Для чего мышцы сокращаются и расслабляются ответ
Для чего мышцы сокращаются и расслабляются ответ
Гладкие мышцы содержат актиновые и миозиновые нити, имеющие химические характеристики, подобные актиновым и миозиновым нитям скелетных мышц. Но в гладких мышцах нет тропонинового комплекса, необходимого для запуска сокращения скелетной мышцы, следовательно, механизм инициации сокращения в них другой. Этот механизм подробно обсуждается далее в нашей статье.
Химические исследования показали, что актиновые и миозиновые нити, извлеченные из гладких мышц, взаимодействуют друг с другом во многом так же, как и в скелетной мышце. Более того, процесс сокращения активируется ионами кальция, а энергия для сокращения обеспечивается разрушением АТФ до АДФ.
Существуют, однако, значительные различия в морфологической организации гладких и скелетных мышц, а также в сопряжении возбуждения и сокращения, механизме запуска ионами кальция сократительного процесса, длительности сокращения и количестве энергии, необходимой для сокращения.
Мультиунитарная (А) и унитарная (Б) гладкие мышцы.
Морфологическая основа сокращения гладких мышц
Гладкие мышцы не имеют такой упорядоченной организации актиновых и миозиновых нитей, которая обнаруживается в скелетных мышцах, придавая им «полосатость». С помощью техники электронной микрофотографии выявляется гистологическая организация. Видно большое число актиновых нитей, прикрепленных к так называемым плотным тельцам. Некоторые из этих телец прикрепляются к клеточной мембране, другие распределяются внутри клетки. Некоторые из мембранных плотных телец соседних клеток связываются вместе мостиками из внутриклеточных белков. Через эти мостики в основном передается сила сокращения от одной клетки к другой.
В мышечном волокне среди актиновых нитей разбросаны миозиновые нити. Их диаметр более чем в 2 раза превышает диаметр актиновых нитей. На электронных микрофотографиях актиновых нитей обычно обнаруживают в 5-10 раз больше, чем миозиновых.
Морфологическая структура гладкой мышцы. В волокне слева вверху видны актиновые нити, исходящие из плотных телец. В волокнах слева внизу и справа на рисунке показано взаимоотношение между миозиновыми и актиновыми нитями.
На рисунке представлена предполагаемая структура отдельной сократительной единицы внутри гладкомышечной клетки, где видно большое число актиновых нитей, исходящих от двух плотных телец; концы этих нитей перекрывают миозиновую нить, расположенную посередине между плотными тельцами. Эта сократительная единица похожа на сократительную единицу скелетной мышцы, но без специфической регулярности ее структуры. В сущности, плотные тельца гладкой мышцы играют ту же роль, что и Z-диски в скелетной мышце.
Существует и другое различие. Большинство миозиновых нитей имеют поперечные мостики с так называемой боковой полярностью. Мостики организованы следующим образом: на одной стороне они шарнирно фиксируются в одном направлении, а на другой — в противоположном направлении. Это позволяет миозину тянуть актиновую нить с одной стороны в одном направлении, одновременно продвигая с другой стороны другую актиновую нить в противоположном направлении. Такая организация позволяет гладкомышечным клеткам сокращаться с укорочением до 80% их длины вместо укорочения менее чем на 30%, характерного для скелетной мышцы.
Большинство скелетных мышц сокращаются и расслабляются быстро, но сокращения гладких мышц в основном являются длительными тоническими сокращениями, которые иногда продолжаются в течение нескольких часов или даже дней. Следовательно, можно ожидать, что морфологические и химические особенности гладких мышц должны отличаться от соответствующих характеристик скелетных мышц. Далее обсуждаются некоторые из этих отличий.
Медленная циклическая активность миозиновых поперечных мостиков. В гладкой мышце по сравнению соскелетной гораздо меньше скорость циклической активности миозиновых поперечных мостиков, т.е. скорость их прикрепления к актину, отсоединение от актина и повторное прикрепление для осуществления следующего цикла. Фактически частота циклов составляет лишь от 1/10 до 1/300 этого показателя в скелетной мышце. Однако, как считают, в гладкой мышце значительно больше относительное количество времени, в течение которого поперечные мостики остаются прикрепленными к актиновым нитям, что является главным фактором, определяющим силу сокращения. Возможной причиной медленного циклирования является гораздо меньшая по сравнению со скелетной мышцей АТФ-азная активность головок поперечных мостиков, в связи с чем скорость разрушения АТФ — источника энергии для движения головок поперечных мостиков — значительно снижена с соответствующим замедлением скорости их циклов.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Для чего мышцы сокращаются и расслабляются ответ
Выделяют несколько последовательных этапов запуска и осуществления мышечного сокращения.
1. Потенциал действия распространяется вдоль двигательного нервного волокна до его окончаний на мышечных волокнах.
2. Каждое нервное окончание секретирует небольшое количество нейромедиатора ацетилхолина.
3. Ацетилхолин действует на ограниченную область мембраны мышечного волокна, открывая многочисленные управляемые ацетилхолином каналы, проходящие сквозь белковые молекулы, встроенные в мембрану.
4. Открытие управляемых ацетилхолином каналов позволяет большому количеству ионов натрия диффундировать внутрь мышечного волокна, что ведет к возникновению на мембране потенциала действия.
5. Потенциал действия проводится вдоль мембраны мышечного волокна так же, как и по мембране нервного волокна.
6. Потенциал действия деполяризует мышечную мембрану, и большая часть возникающего при этом электричества течет через центр мышечного волокна. Это ведет к выделению из саркоплазматического ретикулума большого количества ионов кальция, которые в нем хранятся.
7. Ионы кальция инициируют силы сцепления между актиновыми и миозиновыми нитями, вызывающие скольжение их относительно друг друга, что и составляет основу процесса сокращения мыщц.
8. Спустя долю секунды с помощью кальциевого насоса в мембране саркоплазматического ретикулума ионы кальция закачиваются обратно и сохраняются в ретикулуме до прихода нового потенциала действия. Удаление ионов кальция от миофибрилл ведет к прекращению мышечного сокращения.
Далее мы обсудим молекулярные механизмы этого процесса.
Миофибрилла в расслабленном и сокращенном состоянии. Показано (вверху), что актиновые нити (розовые) вдвинуты в пространства между миозиновыми нитями (красные). Сближение Z-дисков друг с другом (внизу).
Молекулярные механизмы мышечного сокращения
Механизм скольжения нитей для мышечного сокращения. На рисунке показан основной механизм мышечного сокращения. Показано расслабленное состояние саркомера (вверху) и сокращенное состояние (внизу). В расслабленном состоянии концы актиновых нитей, отходящие от двух последовательных Z-дисков, лишь незначительно перекрываются. Наоборот, в сокращенном состоянии актиновые нити втягиваются внутрь между миозиновыми так сильно, что их концы максимально перекрывают друг друга. При этом Z-диски притягиваются актиновыми нитями к концам миозиновых. Таким образом, мышечное сокращение осуществляется путем механизма скольжения нитей.
Что заставляет нити актина скользить внутрь среди нитей миозина? Это связано с действием сил, генерируемых при взаимодействии поперечных мостиков, исходящих от нитей миозина, с нитями актина. В условиях покоя эти силы не проявляются, однако распространение потенциала действия вдоль мышечного волокна приводит к выделению из саркоплазматическо-го ретикулума большого количества ионов кальция, которые быстро окружают миофи-бриллы. В свою очередь, ионы кальция активируют силы взаимодействия между нитями актина и миозина, в результате начинается сокращение. Для осуществления процесса сокращения необходима энергия. Ее источником являются высокоэнергетические связи молекулы АТФ, которая разрушается до АДФ с высвобождением энергии. В следующих разделах мы приведем известные детали молекулярных процессов сокращения.
Молекулярные особенности сократительных нитей
Миозиновая нить. Она состоит из множества молекул миозина, молекулярная масса каждой составляет около 480000. На рисунке показана отдельная молекула; и также — объединение многих молекул миозина в миозиновую нить, а также взаимодействие одной стороны этой нити с концами двух актиновых нитей.
В состав молекулы миозина входят 6 полипептидных цепей: 2 тяжелые цепи с молекулярной массой около 200000 каждая и 4 легкие цепи с молекулярной массой около 20000 каждая. Две тяжелые цепи спирально закручиваются вокруг друг друга, формируя двойную спираль, которую называют миозиновым хвостом. С одного конца обе цепи изгибаются в противоположных направлениях, формируя глобулярную полипептидную структуру, называемую миозиновой головкой. Таким образом, на одном конце двойной спирали молекулы миозина образуются 2 свободные головки; 4 легкие цепи также включены в состав миозиновой головки (по 2 в каждой). Они помогают регулировать функцию головки во время мышечного сокращения.
А. Молекула миозина.
Б. Объединение многих молекул миозина в одну миозиновую нить.
Показаны также тысячи миозиновых поперечных мостиков и взаимодействие их головок с прилежащими актиновыми нитями.
Миозиновая нить состоит из 200 или более отдельных молекул миозина. Видно, что хвосты молекул миозина объединяются, формируя тело нити, а многочисленные головки молекул выдаются наружу по сторонам тела. Кроме того, наряду с головкой в сторону выступает часть хвоста каждой миозиновой молекулы, образуя плечОу которое выдвигает головку наружу от тела, как показано на рисунке. Выступающие плечи и головки вместе называют поперечными мостиками. Каждый поперечный мостик может сгибаться в двух точках, называемых шарнирами. Один из них расположен в месте, где плечо отходит от тела миозиновой нити, а другой — где головка крепится к плечу. Движение плеча позволяет головке или выдвигаться далеко наружу от тела миозиновой нити, или приближаться к телу. В свою очередь, повороты головки участвуют в процессе сокращения, что обсуждается в следующих разделах.
Общая длина каждой миозиновой нити остается постоянной и равна почти 1,6 мкм. В самом центре миозиновой нити на протяжении 0,2 мкм поперечных мостиков нет, поскольку снабженные шарнирами плечи отходят в стороны от центра.
Сама миозиновая нить сплетена таким образом, что каждая последующая пара поперечных мостиков смещена в продольном направлении относительно предыдущей на 120°, что обеспечивает распределение поперечных мостиков во всех направлениях вокруг нити.
АТФ-азная активность миозиновой головки. Есть и другая особенность миозиновой головки, необходимая для мышечного сокращения: миозиновая головка функционирует как фермент АТФ-аза. Как объясняется далее, это свойство позволяет головке расщеплять АТФ и использовать энергию расщепления высокоэнергетической связи для процесса сокращения.
Актиновая нить. Актиновая нить состоит из трех белковых компонентов: актина, тропомиозина и тропонина.
Актиновая нить, состоящая из двух спиралевидных цепочек молекул F-актина и двух цепочек молекул тропомиозина, расположенных в желобках между цепочками актина.
К одному концу каждой молекулы тропомиозина прикреплен тропониновый комплекс, который запускает сокращение.
Основой актиновой нити являются две цепи белковой молекулы F-актина. Обе цепи закручиваются в спираль так же, как и молекула миозина.
Каждая цепь двойной спирали F-актина состоит из полимеризованных молекул G-актина с молекулярной массой около 42000. К каждой молекуле G-актина прикреплена 1 молекула АДФ. Полагают, что эти молекулы АДФ являются активными участками на актиновых нитях, с которыми взаимодействуют поперечные мостики миозиновых нитей, обеспечивая мышечное сокращение. Активные участки на обеих цепях F-актина двойной спирали расположены со смещением таким образом, что вдоль всей поверхности актиновой нити встречается один активный участок примерно через каждые 2,7 нм.
Длина каждой актиновой нити — около 1 мкм. Основания актиновых нитей прочно встроены в Z-диски; концы этих нитей выступают в обоих направлениях, располагаясь в пространствах между миозиновыми молекулами.
Молекулы тропомиозина. Актиновая нить также содержит другой белок — тропомиозин. Каждая молекула тропомиозина имеет молекулярную массу 70000 и длину 40 нм. Эти молекулы спирально оплетают спираль из F-актина. В состоянии покоя молекулы тропомиозина располагаются поверх активных участков актиновых нитей, препятствуя их взаимодействию с миозиновыми нитями, лежащему в основе сокращения.
Тропонин и его роль в мышечном сокращении. По ходу молекул тропомиозина к ним периодически прикреплены другие белковые молекулы, называемые тропонином. Они представляют собой комплексы трех слабосвязанных белковых субъединиц, каждая из которых играет специфическую роль в регуляции мышечного сокращения. Одна из субъединиц (тропонин I) имеет высокое сродство к актину, другая (тропонин Т) — к тропомиозину, третья (тропонин С) — к ионам кальция. Считают, что этот комплекс прикрепляет тропомиозин к актину. Высокое сродство тропонина к ионам кальция, как полагают, инициирует процесс сокращения, о чем говорится в следующей статье.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
— Вернуться в оглавление раздела «Физиология человека.»
Мышечные судороги
Мышечные судороги это непроизвольное и насильственное сокращение мышцы, без периода её расслабления. Когда используются мышцы, которыми можно управлять произвольно, например, мышцы рук или ног, они поочередно сокращаются и расслабляются, по мере выполнения определенных движений в конечностях. Мышцы, которые поддерживают голову, шею и туловище, работают синхронно и поддерживают положение тела. Мышца (или даже несколько волокон мышцы) может находиться непроизвольно в состоянии спазма. Если спазм сильный и устойчивый, то это приводит к появлению судорог. Мышечные судороги часто визуализируются или пальпируются в области заинтересованной мышцы.
Мышечные судороги могут длиться от нескольких секунд до четверти часа, а иногда и дольше. Не редкость также повторение судорог до того периода, пока не произойдет расслабление мышцы. Судорожные сокращения могут охватывать часть мышцы, всю мышцу, или несколько мышц, которые обычно сокращаются одновременно при выполнении движений, например, при сгибании нескольких пальцев кисти. В некоторых случаях, судороги могут быть одновременно в мышцах-антагонистах, ответственных за движения в противоположных направлениях. Мышечные судороги широко распространены. Почти все люди (по некоторым исследованиям около 95% людей) испытывали судороги в какой-то момент жизни. Мышечные судороги характерны для взрослых и, по мере старения, проявляются чаще, но, тем не менее, судороги могут встречаться и у детей. В любой мышце (скелетной), в которой выполняются произвольные движения, могут быть судороги. Судороги конечностей, ног и стоп, и особенно икроножной мышцы, встречаются очень часто.
Типы и причины мышечных судорог
Судороги скелетных мышц можно разделить на четыре основных типа. К ним относятся «истинные» судороги, тетанические судороги, контрактуры и дистонические судороги. Судороги классифицируются в соответствии с причинами судорог и мышечных групп, которые они затрагивают.
Типы мышечных судорог
Истинные судороги. Истинные судороги охватывают часть, или всю мышцу, или группу мышц, которые обычно функционируют вместе, например, мышцы участвующие в сгибании нескольких смежных пальцев. Большинство исследователей сходятся во мнении, что истинные судороги вызваны повышенной возбудимостью нервов, которые стимулируют сокращения мышцы. Они в подавляющем большинстве являются наиболее распространенным типом судорог скелетных мышц. Истинные судороги могут возникать в различных обстоятельствах.
Травмы: Стойкие мышечные спазмы могут возникнуть в качестве защитного механизма после травмы, например, при переломе кости. В этом случае, как правило, спазм позволяет минимизировать движение и стабилизировать зону травмы. Травма только мышцы также может привести к спазму мышцы.
Активная деятельность: истинные судороги, как правило, связаны с активной нагрузкой мышц и мышечной усталостью (при занятиях спортом или при непривычной деятельности). Такие судороги могут возникнуть как в процессе деятельности, так и после, иногда много часов спустя. Кроме того, мышечная усталость от сидения или лежания в течение длительного периода времени в неловком положение или при любых повторяющихся движениях также может вызвать судороги. Пожилые люди больше подвержены риску появления судорог при выполнении энергичной или напряженной физической деятельности.
Судороги покоя: судороги в покое очень распространены, особенно у пожилых людей, но могут возникнуть в любом возрасте, в том числе в детском. Судороги покоя часто происходят в ночное время. Ночные судороги хоть и не угрожают жизни, но могут быть болезненными, нарушать сон, они могут часто повторяются (то есть, много раз за ночь, и / или много ночей в неделю). Фактическая причина ночных судорог неизвестна. Иногда такие судороги инициируются движением, которое сокращает мышцы. Примером может быть вытягивание стопы в постели, что приводит к укорочению икроножной мышцы, где чаще всего бывают судороги.
Обезвоживание: Спорт и другие энергичные физические нагрузки могут привести к чрезмерной потере жидкости с потом. При таком виде дегидратации увеличивается вероятность истинных судорог. Такие судороги, чаще всего, возникают в теплую погоду и могут быть ранним признаком теплового удара. Хроническая дегидратация вследствие приема диуретиков и слабое потребление жидкости может аналогично приводить к судорогам, особенно у пожилых людей. Судороги также могут быть связаны с недостатком натрия.
Перераспределение жидкостей в организме: истинные судороги могут также отмечаться при состояниях, когда возникает необычное распределение жидкости в организме. В качестве примера можно привести цирроз печени, при котором происходит накопление жидкости в брюшной полости (асцит). Точно так же, судороги являются относительно частым осложнением быстрых изменений биологических жидкостей, которые происходят во время диализа при почечной недостаточности.
Низкий уровень электролитов в крови (кальция, магния): низкие уровни в крови кальция или магния напрямую увеличивают возбудимость нервных окончаний иннервирующих мышцы. Это может быть предрасполагающим фактором для спонтанных истинных судорог, с которыми сталкиваются многие пожилые люди, а также такие судороги нередко отмечаются у беременных женщин. Низкие уровни кальция и магния часто встречаются у беременных женщин, особенно если эти минералы не поступают в достаточном количестве с пищей. Судороги наблюдаются в любых обстоятельствах, которые снижают доступность кальция или магния в жидкостях организма, например после приема диуретиков, гипервентиляции, чрезмерной рвоте, недостатке кальция и / или магния в рационе, недостаточное усвоение кальция из-за дефицита витамина D, снижение функции паращитовидных желез.
Низкий уровень калия: низкий уровень калия в крови иногда вызывает мышечные судороги, хотя для гипокалиемии более характера мышечная слабость.
Тетания
При тетании происходит активизация всех нервных клеток в организме, которые затем стимулируют сокращение мышц. При этом типе судорожные сокращения возникают по всему телу. Название тетания возникло от судорог, которые возникают при воздействии столбнячного токсина на нервы. Однако это название такого вида судорог в настоящее время широко применяется для обозначения мышечных судорог при других состояниях, таких как низкие уровни в крови кальция и магния. Низкий уровень кальция и магния повышает активность нервной ткани не специфически, что может привести к появлению тетанических судорог. Часто такие судороги сопровождаются признаками гиперактивности других нервных функций в дополнение к мышечной гиперстимуляции. Например, низкое содержание кальция в крови не только вызывает спазм мышц рук и запястья, но он также может быть причиной появления ощущений онемения и покалывание вокруг рта и других областях тела.
Иногда, тетанические судороги неотличимы от истинных судорог. Дополнительные изменения чувствительности или других нервных функций могут быть незаметны, так как боль при судороге может маскировать другие симптомы
Контрактуры
Контрактуры возникают, когда мышцы не могут расслабиться на еще более длительный период, чем при основных видах мышечных судорог. Постоянные спазмы обусловлены истощением аденозинтрифосфата (АТФ)- энергетического внутриклеточного субстрата клетки. Это предотвращает релаксацию мышечных волокон. Нервы неактивны при этом типе мышечных судорог.
Дистонические судороги
Другие виды судорог
Некоторые судороги обусловлены рядом нервных и мышечных заболеваний. Например, это такие заболевания, как боковой амиотрофический склероз (болезнь Лу Герига), сопровождающийся слабостью и атрофией мышц; радикулопатии при дегенеративных заболеваниях позвоночника (грыжа, протрузия диска, остеофиты), когда компрессия корешка сопровождается болью, нарушением чувствительности и иногда судорогами. Также судороги могут быть при поражении периферических нервов, например, диабетической невропатии.
Крампи. Этот вид судорог, как правило, описывает судороги в икроножной мышце, и связывают их появление с перенапряжением мышцы и наличием дегенеративных изменений в позвоночнике (остеохондроз поясничного отдела позвоночника, люмбоишалгия). Кроме того, крампи возможны при нарушениях сосудистого кровообращения в нижних конечностях (при облитерирующем эндартериите или посттромбофлебитическом синдроме). Также причиной крампи могут быть различные биохимические нарушения в трехглавой мышце голени.
Многие лекарства могут вызвать судороги. Сильнодействующие мочегонные, такие как фуросемид или энергичное удаление жидкости из организма, даже с помощью менее мощных диуретиков, может индуцировать судороги, так как происходит обезвоживание и потеря натрия. Одновременно диуретики часто вызывают потерю калия, кальция и магния, которые также могут вызвать появление судорог.
Лекарства, такие как донепезил (Aricept), которые используются для лечения болезни Альцгеймера) и неостигмин (простигмин), используемые для миастения, асралоксифен (Эвиста) используется для профилактики остеопороза у женщин в постменопаузе – могут быть причиной судорог. Толкапон (Tasmar), который используется для лечения болезни Паркинсона, оказалось, вызывает мышечные судороги, по крайней мере, у 10% больных. Истинные судороги были зарегистрированы при приеме нифедипина и наркотиков Тербуталина (Brethine) и альбутерола (Proventil, Ventolin). Некоторые лекарства, применяемые для снижения уровня холестерина, такие как ловастатин (Mevacor), также могут привести к судорогам.
Судороги иногда отмечаются у зависимых лиц во время прекращения приема седативных препаратов.
Недостаток некоторых витаминов также может прямо или косвенно привести к мышечным судорогам. К ним относятся недостатки тиамина (В1), пантотеновой кислоты (В5) и пиридоксина (B6). Точная роль дефицита этих витаминов в возникновении судорог неизвестна.
Плохое кровообращение в ногах приводит к дефициту кислорода в мышечной ткани и может вызвать сильную боль в мышцах (перемежающаяся хромота), которая возникает при ходьбе. Это обычно происходит в икроножных мышцах. Но боль при сосудистых нарушениях в таких случаях обусловлена не собственно мышечной судорогой. Эта боль в большей степени может быть связана с накоплением молочной кислоты и других химических веществ в мышечной ткани. Судороги в икроножных мышцах также могут быть связаны с нарушением оттока крови при варикозной болезни и, как правило, судороги в икроножных мышцах возникают в ночные часы.
Симптомы и диагностика мышечных судорог
Характерно, что судорога часто довольно болезненна. Как правило, пациенту приходится прекращать деятельность и срочно принимать меры для облегчения судорог; человек не в состоянии использовать пораженную судорогой мышцу во время судорожного эпизода. Тяжелые судороги могут сопровождаться болезненностью и отеком, которые могут иногда сохраняться до нескольких дней после того, как судорога исчезла. В момент судороги затронутые мышцы будут выпирать, на ощупь будут твердыми и болезненными при пальпации.
Диагностика судорог обычно не представляет трудностей, но выяснение причин может потребовать как тщательного сбора истории болезни, так инструментальных и лабораторных методов обследования.
Лечение
Большинство судорог могут быть прерваны с помощью растяжения мышцы. Для многих судорог ног и стоп это растяжение часто может быть достигнуто путем вставания и ходьбы. При судорогах икроножных мышц возможно сгибание лодыжки с помощью руки, лежа в постели с вытянутой прямо ногой. При писчем спазме нажатие рукой на стенку с пальцами вниз позволит растянуть сгибатели пальцев.
Также можно провести аккуратный массаж мышцы, что позволяет расслабить спазмированную мышцу. Если судорога связана с потерей жидкости, как это часто бывает при активной физической нагрузке, необходима регидратация и восстановление уровня электролитов.
Мышечные релаксанты могут быть использованы в краткосрочной перспективе в определенных ситуациях, для того чтобы позволить мышцам расслабиться при травмах или других состояниях (например радикулопатии). К этим препаратам относятся Циклобензаприн (Flexeril), Орфенадрин (NORFLEX) и баклофен (Lioresal).
В последние годы стали успешно использоваться инъекции терапевтических доз токсина ботулизма (Ботокс) при некоторых дистонических мышечных расстройствах, которые локализованы в ограниченной группе мышц. Хороший ответ может длиться несколько месяцев и более, и инъекции могут быть повторены.
Лечение судорог, которые связаны с конкретными заболеваниями, как правило, фокусируется на лечении основного заболевания.
В тех случаях, когда судороги серьезные, частые, продолжительные, плохо поддаются лечению или не связаны с очевидной причиной, то в таких случаях требуется как дополнительное обследование, так и более интенсивное лечение.
Профилактика судорог
Для того, чтобы предотвратить возможное появление судорог, необходимо полноценное питание с достаточным количеством жидкости и электролитов, особенно при интенсивной физической нагрузке или во время беременности.
Ночные судороги и другие судороги покоя часто можно предотвратить с помощью регулярных упражнений на растяжку, особенно если они выполняются перед сном.
Также хорошим средством профилактики судорог является прием препаратов магния и кальция, но требуется осторожность их назначения при наличии почечной недостаточности. При наличии гиповитаминоза необходим прием витаминов группы В, витамина Д,Е.
Если пациент принимает диуретики, то необходим обязательный прием препаратов калия.
В последнее время, единственным средством, которое широко используется для профилактики, а иногда и для лечения судорог, является хинин. Хинин использовался в течение многих лет при лечении малярии. Действие хинина обусловлено уменьшением возбудимости мышц. Однако хинин обладает рядом серьезных побочных действий, которые ограничивают его назначение всем группам пациентов (тошнота, рвота, головные боли, нарушения ритма сердца, нарушение слуха и т.д.).
Использование материалов допускается при указании активной гиперссылки на постоянную страницу статьи.