Для чего нужен космический корабль
Космический корабль
Космический аппарат (КА) — техническое устройство, используемое для выполнения разнообразных задач в космическом пространстве, а также проведения исследовательских и иного рода работ на поверхности различных небесных тел. Средствами доставки космических аппаратов на орбиту служат ракеты-носители или самолёты.
Космические аппараты, одной из основных задач которых является транспортировка людей или оборудования в верхней части земной атмосферы — так называемом, ближнем космосе, также называют «Космическими летательными аппаратами» (КЛА).
Области использования космических аппаратов обуславливают их разделение по следующим группам:
Также принято различать автоматические и пилотируемые космические аппараты. К пилотируемым космическим аппаратам, в частности относят все виды пилотируемых космических кораблей и орбитальных космических станций. (Несмотря на то, что современные орбитальные станции совершают свой полёт в области ближнего космоса, и формально могут называться «Космическими летательными аппаратами», в сложившейся традиции, их называют «Космическими аппаратами».)
Название «Космический летательный аппарат» иногда также используется для обозначения активных (то есть маневрирующих) искусственных спутников Земли, с целью подчёркивания их отличий от пассивных спутников. В большинстве же случаев значения терминов «Космический летательный аппарат» и «Космический аппарат» синономиничны и взаимозаменяемы.
В активно исследуемых в последнее время проектах создания гиперзвуковых летательных аппаратов часто используют ещё одно похожее название «Воздушно-космические аппараты» (ВКА), обозначая, таким образом, средства предназначенные для выполнения управляемого полёта, как в безвоздушном космическом пространстве, так и в плотной атмосфере Земли.
В 2005 году состоялось 55 запусков космических аппаратов (самих аппаратов было больше, так как за один запуск может выводится несколько аппаратов). На долю России пришлось 26 запусков. Число коммерческих запусков составило 18.
Содержание
Классификация космических аппаратов
Различают следующие классы космических аппаратов:
Космические аппараты предназначены для выполнения широчайшего спектра научных, народно-хозяйственных, военных и другого рода задач, часть из которых перечислена в следующем списке:
В силу специфики выполняемых задач космические аппараты могут оснащаться различными двигательными установками на основе ракетных двигателей, к которым относятся как традиционные реактивные двигатели, так и перспективные (солнечный парус, использующий давление солнечного света и так называемый «солнечный ветер»;ионные, ядерные, термоядерные, и т. п.).
Пилотируемый космический аппарат, космический корабль Союз, с членами экипажа МКС на борту
Что нужно космическим кораблям завтрашнего дня?
Когда в 1970-х годах задумывались космические шаттлы, в мечтах инженеров было создание нового типа космического корабля — который сможет перевозить людей и грузы на орбиту, возвращаться на Землю, а затем использоваться снова. Это удалось, но лишь частично.
В 1997 году Национальное управление по аэронавтике и исследованию космического пространства (NASA) работало над созданием космического аппарата, который действовал по большей части как самолет. Они хотели создать космический корабль, который не только может быть использован многократно, но также быть надежным и достаточно эффективным, чтобы летать чаще и обходиться дешевле, чем шаттл.
Почему запуск шаттла был таким дорогим?
Эти и другие трудности сделали шаттл чрезвычайно дорогим транспортным средством — 400 миллионов долларов на каждый запуск по самым скромным оценкам. И это один только полет, не считая спутников и лабораторий на борту. В итоге, спустя 40 лет от начала космической эры, одноразовые ракеты остаются дешевле в использовании, чем шаттл.
Тем не менее идея одноразового транспортного средства всегда казалась расточительной. В конце концов, не выбрасывать же автомобиль после каждой поездки? В теории давно можно создать полностью многоразовый одноступенчатый орбитальный транспорт. Но различные факторы, в том числе производительность двигателей и материалов, используемых в топливных баках и других конструкциях, обросли такой дороговизной, что стали непрактичными, во всяком случае, если подвергались полезной нагрузке.
Технологии нацелены на создание многоразовой ракеты
Некоторые из этих технологий уже применяются в разработке некоторых воздушных судов, например, бомбардировщика F-22, а также лайнера Boeing-777. Некоторые из этих исследований начались еще в 80-х годах в процессе разработки аэрокосмического самолета, способного летать на орбиту.
Эксперименты
После полета команда показала, что DC-X готов лететь уже на следующий день.
Объединение с частной промышленностью
NASA соглашается с такой точкой зрения. В 1995 году агентство объявило, что хочет помочь частной промышленности развивать новый экспериментальный космический корабль под названием X-33. Расчет был на то, что этот транспорт покажет, что космические путешествия могут быть экономически эффективными. Была также поставлена цель снизить стоимость запуска полезного груза на 90 %, до 3000 долларов за килограмм. Если эта цель будет достигнута, NASA предполагало, что частный сегмент будет самостоятельно создавать и поддерживать парк коммерческих многоразовых ракет-носителей (МРН).
И хотя МРН зачастую изображают как замену шаттлам, сами по себе они не были целью. Не было никакой необходимости заменять шаттлы, поскольку они с легкостью могли бы летать по 15 лет, а с улучшениями — и до 2030 года. Целью МРН было сокращение расходов на запуск.
Lockheed Martin выигрывает тендер NASA
План Lockheed Martin был в оснащении МРН новым двигателем — клиновоздушным ракетным двигателем. Вместо того, чтобы использовать обычный кластер конусообразных ракетных сопел, эта конструкция использовала несколько сопел, расположенных линейно вдоль краев прямоугольных клиньев. Автоматическая система управления полетом самостоятельно регулировала бы дроссели на каждом из семи двигателей транспортного средства. План также включал конструкцию «несущего корпуса», в котором весь транспорт представлял собой корпус с маленькими крыльями. Большая площадь X-33 эффективно бы распределяла тепло при повторном входе в атмосферу и задействовала тепловые экраны нового типа.
X-33 должен был быть 20,4 метра в длину и 20,7 метра в ширину. Скорость — 17 000 километров в час, что недостаточно для выхода на орбиту. Первый полет ожидался в марте 1999 года.
Корабль по имени VentureStar
По плану VentureStar должна была быть полностью автоматизированной — корабль не включал бы экипаж. Направление для каждой миссии программировалось бы в бортовом компьютере системы. Автоматическая система контроля управляла бы всем, от двигателя и направления до пути полета. Люди на транспортном средстве были бы просто пассажирами. Отдельная капсула с системой жизнеобеспечения находилась бы в грузовом отсеке МРН.
К сожалению, проект был закрыт в 2001 году на стадии разработки X-33 после столкновения с серьезными техническими затруднениями и отсутствием финансирования. Теперь вся надежда остается только на SpaceX и ее разработки. Именно Элон Маск, как никто другой, понимает всю важность создания многоразовой ракеты-носителя, чем, собственно, сейчас и занимается SpaceX.
По плану NASA разработки ракет-носителей силами частных компаний должны были облегчить доставку астронавтов на МКС. Собственно, так и произошло: сейчас NASA заключила контракты с Lockheed Martin, Boeing и, совсем недавно, SpaceX.
С момента своего первого полета в 1981 году космический шаттл, несмотря на свою ограниченность, был очень полезным инструментом. Экипажи шаттла запустили коммерческие и военные спутники в космос, ремонтируют сломанные спутники (в том числе и уже не работающий космический телескоп Хаббла) и проводят важные научные эксперименты. Но в будущем многоразовая ракета-носитель может существенно облегчить выход людей в космос. Такой транспорт стал бы лучшим способом расширения нашего последнего рубежа.
Зачем нужны космические корабли многоразового использования?
Все слышали выражение – космические корабли многоразового использования, а зачем они нужны, мы сейчас разберемся.
С огромными материальными затратами всегда связаны любые запуски космических кораблей, и окупаются они очень редко и частично. Так, от громадного космического корабля «Аполлон» вернулась на Землю всего лишь одна маленькая кабина, которая весила всего несколько тонн.
Поэтому и начали ученые разных стран разрабатывать такие корабли, которые будут возвращаться на Землю целиком. Всего пару десятков лет назад в США и СССР были созданы такие корабли. Их назвали космическими челноками.
В отличие от ракет такой аппарат не приземляется с помощью парашюта, а имеет крылья и садится, как обычный самолет. Значительный груз они могут доставить и из космоса. Например, американский космический аппарат «Дискавери», что в переводе «открыватель», из космоса доставил несколько использованных спутников, общий вес которых составлял 19.5 тонн.
Развитием космических технологий можно считать и другое направление использования таких кораблей. Они могут доставлять на орбиту снабжение для разнообразных производств (например, для получения кристаллов и лекарств, особо чистых веществ), а также для космических электростанций, которые работают с помощью солнечной энергии. Сейчас такие корабли популярны в использовании для ремонта искусственных спутников нашей планеты и для обновления находящегося в них старого оборудования.
Зачем космические аппараты вращаются
Для находящихся в космосе объектов вращение — дело привычное. Когда две массы двигаются относительно друг друга, но не навстречу или друг от друга, их гравитационная сила создаёт крутящий момент. В итоге в Солнечной системе все планеты вращаются вокруг Солнца.
Но это то, на что человек не влиял. Зачем же вращаются космические аппараты? Чтобы стабилизировать положение, постоянно направлять приборы в нужную сторону и в будущем — для создания искусственной гравитации. Давайте разберём эти вопросы подробнее.
Стабилизация вращением
Когда мы смотрим на автомобиль, мы знаем, в какую сторону он едет. Управление им происходит благодаря взаимодействию с внешней средой — сцеплению колёс с дорогой. Куда поворачивают колёса — туда и весь автомобиль. Но если мы лишим его этого сцепления, если мы отправим машину на лысой резине кататься по льду, то она закружится в вальсе, что будет крайне опасно для водителя. Такой тип движения возникает редко на Земле, но в космосе это норма.
Пример такого вращения приводит Роберт Фрост, инструктор и оператор в НАСА: это автоматическая межпланетная станция «Юнона», запущенная в 2011 году для исследования Юпитера и вышедшая на орбиту планеты 5 июля 2016 года. Вращение — один из способов ориентации и стабилизации, основным преимуществом которого является экономичность. Стоит раскрутить аппарат один раз, и затем можно будет крутиться столетиями, не используя лишнее топливо и не заботясь об управлении аппаратом с помощью электроники. Если электроника аппарата откажет — «Юнона» сохранит вращение.
Сохранение направления для приборов
По видеороликам заметить сложно, но Международная космическая станция постоянно вращается по Y-оси со скоростью 4 градуса в минуту. Такая угловая скорость выбрана, чтобы синхронизировать вращение станции вокруг своей оси с её вращением вокруг Земли. Антенны смотрят GPS-спутники и спутники связи, а из окон наблюдения за Землёй желательно видеть планету, чтобы снимать её. Вращение и ускорение также используются для того, чтобы избегать столкновений с космическим мусором.
Некоторые космические аппараты используют вращение для теплового контроля, чтобы не перегревать одну сторону, что может привести к поломкам. Международная космическая станция так не делает, в отличие от других аппаратов, которые равномерно прогреваются.
На видео ниже можно рассмотреть, как станция сохраняет свою ориентацию относительно Земли.
При межпланетных перелётах на первый план выступают моменты сил, создаваемые давлением солнечного света, и это давление может помогать аппарату поддерживать нужную ориентацию. Космические аппараты «Венера» и «Марс» использовали следующую схему ориентации: после того, как система управления придавала аппарату нужное положение относительно Солнца, корпусу сообщалось вращение вокруг собственной оси. Затем его движение вокруг центра масс происходило под действием двух эффектов: эффекта волчка и момента сил, создаваемого давлением солнечного света. Аппарат приобретал свойства флюгера. Такая сложная схема позволяла обеспечить постоянное направление солнечных батарей к Солнцу.
Космический аппарат «Венера-3»
Создание искусственной гравитации
Концепт Nautilus-X.
Приспособленный к жизни в условиях земного притяжения организм умудряется выжить и без него. И не только выжить, но и активно работать. Но это маленькое чудо обходится не без последствий. Опыт, накопленный за десятилетия полётов человека в космос, показал: человек испытывает в космосе много нагрузок, которые оставляют след на теле и психике.
На Земле наш организм борется с гравитацией, которая тянет кровь вниз. В космосе этоа борьба продолжается, но сила гравитации отсутствует. Поэтому космонавты одутловаты. Внутричерепное давление растёт, растёт давление на глаза. Это деформирует зрительный нерв и влияет на форму глазных яблок. Снижается содержание плазмы в крови, и из-за уменьшения количества крови, которую нужно качать, атрофируются мышцы сердца. Дефект костной массы значителен, кости становятся хрупкими.
Чтобы побороть эти эффекты, люди на орбите вынуждены ежедневно заниматься физическими тренировками. Поэтому создание искусственной силы тяжести считают желательным для долговременных космических путешествий. Такая технология должна создать физиологически естественные условия для обитания людей на борту аппарата. Еще Константин Циолковский считал, что искусственная гравитация поможет решить многие медицинские проблемы полёта человека в космос.
Сама идея основана на принципе эквивалентности силы гравитации и силы инерции, который гласит: «Силы гравитационного взаимодействия пропорциональны гравитационной массе тела, силы инерции же пропорциональны инертной массе тела. Если инертная и гравитационная массы равны, то невозможно отличить, какая сила действует на данное достаточно малое тело — гравитационная или сила инерции».
У такой технологии есть недостатки. В случае с аппаратом небольшого радиуса разная сила будет воздействовать на ноги и на голову — чем дальше от центра вращения, тем сильнее искусственная гравитация. Вторая проблема — сила Кориолиса, из-за воздействия которой человека будет укачивать при движении относительно направления вращения. Чтобы этого избежать, аппарат должен быть огромным. И третий важный вопрос связан со сложностью разработки и сборки такого аппарата. При создании такого механизма важно продумать, как сделать возможным постоянный доступ экипажа к отсекам с искусственной гравитацией и как заставить этот тор двигаться плавно.
В реальной жизни такую технологию для строительства космических кораблей ещё не использовали. Для МКС предлагали надувной модуль с искусственной гравитацией для демонстрации прототипа корабля Nautilus-X. Но модуль дорог и создавал бы значительные вибрации. Делать всю МКС с искусственной гравитацией с текущими ракетами трудноосуществимо — пришлось бы собирать всё на орбите по частям, что в разы усложнило бы размах операций. А ещё эта искусственная гравитация перечеркнула бы саму суть МКС как летающей микрогравитационной лаборатории.
Концепт надувного модуля с микрогравитацией для МКС.
Зато искусственная гравитация живёт в воображении фантастов. Корабль «Гермес» из фильма «Марсианин» имеет в центре вращающийся тор, который создаёт искусственную гравитацию для улучшения состояния экипажа и снижения воздействия невесомости на организм.
Национальное аэрокосмическое агентство США разработало шкалу уровней готовности технологии TRL из девяти уровней: с первого по шестой — развитие в рамках научно-исследовательских работ, с седьмого и выше — опытно-конструкторские работы и демонстрация работоспособности технологий. Технология из фильма «Марсианин» соответствует пока лишь третьему или четвёртому уровню.
«Discovery One» из «Космической Одиссеи»
В аниме-сериале Planetes космическая станция ISPV-7 имеет огромные помещения с привычной земной гравитацией. Жилая зона и зона для растениеводства размещены в двух торах, вращающихся в разных направлениях.
Даже твёрдая фантастика игнорирует огромную стоимость такого решения. Энтузиасты взяли для примера корабль «Элизиум» из одноимённого фильма. Диаметр колеса – 16 километров. Масса — около миллиона тонн. Отправка грузов на орбиту стоит 2700 долларов за килограмм, SpaceX Falcon позволит сократить эту цифру до 1650 долларов за килограмм. Но придётся осуществить 18382 запуска, чтобы доставить такое количество материалов. Это 1 триллион 650 миллиардов американских долларов — почти сто годовых бюджетов НАСА.
До реальных поселений в космосе, где люди могут наслаждаться привычными 9,8 м/с² ускорения свободного падения, ещё далеко. Возможно, повторное использование частей ракет и космические лифты позволят приблизить такую эпоху.
Искусственные спутники: для чего они нужны, как работают, типы, важно
Содержание:
В искусственные спутники Они представляют собой транспортные средства или устройства, специально созданные для запуска в космос без необходимости в команде, чтобы совершать орбитальные операции вокруг Земли или любого другого небесного тела.
Первые идеи о создании искусственных спутников исходили от авторов-фантастов, таких как Жюль Верн и Артур Кларк. Последний был офицером-радаром в Королевских ВВС и в конце Второй мировой войны задумал использовать три спутника на орбите вокруг Земли для обслуживания телекоммуникационной сети.
В то время еще не было средств для вывода спутника на орбиту. Военным США потребовалось еще несколько лет, чтобы создать первую спутниковую связь в начале 1950-х годов.
Космическая гонка между Соединенными Штатами и Советским Союзом дала толчок развитию индустрии искусственных спутников. Первым успешно выведенным на орбиту в 1957 г. был советский спутник «Спутник», который излучал сигналы в диапазоне 20-40 МГц.
После этого Соединенные Штаты запустили Echo I в целях связи. С тех пор обе державы осуществили многочисленные запуски на орбиту, и впоследствии многие страны присоединились к новой технологии.
Для чего нужны искусственные спутники?
-В научных и метеорологических исследованиях, включая картографию и астрономические наблюдения.
-Для целей военной разведки.
-Для навигации и определения местоположения используется одна из самых известных систем GPS (Global Positioning System).
-Для наблюдения за земной поверхностью.
-На космических станциях, предназначенных для знакомства с жизнью за пределами Земли.
Как они работают?
В своей работе ПринципИсаак Ньютон (1643-1727) установил, что необходимо для вывода спутника на орбиту, хотя вместо спутника он использовал в качестве примера пушечное ядро, выпущенное с вершины холма.
Выстреливая с определенной горизонтальной скоростью, пуля следует по обычной параболической траектории. С увеличением скорости горизонтальный вылет становится все больше и больше, что было ясно. Но заставит ли пуля выйти на орбиту вокруг Земли при определенной скорости?
Земля изгибается от линии, касающейся поверхности, со скоростью 4,9 м на каждые 8 км. Любой объект, выпущенный из состояния покоя, упадет на 4,9 м за первую секунду. Следовательно, при горизонтальном выстреле с пика со скоростью 8 км / с пуля упадет на 4,9 м за первую секунду.
Но Земля за это время также опустится на 4,9 м, так как она изгибается под пушечным ядром. Он продолжает горизонтальное движение, покрывая 8 км, и в течение этой секунды останется на той же высоте по отношению к Земле.
Естественно, то же самое происходит через следующую секунду и во все последующие секунды, превращая пулю в искусственный спутник без какой-либо дополнительной тяги, пока нет трения.
Однако трение, вызванное сопротивлением воздуха, неизбежно, поэтому необходима ракета-носитель.
Ракета поднимает спутник на большую высоту, где более тонкая атмосфера оказывает меньшее сопротивление и обеспечивает необходимую горизонтальную скорость.
Такая скорость должна быть больше 8 км / с и меньше 11 км / с. Последний является космическая скорость. Спроектированный с такой скоростью, спутник отказался бы от гравитационного воздействия Земли, уходя в космос.
Структура искусственного спутника
Искусственные спутники содержат различные сложные механизмы для выполнения своих функций, которые включают прием, обработку и отправку различных типов сигналов. Они также должны быть легкими и автономными.
Основные конструкции общие для всех искусственных спутников, которые, в свою очередь, имеют несколько подсистем по назначению. Они монтируются в корпус из металла или других легких составов, который служит опорой и называется автобус.
В автобусе можно найти:
— Центральный модуль управления, содержащий компьютер, с помощью которого обрабатываются данные.
— Приемные и передающие антенны для связи и передачи данных по радиоволнам, а также телескопы, камеры и радары.
— Система солнечных батарей на крыльях для получения необходимой энергии и аккумуляторных батарей, когда спутник находится в тени. В зависимости от орбиты спутникам требуется около 60 минут солнечного света для подзарядки батарей, если они находятся на низкой орбите. Более далекие спутники проводят гораздо больше времени под воздействием солнечного излучения.
Поскольку спутники длительное время подвергаются воздействию этого излучения, необходима система защиты, чтобы избежать повреждения других систем.
Открытые части сильно нагреваются, в то время как в тени они достигают чрезвычайно низких температур, потому что атмосферы недостаточно для регулирования изменений. По этой причине радиаторы необходимы для устранения тепла и алюминиевые крышки для сохранения тепла, когда это необходимо.
Типы искусственных спутников
В зависимости от траектории искусственные спутники могут быть эллиптическими или круглыми. Конечно, каждому спутнику назначена орбита, которая обычно совпадает с направлением вращения Земли, называемым асинхронная орбита. Если по какой-то причине спутник движется в обратном направлении, то он ретроградная орбита.
Под действием силы тяжести объекты движутся по траекториям эллиптический по законам Кеплера. Искусственные спутники этого не избегают, однако некоторые эллиптические орбиты имеют такой небольшой эксцентриситет, что их можно считать круговой.
Орбиты также могут быть наклонены по отношению к экватору Земли. При наклоне 0º это экваториальные орбиты, если они 90º, они полярные орбиты.
Высота спутника также является важным параметром, поскольку на высоте 1500–3000 км находится первый пояс Ван Аллена, региона, которого следует избегать из-за высокого уровня радиации.
Спутниковые орбиты
Орбита спутника выбирается в соответствии с его миссией, поскольку есть более или менее благоприятные высоты для различных операций. По этому критерию спутники классифицируются как:
–НОО (низкая околоземная орбита)Они имеют высоту от 500 до 900 км и описывают круговую траекторию с периодами приблизительно полтора часа и наклоном 90 градусов. Они используются для мобильных телефонов, факсов, персональных пейджеров, автомобилей и лодок.
–MEO (Средняя околоземная орбита)Они находятся на высоте 5000–12000 км, при наклоне 50º и продолжительностью около 6 часов. Они также используются в сотовой телефонии.
–GEO (геосинхронная земная орбита), или геостационарная орбита, хотя между этими двумя терминами есть небольшая разница. Первые могут иметь переменный наклон, а вторые всегда под углом 0 °.
Геостационарные спутники
Вначале спутники связи имели периоды, отличные от периода вращения Земли, но это затрудняло размещение антенн, и связь была потеряна. Решением было разместить спутник на такой высоте, чтобы его период совпадал с периодом вращения Земли.
Таким образом, спутник вращается вместе с Землей и кажется фиксированным по отношению к ней. Высота, необходимая для вывода спутника на геостационарную орбиту, составляет 35786,04 км и известна как ремень clarke.
Высоту орбиты можно рассчитать, установив период, используя следующее выражение, полученное из закона всемирного тяготения Ньютона и законов Кеплера:
Так как таким образом ориентация спутника по отношению к Земле не изменяется, это гарантирует, что он всегда будет контактировать с ней.
Важнейшие искусственные спутники Земли
Спутник
Это был первый искусственный спутник в истории человечества, выведенный на орбиту бывшим Советским Союзом в октябре 1957 года. За этим спутником последовали еще 3 спутника в рамках программы Sputnik.
Первый спутник был довольно маленьким и легким: в основном это было 83 кг алюминия. Он был способен излучать частоты от 20 до 40 МГц. Он находился на орбите в течение трех недель, после чего упал на Землю.
Реплики Спутника сегодня можно увидеть во многих музеях Российской Федерации, Европы и даже Америки.
Космический шаттл
Другой хорошо известной пилотируемой миссией была космическая транспортная система STS или космический шаттл, которая находилась в эксплуатации с 1981 по 2011 год и участвовала, среди других важных миссий, в запуске космического телескопа Хаббл и Международной космической станции, в дополнение к миссиям ремонт других спутников.
Космический шаттл имел асинхронную орбиту и был многоразовым, поскольку он мог приходить и уходить на Землю. Из пяти паромов два были случайно уничтожены вместе со своими экипажами: Challenger и Columbia.
Спутники GPS
Система глобального позиционирования широко известна тем, что позволяет точно определять местоположение людей и объектов в любой точке земного шара. Сеть GPS состоит как минимум из 24 высотных спутников, из которых всегда есть 4 спутника, видимые с Земли.
GPS не ограничивается поиском людей или транспортных средств, он также полезен для картографии, геодезии, геодезии, спасательных операций и занятий спортом, среди других важных приложений.
Космический телескоп Хаббла
Это искусственный спутник, который предлагает непревзойденные, невиданные ранее изображения Солнечной системы, звезд, галактик и далекой Вселенной без атмосферы Земли или светового загрязнения, блокирующих или искажающих далекий свет.
Таким образом, его запуск в 1990 году стал самым заметным достижением астрономии за последнее время. Огромный 11-тонный цилиндр Хаббла находится на высоте 340 миль (548 км), совершая круговое движение вокруг Земли с периодом 96 минут.
Ожидается, что он будет отключен между 2020 и 2025 годами и заменен космическим телескопом Джеймса Уэбба.
Международная космическая станция
Известная как МКС (Международная космическая станция), это орбитальная исследовательская лаборатория, управляемая пятью космическими агентствами по всему миру. Пока это самый большой из существующих искусственных спутников.
В отличие от остальных спутников, на космической станции находятся люди. Помимо фиксированного экипажа из минимум двух космонавтов, станцию посещали даже туристы.
Назначение станции в первую очередь научное. Он имеет 4 лаборатории, в которых исследуются эффекты невесомости и проводятся астрономические, космологические и климатические наблюдения, а также различные эксперименты в области биологии, химии и влияния излучения на различные системы.
Чандра
Этот искусственный спутник представляет собой обсерваторию для обнаружения рентгеновских лучей, которые поглощаются атмосферой Земли и поэтому не могут быть изучены с поверхности. НАСА вывело его на орбиту в 1999 году с помощью космического корабля «Колумбия».
Спутники связи Иридиум
Они составляют сеть из 66 спутников на высоте 780 км на орбитах типа LEO с периодом действия 100 минут. Они были разработаны телефонной компанией Motorola для обеспечения телефонной связи в труднодоступных местах. Однако это очень дорогая услуга.
Спутниковая система Галилео
Это система определения местоположения, разработанная Европейским Союзом, эквивалентная GPS и предназначенная для гражданского использования. В настоящее время у него работает 22 спутника, но он все еще строится. Он способен определять местонахождение человека или объекта с точностью до 1 метра в открытой версии и взаимодействует со спутниками системы GPS.
Серия Landsat
Это спутники, специально разработанные для наблюдения за земной поверхностью. Они начали свою работу в 1972 году. Среди прочего, они отвечают за картографирование местности, запись информации о движении льда на полюсах и протяженности лесов, а также за ведение горных работ.
Система Глонасс
Это система геолокации Российской Федерации, эквивалентная GPS и сети Galileo.
Наблюдение за искусственными спутниками
Искусственные спутники могут быть замечены с Земли любителями, поскольку они отражают солнечный свет и могут рассматриваться как точки света, даже если Солнце село.
Чтобы найти их, рекомендуется установить на телефон одно из приложений спутникового поиска или обратиться к интернет-сайтам, отслеживающим спутники.
Подготовка к наблюдению за спутниками такая же, как и к наблюдению за метеорным дождем. Наилучшие результаты получаются очень темными и ясными ночами, без облаков и без луны, или с луной низко над горизонтом. Чем дальше от светового загрязнения, тем лучше, вам также придется иметь при себе теплую одежду и горячие напитки.