сравнительно недавно в рамках биофармацевтического направления. В нормативной документации на лекарственную субстанцию обычно не отмечается факт возможного наличия у него полиморфизма и не оговаривается необходимость соблюдения определённых условий кристаллизации вещества, обеспечивающих получение кристаллов с наиболее высокой терапевтической эффективностью, хотя в некоторых случаях в нормативной документации на лекарственное вещество, например, на рокситромицин, отмечается способность вещества к полиморфизму, но при этом не предлагается проведение испытаний по вопросу идентификации полиморфных форм и не описываются способы их получения [5].

Всё вышесказанное обуславливает необходимость изучения полиморфизма лекарственных веществ и разработки алгоритма поиска наиболее активных их полиморфов и методов их анализа.

Полиморфизм как характеристика, определяющая ключевые свойства активной фармацевтической субстанции

Полиморфизм активной фармацевтической субстанции (АФС) может быть причиной фармацевтической неэквивалентности и, как следствие, фармакокинетической и терапевтической неэквивалентности препаратов в твердой лекарственной форме. Имеющиеся существенные отличия в растворимости полиморфных модификаций АФС могут привести к различию кинетики их растворения in vivo и, как следствие, — биодоступности лекарственных средств (ЛС).

Биодоступность/биоэквивалентность ЛС зависит от ряда факторов, определяющих скорость и степень их абсорбции, таких как кинетика растворения и проникающая способность через мембраны клеток, гастроинтестинальная подвижность, метаболизм. Эти факторы учитываются в концепции биофармацевтической классификационной системы (БКС) АФС, которая уже принята в руководствах регулирующих органов в промышленно развитых странах [6].

Большинство литературных данных укладываются в рамки БСК АФС и позволяют предсказать на основании фармацевтических свойств, будет ли различаться биодоступность ПМ АФС. Тем не менее встречаются и противоречивые сведения относительно биодоступности кристаллических модификаций лекарственных веществ (ЛВ) [7]. Возможными причинами противоречий, по-видимому, являются следующие:

В контексте исследования биофармацевтических свойств АФС в литературе практически не рассматривается вопрос, чем обусловлен наблюдаемый фармакокинетический эффект конформационных ПМ АФС: лишь разницей в растворимости и скорости растворения отдельных модификаций, либо отчасти и сохранением конформационного отличия ПМ АФС в водном растворе?

Согласно Европейской Фармакопее, свойства ПМ АФС в растворах и расплавах идентичны. Между тем первые наблюдения, указывающие на отличие свойств растворов ПМ низкомолекулярных органических соединений, были отмечены в первой половине ХХ в. Относительно недавно было сообщение о том, что раствор метастабильной ПМ местного анестетика дикаин проявляет в 2—3 раза более положительную анестезирующую активность по сравнению со стабильной модификацией при местном применении на роговицу глаза [8, 9], при субарахноидальном введении препарата, как средства спинальной анестезии. При этом токсичность дикаина в 3 раза превышает токсичность метастабильной ПМ. Эта группа авторов отмечает и более высокую репаративнорегенеративную активность бета-ПМ метилурацила по сравнению с его альфа-модификацией на клетки переднего эпителия роговицы глаз, что может объясняться различной диффузией через мембрану двух бионеэквивалентных форм метилу- рацила. Учитывая низкобарьерный характер конформационных состояний ПМ, сохранение различий между ПМ АФС в растворе после диссолюции объяснялось за счёт их стабилизации кооперативными взаимодействиями, в частности, за счёт внутримолекулярных связей, образования молекулярных ассоциатов и сольватации [10]. Действительно, супрамолекулярные ассоциаты возникают на стадии образования зародышей при кристаллизации [11]. Однако в условиях, отличных от пересыщенных растворов, молекулы АФС сольватированы. Например, результаты исследования флуоресценции дифлунизала в растворе и в четырёх кристаллических ПМ не позволяют предположить возможность кооперативных взаимодействий в растворе [12].

В настоящее время большое внимание учёных уделяется хиральности как фундаментального свойства биологических систем [13]. Так, например, до последнего времени амлодипин использовали в виде рацемической смеси право- и левовращающих изомеров. Вместе с тем установлено, что способность блокировать кальциевые каналы L-типа принадлежит преимущественно левовращающему S-энантиомеру [14]. Изучение амлодипина показало, что присоединение к дигидропиридиновым рецепторам является стерео-селективным, и связь с S(—) изомером была в 1000 раз сильнее, чем с R(+)изомером [15]. Стереоселективность рецепторов к S(—) и R(+)изомерам объясняет различия в клиренсе, биодоступности и клинической активности препарата. Применение чистого левовращающего фармакологически активного S(—)изомера амлодипина вместо рацемической смеси имеет важные преимущества, ведь необходимая доза и системная токсичность могут быть снижены.

По-видимому, значимые различия в свойствах растворов ПМ можно ожидать для АФС большой молекулярной массы — липофильных, обладающих конформационной жёсткостью полициклических соединений, в которых дополнительно реализуются сильные внутримолекулярные взаимодействия, например, стероидов, гормонов, пептидов, природных высокомолекулярных биологически активных веществ, характеризующихся высокой пространственной организацией молекул [16]. Однако этот вопрос в полной мере не может быть решён без систематического исследования конформаций молекул ПМ АФС в растворах методами спектроскопии циркулярного дихроизма и объёмного ядерного магнитного резонанса.

С учётом вышесказанного важным вопросом является стабильность кристаллических модификаций АФС. Метастабильная ПМ может превращаться в термодинамически более стабильную форму, что в свою очередь может привести к уменьшению растворимости АФС. Высокая дисперсность АФС может негативно влиять на стабильность АФС при хранении за счёт агрегации [17], превращений аморфной формы, изменения полиморфного состава. В процессе хранения вне плотной упаковки, в замороженном состоянии возможны кристаллизация аморфных образцов и образование гидратов, превращение метастабильных полиморфных модификаций в стабильные формы [18].

Таким образом, из многочисленных факторов, которые оказывают влияние на качество твёрдых АФС, краеугольным является кристаллическая структура АФС [19, 20]. Понимание взаимосвязи кристаллической структуры, био- и фармацевтических свойств может позволить оптимизировать технологический процесс получения и состав лекарственной формы с заданными свойствами, которые должны обеспечивать оптимальную биодоступность действующего вещества. При разработке готовых лекарственных форм и аналитической нормативной документации на ЛС необходима строгая регламентация полиморфного состава и степени измельчения частиц АФС, что является принципиальным для АФС 4-го и особенно 2-го класса по БСК. В мировой практике доклинические и клинические исследования при разработке новых ЛС включают биофармацевтический скрининг, связанный с выявлением фармацевтических факторов, влияющих на высвобождение, фармакокинетику, фармакодинамику и токсикодинамику АФС.

Все аналитические методики по изучению ПМ АФС должны быть предварительно валидированы [21]. Разработан ряд руководств, в которых рассматриваются вопросы валидации аналитических процедур, например, ICH. Необходимо проверять использование описанных в фармакопеях аналитических методик для каждого состава [22]. Примером неправильного применения методики может служить состав, из которого при обработке в соответствии с фармакопейным методом образуется опалесцирующий раствор на этапе, на котором должно быть измерено поглощение УФ-излучения.

Методы анализа полиморфных модификаций лекарственных средств

Изменение кристаллической модификации ЛВ в производственном процессе, при хранении и реализации ЛС может привести к изменениям фармацевтических и, как следствие, фармакокинетических показателей и терапевтических свойств ЛС. В связи с этим идентификация и количественное определение ПМ, сольватов и аморфной формы ЛВ имеет ключевое значение при характеристике ЛВ в процессе разработки и производства ЛС, а также для контроля качества АФС и ЛП. Данная практика действует в странах Международной конференции по гармонизации (ICH), где соответствующие испытания являются обязательными для регистрации новых ЛС. В большинстве стран и, в частности, в России для регистрации новых ЛС исследование полиморфизма ЛВ не является обязательным.

Руководство ICHQ6A [23], определяющее требования к качеству новых АФС и ЛП, рекомендует аналитические процедуры испытания полиморфизма и условия принятия критериев качества ЛС. Согласно данному руководству, для идентификации и характеристики ПМ ЛВ рекомендуются следующие методы:

Что касается положения в России, то в настоящее время для контроля качества ЛС применяют достаточно большое количество методов. Соответствующие методики включают в нормативную документацию (НД): фармакопейную статью предприятия (ФСП) на отечественные лекарственные средства и НД — на зарубежные.

Как показывают наши исследования и данные других авторов, для оценки качества и выявления фальсификатов лекарственных средств, особенно фармацевтических субстанций, уже недостаточно применения стандартных аналитических методов. И, в частности, лишнее тому подтверждение — явление полиморфизма.

Действительно, можно провести установление подлинности стандартными фармакопейными методами — ИК, УФ, хроматография, химические реакции. Это позволит, например, отбраковать поддельные субстанции. Можно провести анализ чистоты теми же стандартными подходами (хроматография, УФ-спектрофотометрия, анализ примесей). Это тоже важно, в том числе и с точки зрения выявления фальсификатов. Можно провести количественное определение, и это также позволит отбраковать ряд лекарственных средств.

Но остаются, например, две субстанции разных производителей, полностью удовлетворяющие всем требованиям нормативной документации по разделам «подлинность», «чистота» и «количественное определение». Однако изготовленные из этих субстанций препараты (по абсолютно одинаковой и валидированной технологической схеме) показывают различную биодоступность и стабильность.

К этому стоит добавить и тот факт, что фальсифицированные субстанции также часто не удаётся выявить по стандартной фармакопейной схеме — они удовлетворяют всем испытаниям, из-за чего ряд специалистов высказывает определённый скептицизм по отношению к сложившейся системе фармакопейного анализа.

Следовательно, возникает вопрос: какие методы анализа и какие указания следует включать дополнительно в современную НД и какие данные необходимо приводить в соответствующем регистрационном досье? Что это означает на практике, например, с точки зрения оценки полиморфизма субстанций?

Наибольшую ценность с точки зрения оценки полиморфных модификаций субстанций представляют собой рентгеновская дифракция и термоаналитические методы — дифференциальная сканирующая калориметрия и термогравиметрия.

Ценность ИК-спектроскопии для этих целей, меньше, поскольку изменения в ПМ не всегда могут приводить к регулярным изменениям в соответствующих ИК-спектрах. Этот метод стоит продолжать рассматривать как основной для установления подлинности.

Также важную информацию может дать оценка морфологии частиц субстанции методами оптической или электронной микроскопии.

Если с методами анализа всё достаточно очевидно, то есть ещё и вторая сторона вопроса — экономическая. Современный аналитический арсенал позволяет провести практически любые испытания любой степени сложности. Но стоимость соответствующего оборудования может оказаться достаточно высокой, чтобы иметь его в стандартном центре контроля качества лекарственных средств.

Руководители Центра Контроля Качества Лекарственных Средств (ЦККЛС) часто говорят о существенных финансовых затратах на оснащение лабораторий. Очевидно, что каждую лабораторию в стране невозможно оснастить по полной схеме всем парком современных приборов. И, естественно, мы тоже делим оборудование на первостепенное, которое обязательно необходимо иметь в лабораториях (в соответствии с частотой использования тех или иных методов в НД), и то, которое стоит приобретать по мере необходимости. Возможно, целесообразно использовать схему специализации, когда отдельные ЦККЛС выполняют определённые высокотехнологичные испытания, например, с использованием тех же приборов, необходимых для оценки полиморфизма продукции, поставляемой на фармацевтический рынок. Существенную роль в этом должна сыграть государственная поддержка, особенно в части оснащения лабораторий, которые могли бы работать в соответствии с требованиями сети Официальных медицинских контрольных лабораторий (OMCL).

Список литературы

1. Hilfiker R. Polymorphism in pharmaceutical industry. Weinheim: Wiley-VCH, 2006.

2. Бабилев Ф.В., Андроник И.Я. Полиморфизм лекарственных веществ. Кишинев: Штиинца. 1981; 239.

3. Смехова И.Е., Молдавер Б.Л., Громова Э.Г. Изучение влияния таутомерии на противовоспалительную активность бутаглионамида. Фармация. 1984; 6: 23-25.

4. Акашкина Л. В., Буленков Т.И., Езерский М.Л. Сравнительная оценка кристаллических форм стрептоцида. Научные труды. М.: 1983; XXI: 195-200.

5. Barton J.H. Reforming the patent system. Science. 2000; 287: 1933-1934.

6. Ahr G., Voith B., Kuhlmann J. Guidances related to bioavailability and bioequivalence: European industry perspective. Eur. J. Drug Metab. Pharmacokinet. 2000; 25: 25-27.

7. Ali A.A., Farouk A. Comparative studies on the bioavailability of ampicillin an- hydrate and trihydrate. Int. J. Pharm. 1981; 9: 3: 239-243.

8. Леонидов Н.Б., Успенская С.И., Гацуро В.В. Физико-химические свойства леокаина и особенности его биологической активности в сравнительном аспекте с дикаином. РХЖ. 1997; 16: 5: 53-60.

10. Леонидов Н.Б., Серезнев Н.Б., Успенская С.И. Исследование диффузионных свойств растворов полиморфных модификаций 6-метилурацила. РХЖ. 1997; 16: 5: 49-50.

11. Gu С.Н., Young V., Grant D.J.W. Polymorph screening: Influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci. 2001; 90: 1878-1890.

12. Brittain H.G. et al. Solid-state fluorescence studies of some polymorphs of diflunisal. J. I. Pharm. Res. 2005; 22: 6: 999-1006.

13. Решетова Е.Н., Горбунов А.А., Аснин Л.Д. Препаративное хроматографическое разделение энантиомеров ибупрофена на хиральной неподвижной фазе Whelk 01. Химико-фармацевтический журнал. 2012; 9: 47-51.

15. Арсеньева К.Е. Применение амлодипина в кардиологической практике. РМЖ. 2009; 17 (8): 610-613.

16. Gurjar M. The future lies in chiral purity: A perspective. J. Indian Med. Assoc. 2007; 105 (4): 177-178.

17. Rabinow В.Е. Nanosuspensions in drug delivery. Nature Rev. 2004; 3: 9: 785-796.

18. Glass B.D., Novak Cs., Brown M.E. The thermal and photostability of solid pharmaceuticals: A review J. Therm. Anal. Cal. 2004; II: 1013-1036.

19. Lennard M.S. Clinical pharmacology through the looking glass: reflections on the racemate vs enantiomer debate. Br. J. Clin. Pharmac. 1991; 31: 623-625.

20. Lien A.N., He H., Pham-Huy C. Chiral Drugs: An Overview. International Journal of Biomedical science. 2006; 2: 2: 85-100.

21. Srinivas N., Barbhaiya R.H., Midha K.K. Enantiomeric drug development: issues, considerations and reculatory requirements. J. Pharmacol. Sci. 2000; 90: 1205-1215.

22. Харитонов Ю.Я. Аналитическая химия (аналитика): в 2 кн. М.: Высшая школа, 2001; 615.

23. ICH Guidance Q6A specification: Spetifications of new drug substances and products: Chemical substances. 1999.

Источник

Язык программирования C++

Язык С++. Полиморфизм

Полиморфизм – свойство, которое позволяет использовать одно и тоже имя функции для решения двух и более схожих, но технически разных задач. Полиморфизм – возможность замещения методов объекта родителя методами объекта-потомка, имеющих то же имя.

Полиморфизм по-гречески означает «много форм». Объекты, имеющие общего предка, могут принимать разные формы, оставаясь при этом схожими.

Чтобы использовать полиморфизм, необходимо чтобы:

1) все классы-потомки являлись наследниками одного и того же базового класса

2) функция, реализующая метод, должна быть объявлена виртуальной в базовом классе

Виртуальным называется метод, ссылка на который вычисляется на этапе выполнения программы.

Доступ к обычным методам через указатели

Рассмотрим пример, когда базовый и производные классы содержат функции с одни и тем же именем, и к ним обращаются с помощью указателей, но без использования виртуальных функций:

Для чего нужен полиморфизм. Смотреть фото Для чего нужен полиморфизм. Смотреть картинку Для чего нужен полиморфизм. Картинка про Для чего нужен полиморфизм. Фото Для чего нужен полиморфизм

A, B, Base – это типы. Указатели на объекты производных классов совместимы по типу с указателями на объекты базового класса.

Base *ptr; ptr=&a; ptr=&b;

Однако, указатели производных классов между собой не совместимы!

Пример:

A *ptr; ptr=&a;

ptr=&b; // указатель класса A не совместим с указателем класса B.

Теперь необходимо понять, какая собственно функция выполняется в этой строчке

Для чего нужен полиморфизм. Смотреть фото Для чего нужен полиморфизм. Смотреть картинку Для чего нужен полиморфизм. Картинка про Для чего нужен полиморфизм. Фото Для чего нужен полиморфизм

Это функция Base::show() или A::show() или B:show()?

Результат выполнения дает простой ответ

Base

Base

Всегда выполняется метод базового класса. Компилятор не смотрит на содержимое указателя, а выбирает метод, определяемый типом указателя!!

Доступ к виртуальным методам через указатели

Сделаем одно маленькое изменение в нашей программе: поставим ключевое слово virtual перед объявлением функции show() в базовом классе.

Class A

Class B

Теперь выполняются методы производных классов. Один и тот же вызов ставит на выполнение разные функции в зависимости от содержимого указателя ptr.

Если метод в базовом классе объявлен как виртуальный, то компилятор выбирает метод по содержимому указателя, а не по типу указателя, как было в первом примере.

Абстрактные классы и чисто виртуальные методы

Базовый класс, объекты которого никогда не будут реализованы называется абстрактным классом. Такой класс может существовать с единственной целью – быть родительским классом к производным классом, объекты которых будут реализованы.

Для того чтобы сделать базовый класс абстрактным, достаточно ввести в класс хотя бы одну чисто виртуальную функцию.

Чисто виртуальная функция – это функция, после объявления которой добавлено выражение =0.

Пример: Объявить абстрактный класс person. Объявить два производных класса – student и teacher. В каждом из классов объявить метод, с помощью которого можно создать список выдающихся педагогов и студентов. Студентов со средним баллом больше 4 и педагогов с числом публикаций более 50 статей считать выдающимися.

Источник

Полиморфизмы генов, кодирующих ферменты метаболизма половых гормонов

Для чего нужен полиморфизм. Смотреть фото Для чего нужен полиморфизм. Смотреть картинку Для чего нужен полиморфизм. Картинка про Для чего нужен полиморфизм. Фото Для чего нужен полиморфизм

Исследование полиморфизмов генов является генетическим исследованием. Поиск вариантов генов или полиморфизмов позволяет выявить варианты генов, которые оказывают неблагоприятное воздействие на организм. Например, полиморфизмы генов, отвечающих за свертывание крови важны при планировании беременности, поскольку наличие неблагоприятных аллелей (вариантов генов) может привезти к чрезмерному образованию тромбов и, как следствие, прерыванию беременности. Определение вариантов генов BRCA1 и BRCA2, CHEK2 помогает выявить риск развития рака молочной железы и начать превентивно менять свои привычки. Аналогичным образом, исследование полиморфизмов генов, кодирующих половые гормоны помогает исключить генетический фактор патологии репродуктивной сферы.

Половые гормоны

Половые гормоны относятся к группе стероидных гормонов. Стероидные гормоны помимо регулирования репродуктивной функции (прогестины, эстрогены, андрогены), отвечают за антистрессовые реакции (глюкокорткоиды) и солевой обмен (минералокортикоиды).

Общим предшественником синтеза всех стероидов является холестерин. Половые гормоны синтезируются, в основном, в яичках и яичниках, а также в коре надпочечников. Разнообразие путей биосинтеза в тканях обеспечивается действием различных ферментов, которые расположены в разных компартментах клетки — мембранах эндоплазматического ретикулума и в митохондриях.

Биосинтез и секреция половых гормонов в эндокринных железах контролируется гипофизарными гормонами: лютеинизирующим гормоном (ЛГ), фолликулостимулирующим гормоном (ФСГ). В свою очередь производство гормонов в гипофизе зависит от уровня, так называемых, высвобождающих факторов, которые образуются в верхней части мозга — гипоталамусе. Половые гормоны по механизму отрицательной обратной связи регулируют синтез гормонов гипофиза. Если концентрация половых гормонов высокая, то синтез тропных гормонов снижается, и, наоборот, при снижении концентрации половых гормонов, синтез и секреция гормонов-регуляторов возрастает.

Для чего нужен полиморфизм. Смотреть фото Для чего нужен полиморфизм. Смотреть картинку Для чего нужен полиморфизм. Картинка про Для чего нужен полиморфизм. Фото Для чего нужен полиморфизм

Мужские половые гормоны

Мужские половые гормоны вырабатываются в основном в мужских половых железах — в клетках Лейдига семенников (95%). Остальные 5% андрогенов образуются в коре надпочечников. Пути биосинтеза андрогенов в яичках и коре надпочечников одинаков.

Отщепление боковой цепи холестерола и образование прегненолона — первая реакция стероидогенеза. Однако, в отличие от аналогичной реакции, протекающей в надпочечниках, эта стадия стимулируется ЛГ, а не адренокортикотропным гормоном (АКТГ).

Тестостерон

Превращение прегненолона в тестостерон может протекать двумя путями: через образование прогестерона или дегидроэпиандростерона.

Суточная секреция тестостерона у мужчин составляет в норме примерно 5 мг и сохраняется на протяжении всей жизни организма. Гормон циркулирует в крови в связанной с белками плазмы форме: альбумином (40%) и специфическим глобулином, связывающим половым гормоном (ГСПГ). Лишь 2% от общего количества гормона в крови транспортируется в свободном виде и проявляют биологическую активность.

Дигидротестостерон

В семенных канальцах, предстательной железе, коже, наружных половых органах тестостерон служит предшественником более активного андрогена — дигидротестостерона. Это превращение происходит при участии фермента — 5α-редуктазы. В процессе участвует примерно 4% тестостерона. Семенники человека секретируют в сутки 50–100 мкг дигидротестостерона. Однако большое количество гормона — следствие периферических превращений. Суммарная суточная секреция дигидротестостерона составляет 400 мкг.

В некоторых периферических тканях, небольшое количество тестостерона превращается в эстрадиол. В качестве побочных продуктов клетки Лейдига также постоянно секретируют эстрадиол и прогестерон, хотя роль этих гормонов в развитии и поддержании функций размножения и формирования полового поведения у мужчин до конца не изучена.

Андрогены действуют на другие органы и ткани помимо гонад: эмбриональные вольфовы структуры, мышцы, кости, почки, мозг. Действие андрогенов различно в разные периоды жизни. У эмбриона под действием андрогенов органы репродукции формируются по мужскому типу. У плода мужского пола происходит маскулинизация мозга. Андрогены обладают мощным анаболическим действием и стимулируют клеточное деление, поэтому в пубертатном периоде происходит резкое увеличение линейных размеров тела, скелетных мышц, костей. Андрогены вызывают изменение структуры кожи и волос, снижение тембра голоса вследствие утолщения голосовых связок и увеличения объёма гортани, стимулируют секрецию сальных желёз.

Женские половые гормоны

В яичниках синтезируются женские половые гормоны — эстрогены и прогестины, среди которых наиболее активны 17β-эстрадиол и прогестерон.

Образование эстрогенов

Согласно современным представлениям, синтез женских половых гормонов идет через образование мужских половых гормонов. Образование эстрогенов яичников предполагает выработку андрогенов (андростендиона) в клетках теки фолликулов с последующей ароматизацией андрогенов в клетках гранулёмы. В клетках теки синтезируются рецепторы ЛГ. Рецепторы ФСГ образуются в клетках гранулёмы. ЛГ, связываясь с рецепторами клеток теки, активирует фермент, катализирующий превращение холестерола в прегненолон. Эта реакция стимулирует и образование основного андрогена яичников — андростендиона. ФСГ, взаимодействуя с рецепторами клеток гранулёмы, активирует содержащийся в этих клетках комплекс, который стимулирует превращение андрогенов в эстрогены.

Непосредственно в клетках теки синтезируется малое количество эстрогенов. Значительная часть эстрогенов продуцируется путём периферической ароматизации андрогенов в жёлтом теле, фетоплацентарном комплексе (во время беременности). Дополнительно эстрогены производятся в коре надпочечников, жировой ткани, печени, коже и других тканях, где присутствует повышенная ароматазная активность.

Примерно 95% циркулирующих в крови эстрогенов связано с транспортными белками — ГСПГ и альбумином. Биологической активностью обладает только свободная форма эстрогенов. Эстрогены влияют на развитие вторичных женских половых признаков, вызывают размножение эндометрия и клеток молочной железы. Однако под влиянием эстрогенов находятся не только клетки репродуктивной сферы, но и кожа, мозг, кости, эндотелий сосудов, волосяные фолликулы. Различные нарушения в половой сфере достаточно легко предупредить, если знать о генетических особенностях ферментов, катализирующих наиболее важные реакции синтеза половых гормонов. К таким генам относятся 5а-редуктаза, SHBG, AR,CYP17. Для чего нужен полиморфизм. Смотреть фото Для чего нужен полиморфизм. Смотреть картинку Для чего нужен полиморфизм. Картинка про Для чего нужен полиморфизм. Фото Для чего нужен полиморфизм

Ген: CYP17, 17a-гидроксилаза/17,20-лиаза

Полиморфизм: A1/A2 (5′- C/T)
Продукт гена — ключевой фермент биосинтеза стероидных гормонов в яичниках и надпочечниках. Фермент присоединяет гидрокси-группу (OH) к прегненолону и прогестерону в позиции 17-го атома углерода, в результате чего образуется 17-гидроксипрегненолон и 17-гидроксипрогестерон. Также в этих молекулах фермент рассекает связь между углеродами 17 и 20, в результате образуются дегидроэпиандростерон и андростендион соответсвенно.

Повышенный уровень андрогенов (мужских половых гормонов) может быть обусловлен полиморфизмом гена CYP17, генотипы A1/A2 и A2/A2 которого соответствуют предрасположенности к невынашиванию беременности.

Ген 5 альфа-редуктаза

Полиморфизм: Val89Leu (V89L)
Фермент α-редуктаза типа 2А катализирует превращение тестостерона в биологически активную форму дигидротестостерон. Ключевой фермент в эффектах андрогенов.

Ген: SHBG, глобулин, связывающий половые гормоны (ГСПГ)

Полиморфизм: STR TAAAA(n) (полиморфизм коротких повторяющихся последовательностей).
Перенос андрогенов из источника их продукции к месту назначения происходит в связанном виде с глобулином, связывающим половые гормоны, который синтезируется в печени. Степень биологической активности андрогенов определяется уровнем свободных андрогенов (связанные с ГСПГ стероиды биологически не активны). Одной из причин высокого уровня свободного тестостерона является снижение уровня ГСПГ, с которым связывается 65% циркулирующего в крови тестостерона. Вследствие снижения уровня ГСПГ возрастает скорость превращения андростендиона в тестостерон. Снижение уровня ГСПГ в сыворотке крови происходит при ожирении, циррозе печени, вирусных гепатитах, гипотиреозе, акромегалии и лечении кортикостероидами. Низкий уровень ГСПГ в сыворотке крови может быть обусловлен сочетанием генетических и негенетических факторов.

Ген: AR, рецептор андрогенов

Полиморфизм: STR (CAG)n (полиморфизм коротких повторяющихся последовательностей).
Рецептор андрогена связывает биологически активный андроген — дигидротестостерон. При связывании рецептора с дигидротестостероном включается цепь биохимических реакций, связанных с эффектами тестостерона в андроген-зависимых тканях. Активность гена AR зависит от длины трехнуклеотидного повтора (CAG)n. От этой активности зависит и баланс между андрогенами и эстрогенами, а также активация генов, регулирующих клеточный цикл. Показана связь между гиперандрогенией, ассоциированной с синдромом поликистозных яичников, и длиной полиморфного участка (CAG)n в гене AR.

40.132 Анализ полиморфизмов в генах 5а-редуктаза, SHBG, AR,CYP17 (кодирующих ферменты метаболизма половых гормонов).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *