Для чего используют эхолоты и сонары

Как работают эхолоты

Как только получен возвращаемый импульс, отсылается другой. Поскольку звуковые волны движутся со скоростью в одну милю в секунду, сонары могут посылать несколько импульсов в секунду. Deeper PRO, Deeper PRO+ и Deeper CHIRP+ отправляют 15 импульсов в секунду. Возвращающиеся звуковые импульсы преобразуются в электрические сигналы, а затем отображаются, позволяя рыболовам определять глубину и твердость дна, а также любые объекты между ними.

Информация на заметку

1. Сонары сканируют конусообразно, а не линейно

Как это работает

Сонары посылают звуковые импульсы для поиска объектов. Звук распространяется волнами, а не прямыми линиями, и эти волны расширяются конусообразно, становясь все шире и шире.

Большинство сонаров могут управлять конусами звуковых волн, изменяя частоту сканирующего луча. Это важно, потому что в разных промысловых ситуациях различные сканирующие лучи более или менее эффективны.

Широкое лучевое сканирование (обычно от 40 ° до 60 °) отлично подходит для быстрого сканирования больших площадей и получения общей информации о глубине и структуре дна, но точность и детали будут ниже. Широкое лучевое сканирование лучше всего подходит для более мелких вод, потому что чем шире конус покрывает область, тем глубже он сканирует. Это означает, что если вы сканируете на глубине 13,7 м, вы увидите объекты в радиусе 14,3 м.

Сканирование узким лучом (от 10 ° до 20 °) дает более точное изображение, но покрывает меньшую площадь. Это подходит для определения точного местоположения рыбы. Узкое лучевое сканирование также лучше подходит для большой глубины, так как конус не распространяется слишком широко.

Отражения от поверхности и «слепые» зоны

Есть один важный момент, связанный с шириной сканирующего луча, который следует принимать во внимание: в некоторых случаях эхолот не выявляет объекты, которые находятся сразу под поверхностью воды.

Это вызвано отражением волн от поверхности, возникающем при использовании любых эхолотов. Отражение от поверхности происходит потому, что близкая к поверхности вода отражает часть испускаемых эхолотом волн, и эти отражения возникают слишком быстро, мешая эхолоту правильно обработать данные. Отражения могут возникать по ряду причин; чаще всего это волны на поверхности воды, пузырьки, течение и водоросли. Они вызывают сильный гидроакустический шум возле поверхности. Из-за этого и появляются «слепые» зоны, в которых невозможно выявить рыбу.

Количество отражений и размер «слепых» зон можно снизить, повысив частоту сканирования при использовании эхолота. Если вы сталкиваетесь с отражениями от поверхности при работе с Deeper PRO или PRO+, переключитесь на сканирование на более высокой частоте (узкий луч 290 кГц 15°). Если у вас Deeper START, его частота эхолокации 120 кГц предполагает появление отражений от поверхности воды в глубину до 1 м.

Благодаря технологии CHIRP эхолот Deeper CHIRP+ имеет минимальный уровень отражений от поверхности и шума, что обеспечивает точность его показаний даже на глубине 15 см от поверхности воды.

На рисунке ниже приведены 2 ситуации, в которых отражения от поверхности воды могут искажать показатели эхолота (в этих примерах глубина отражений может достигать 1 м вглубь):

Почему это играет роль при …

Совет от Deeper: при ловле рыбы сначала используйте широкий луч, чтобы найти общую область нахождения рыбы, затем переключитесь на узкий луч и просмотрите эту область несколько раз, чтобы получить точное местоположение.

определении структуры и особенностей

Совет от Deeper: Использование узкого луча минимизирует вероятность того, что на вашем дисплее появится мертвая зона. Когда вы обнаружите впадину, просмотрите ее несколько раз, используя узкий луч.

2. Прокрутка экрана не означает движение сонара (или большое количество рыбы)

Почему это имеет значение при …

Одной из самых частых ошибок при анализе данных полученных с сонара является принятие одной рыбы за большое количество рыб. Вот как это происходит. Вы определяете, что в воде есть неподвижная рыба. Если вы не переместите свой сонар, и рыба останется неподвижной, на экране вы увидите постоянный поток рыбных значков. Естественно Вы подумаете, что обнаружены 4 или 5 огромных монстров. На самом деле, есть только один, но прокручивающийся дисплей делает его похожим на несколько.

определении структуры и особенностей

Представьте, что вы запустили свой сонар, и теперь вы тяните его обратно, чтобы получить образ подводной структуры. Прекратите тянуть его на несколько секунд, а затем начните снова. Впоследствии вы вернувшись к сканированию заметите явный уклон, но с одним плоским участком посередине. Итак, есть ли на самом деле плоский участок на дне?

Совет от Deeper: Чтобы этого избежать, тяните сонар с одинаковой скоростью. Вместо этого вы можете использовать функции отображения с лодки или берега. Они используют GPS для добавления уровней глубины на вашу карту, поэтому нет проблем, если скорость, с которой вы тяните, меняется.

3. Более толстые линии и повторные возвратные сигналы означают более плотное дно.

Ваш сонар способен рассказать вам не только о том, как выглядит структура дна, но и о том, насколько тяжелое дно. Вот как:

Сонары измеряют время, необходимое для возвращения звукового импульса, а также силу сигнала, который возвращается. Это позволяет ему показать степень твердости подводных объектов. Мягкие объекты с низкой плотностью возвращают более слабый сигнал, тогда как жесткие объекты с высокой плотностью возвращают более сильный сигнал.

Дисплей сонара покажет вам характеристики дна, с помощью яркости: чем ярче цвет, тем сильнее сигнал и, следовательно, тверже объект. Это особенно важно при сканировании дна.

Вы можете заметить, что низ дисплея становится толще и интенсивнее в некоторых местах (жесткое дно), затем тоньше и слабее в других (мягкое дно). Вы также можете заметить повторные возвратные сигналы сонара со дна. Здесь дно такое твердое, что луч сонара отразился на поверхности, снова отскочил, отразился снизу и был подхвачен вашим сонаром.

Пример второго дна

Почему это играет роль при …

Умение анализировать однородность дна заключается в освоении принципов работы с исходными данными. Потратив некоторое время на обучение, вы сэкономите много времени в дальнейшем, потому что всегда будете понимать обстановку под водой.

Совет от Deeper: Для улучшения навыков важно сместить приоритет от знания («Я знаю, где рыба») к пониманию («Я понимаю, почему рыба именно здесь»). Важно уметь уловить связь между показателями плотности дна, отображаемыми эхолотом, и обычным местоположением рыбы. Например, вы можете заметить, что при определенных условиях или в определенное время года интересующий вас вид рыбы всегда находится в местах с мягким дном. Это важное наблюдение поможет вам значительно повысить улов.

определении структуры и особенностей

Данные о твердости дна очень полезны как часть общей картины, которую вы создаете. Говоря о различии между сваями и камнями, глинистым и твердым дном, очень важно найти правильные места для рыбалки на ваши целевые виды рыбы.

Совет от Deeper: После того, как вы нашли интересное место, используйте узкий луч сонара, чтобы получить наиболее подробные и точные показания твердости дна. Убедитесь, что вы используете подробный, а не основной дисплей в приложении Fish Deeper (используйте меню с левой стороны для выбора), чтобы увидеть показания твердости дна.

Источник

Навигационные и рыбопоисковые эхолоты, сонары и гидролокаторы, модули эхолотов

Категории эхолотов на примере Garmin Echo со сканирующим лучом Down Vu

Эхолоты имеют различное назначение, но принцип действия у всех одинаков. Звуковые импульсы прибора просвечивают толщу воды, достигая дна, а возвращаясь, рисуют на дисплее эхолота соответствующую картину. Таким образом, эхолот фиксирует все отраженные и переотраженные волны, отображая полученную информацию в удобной для восприятия форме.

Условно, эхолоты можно поделить на несколько категорий, в каждой из которых эхолоты имеют свои особенности применения. Строго разделить эхолоты достаточно сложно, потому что большинство из них окажется сразу в нескольких категориях, обладая достаточно широким спектром возможностей:

Впередсмотрящие эхолоты или эхолоты переднего обзора предназначены для заблаговременной подачи информации о рельефе дна. Другими словами, эхолот в классическом понимании, а именно вертикально сканирующее устройство, отображающее пространство, находящееся исключительно под дном судна, не может предупредить об отмели или других препятствиях на пути плавсредства, поэтому возникла необходимость применять так называемое горизонтальное сканирование широким лучом, чтобы иметь информацию о подводных объектах как по курсу судна, так и справа и слева от него. Большинство эхолотов используют в своей работе несколько лучей разных диапазонов частот для наиболее полноценного отображения подводной ситуации.

Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары

Навигационные эхолоты могут быть в том числе и впередсмотрящими, их особенность, скорее, состоит в том, что они не предназначены для поиска рыбы, а являются частью систем безопасности судовождения и способны передавать информацию не только на дисплей для визуального контроля, но и специальные судовые приборы, применение которых регламентируется надзорными органами, например, на ЭКНИС или в регистратор данных рейса (РДР). Информация, полученная от навигационного эхолота, хранится в памяти и при необходимости может быть воспроизведена и проанализирована.

Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары

Сонары или гидролокаторы представляют собой главную деталь эхолота – устройство, непосредственно отправляющее и принимающее звуковые импульсы. Обычно используются активные сонары, то есть гидролокаторы, генерирующие звуковые импульсы, возвращающиеся затем к датчику в виде эха. Но существуют и пассивные гидролокаторы, применяемые для нахождения морских объектов, производящих собственные шумы.

Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары

Рыбопоисковые эхолоты – самая распространенная категория эхолотов среди не только профессионалов, но и любителей. Как и следует из названия, их основное назначение – поиск рыбы. При этом, хороший рыбопоисковый эхолот, конечно же, включает в себя сонар или гидролокатор, может одновременно быть и навигационным, и впередсмотрящим. Ниже, на примере популярных моделей эхолотов Garmin будут подробнее рассмотрены особенности применения рыбопоисковых эхолотов.

Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары

Модули эхолотов для картплоттеров и МФД (многофункциональных дисплеев) предназначены для профессионального использования и предполагают наличие серьезного судового оборудования, без которого – совершенно бесполезны. Модуль выполняется в виде специального блока, не имеющего никаких средств визуализации. Его назначение – исключительно сбор информации и последующая передача в бортовую сеть. В зависимости от используемого на борту оборудования применяется совместимый с ним модуль эхолота, интегрируемый в бортовую сеть. Информация от модуля эхолота визуализируется непосредственно на бортовых дисплеях. Такие приборы имеют, как правило, высочайшее качество и широкий спектр возможностей, в полной мере дополняющий функционал бортовой электроники.

Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары

Особенностью режима DV является отображение рыб в реальном размере, пропорциональном глубине. В узком луче такая картинка представляет собой более детализированное изображение толщи воды, позволяющее более качественно интерпретировать схематичную картинку от широкого луча. В стандартных режимах рыбы обозначаются значками или так называемыми дугами, что более наглядно, но в то же время, весьма условно.

Трехлучевой рыбопоисковый эхолот Garmin Echo 551DV имеет два обычных луча – широкий 120° и узкий 60°, сканирующий луч DownVu 45°, мощность 500 Вт, пиковую мощность до 4 кВт, максимальную глубину промера до 700 м, пятидюймовый дисплей с разрешением 480х640 пикселей, 256 цветов. В комплекте с эхолотом поставляются крепление с фиксирующей скобой, датчик с креплением на транец. Остальные аксессуары можно приобретать по необходимости: например, защитный кофр, датчик скорости, переносной кейс с аккумулятором, зарядкой и дополнительными креплениями, в частности, присоской, что очень удобно для гребной или резиновой лодки, когда невозможно использовать струбцину.

Правильная установка датчика – важный момент при использовании рыбопоискового эхолота, поэтому в данной модели крепеж имеет диапазон регулировки вверх-вниз. Когда датчик расположен по уровню днища, на его работе не отразятся помехи, связанные с конвекционными потоками воды, возникающими при движении лодки.

Меню эхолота выполнено таким образом, чтобы было сразу понятно, как им пользоваться. При включении эхолота запрашивается язык меню и единицы измерения (обычно метрические). Затем открывается главная страница меню эхолота. Страниц всего шесть, переключение между ними осуществляется джойстиком вправо-влево. Каждая страница настраивается кнопкой меню.

При настройке можно выставлять различные режимы использования лучей, комбинировать их одновременное использование, менять масштаб изображения, а также регулировать глубины, чувствительность и прочие параметры. Для поиска единичных крупных придонных рыб лучше использовать луч 200 кГц, для косяков рыбы в толще воды – луч 77 кГц. Полезно будет выставить линию глубины, чтобы померить глубину любого предмета, а также для ориентира – линию хода воблера. При помощи прокрутки сонара влево-вправо можно просмотреть историю маршрута.

Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары

Модель Garmin Echo 201DV более проста, чем описанная Echo 551DV и снабжена монохромным дисплеем, благодаря чему значительно дешевле. Разрешение экрана будет чуть хуже, чем у старшей модели, но необходимо отметить, что в черно-белом варианте картинка может оказаться более информативной, чем изобилующая цветами. В условиях постоянной работы, при ярком солнце или ночью, такая модель может оказаться очень кстати, поскольку при хорошей рыбной ловле на первый план выходит лаконичность информации, а нее визуальная привлекательность.

В целом, можно отметить, что эхолоты Garmin Echo – очень качественная техника, обладающая незаурядными характеристиками чувствительности, отличной наглядностью предоставляемой информации и простотой настроек. Ниже предлагаем познакомиться с несколькими статьями, позволяющими еще раз взглянуть на эхолоты под другим углом.

Источник

Принципы работы сонаров и подводная акустика: как, зачем и почему

Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонарыСонары используются для обнаружения и исследования подводных объектов, в то время как похожие устройства, называемые радары — для исследования надводных, наземных, воздушных и космических объектов. Многое из того, что сказано ниже про сонары, справедливо и для радаров, либо имеет очевидные сходства.

Я заметил, что в интернете нет материалов по данной теме, описывающих все процессы в связи друг с другом и понятными словами. В статье мы пройдем весь путь от особенностей распространения звуковых волн в воде до процессов внутри сонара. Сделать это я намереваюсь просто и ясно, чтобы заинтересовать как любопытных читателей, так и тех, кому через 2 часа надо сдать устный экзамен по подводной акустике. Предполагается, конечно, что кто-то из одной, либо из другой обозначенной группы может не иметь никаких знаний по данной теме, поэтому все начнется с основ.

Задолго до того, как Шелдон поможет разобраться с эффектом Доплера, мы погружаемся под воду, чтобы начать знакомство с тем, как происходит и от чего зависит распространение звуковых волн в водной среде.

Природа звука под водой

На распространение звуковых волн в водной среде влияют множество факторов: частота и амплитуда звуковой волны, температура, соленость и глубина воды, расстояние распространения звука (и связанная с этим постепенная трансформация звука в тепло — абсорбция), а также другие местные факторы (неоднородности в воде, участки с турбулентностью, состояние поверхности воды – пузырьки воздуха, дождь и ветер; тип дна – ил, песок, гравий или скала).
Чем больше температура, соленость, глубина, т.е. чем выше плотность воды – тем выше скорость распространения звука. Изменение этих трех параметров также влияет на искривление направления движения звука в воде, а также на величину пространственного угла распространения.

Часто в умеренных широтах температура в поверхностных слоях воды быстро понижается, что снижает скорость звука, фокусирует звуковую волну на некоторой глубине, удаляя ее от поверхности. Напротив, когда температура у поверхности постоянна (например, в тропиках вода прогревается довольно глубоко), на скорость звука влияет только глубина, и из-за этого скорость звука в поверхностных водах увеличивается только благодаря глубине. В таких водах звук фокусируется возле поверхности, постоянно отражаясь от нее и возвращаясь к ней снова. Средняя скорость звука в воде – 1480 метров в секунду, граничные скорости: от 1450 до 1540 м/с.

Чем выше частота звука, тем быстрее он рассеивается. Это вызывается трансформированием энергии звука в тепло, рассеиванием из-за неоднородностей в воде и при подходящей глубине затуханием на дне (в первую очередь если дно – ил или песок), либо возле поверхности по причине дождя, ветра, пузырьков воздуха и т.п.; при штиле потери на поверхности незначительны, так как поверхность воды отражает более 99% звука.

Все эти данные позволяют создавать шаблоны настроек сонара и просчитывать возможные время и траектории распространения звуковых волн, настраивать сонар с максимальной эффективностью.

Конструкция антенны сонара

Передающая антенна сонара колеблется в звуковом диапазоне частот и производит звуковые воллны. Излучающая звуковые волны поверхность антенны называется апертурой.
Апертуры бывают непрерывные и дискретные, то есть имеющие множество отдельных излучающих элементов.
Можно рассматривать дискретные апертуры как содержащие в себе множество непрерывных апертур. Элементы дискретных апертур находятся на определенном расстоянии друг от друга, поэтому волны, излучаемые ими, будут приходить к цели в разное время. Этот факт учитывается при генерировании волн, при направлении звукового пучка, а также по прибытии отраженных волн.
Излучаемые апертурами звуковые волны оказывают давление на слои воды вокруг, поэтому можно говорить о распределении давления звуковой волны вокруг апертуры, назовем это формой акустического пучка. Вот пример такой формы:
Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары
Звуковые колебания, как и любые колебания, по причине своей упругой природы имеют минимумы и максимумы, сменяющие друг друга и противоположные друг другу по амплитуде. Изначально в волне минимумы и максимумы находятся на определенном расстоянии друг от друга во времени и пространстве, то есть смещены по фазе. Вследствие излучения звуковые волны имеют свойство объединяться, находясь в разных фазах, то есть усиливают, либо гасят друг друга. Это называется интерференцией.
Боковые лепестки на изображениях выше возникают из-за того, что энергия от антенны распространяется не только фронтально, но и в смежных направлениях; они имеют минимумы и максимумы благодаря интерференции. Боковые лепестки являются нежелательными, так как имеют амплитуды и частоты, отличные от основного лепестка, и этим вносят помехи.
Как можно представить, пучок раскрывается под некоторым пространственным углом. Если рассматривать в горизонтальной и вертикальной плоскостях, то это два угла — вертикальный (угол элевации) и горизонтальный (азимут). Развернув эти углы на плоскости, можно показать форму пучка в более наглядном виде:
Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары
Апертуры бывают разных геометрических форм и поэтому производят разные пучки. На рисунке выше, например, показана форма пучка для прямоугольной апертуры. Также существуют круговые апертуры, либо линейные (похожие на отрезок определенной длины), либо даже апертуры в виде трехмерных форм, например, параболоиды. Вы можете представить, как для них выглядят формы пучков. Например, для круговой апертуры боковые лепестки уменьшаются радиально, а не в виде креста, как на рисунке выше. В случае параболоидной формы происходит увеличение основного лепестка за счет соседних.
Если у диаграммы выше сделать сечение по центру, вот что мы увидим:
Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары

Длиной волны называется расстояние, которое волна проходит во время одного колебания. А время, за которое она проходит это расстояние, называется периодом. Если расстояние между двумя излучающими звук элементами дискретной апертуры становится больше половины длины волны, у нас начинают увеличиваться боковые лепестки, а при дальнейшем уменьшении длины волны появляются новые лепестки, равные по амплитуде основному, что вносит помехи и является нежелательным фактом: при приеме сигнала будет неизвестно, какой именно лепесток является причиной.
Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары
Даже если все боковые лепестки меньше основного, они являются нежелательными по причине дополнительных искажений, вносимых ими: волны боковых лепестков тоже будут отражаться от каких-то объектов и двигаться в обратном направлении к сонару. Поэтому разработали способы уменьшения как боковых лепестков при излучении звука, так и их следствий при приеме отраженного сигнала. Основная идея: нужно таким образом сформировать сигнал, чтобы переместить энергию из боковых лепестков в основной, тем самым уменьшив и уровняв боковые лепестки по амплитуде. Это делается с помощью предустановленных паттернов (так называемых «окон»), через которые пропускается сигнал. Самый эффективный паттерн гордо носит имя «окно Чебышева». На примере ниже сигнал, прошедший через окно Чебышева, выделен курсивом:
Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары

Чтобы исследовать определенную область пространства, сонары поворачивают под необходимым углом, тем самым добиваясь нужного направления для основного лепестка звукового пучка. Еще существуют более тонкие способы направить звуковой луч в нужном направлении.

Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонарыВ случае, если сонар настроен на принятие сигнала (называется «пассивный режим»), может использоваться способ, рассмотренный на рисунке справа. Звук из исследуемого направления приходит на разные элементы апертуры через разные промежутки времени. В зависимости от требуемого направления луча высчитывается необходимая задержка для каждого элемента апертуры, вследствие чего принимается картинка из нужного направления. Этот способ прекрасно работает для принятия сигналов, в которых присутствуют волны большого диапазона частот, то есть «широкополосных» сигналов. Причины использования широкополосных сигналов будут рассмотрены в следующем параграфе.

Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары
Сигнал одной частоты, либо очень близкого диапазона частот называется узкополосным. В узкополосном сигнале нам легче увидеть его периодическую составляющую. По этой причине нет особой нужды вычислять различные промежутки времени, которые сигнал идет к разным элементам апертуры, так как по прошествии одного периода сигнала начинается точно такой же период снова, т.е. информация повторяется. Достаточно учитывать и использовать лишь сдвиг по фазе, с которым сигнал приходит, либо излучается разными элементами апертуры. Когда мы управляем направлением пучка этим способом, на элементах апертуры сигнал принимается/излучается с разной задержкой по фазе. На картинке справа вы можете наблюдать, как перенаправляется основной лепесток пучка при изменении фазы. Данный способ называется фазовым затенением и применяется как для пассивного, так и для активного режимов сонара.

Внутри сонара. Обработка сигналов

Внутри все начинается с генератора синусоидальных импульсов. Типичный генератор состоит из двух компонентов. Во-первых это усилитель, выход которого подключен к собственному входу («положительная обратная связь»), из-за чего происходят колебательные отклонения сигнала. Второй компонент — это электрический фильтр. Внутри фильтра находятся катушки индуктивности и конденсаторы, сопротивление которых зависит от частоты подаваемого сигнала. На определенных частотах сопротивление возрастает, что препятствует прохождению сигнала. С помощью разных комбинаций катушек и конденсаторов настраивается отсеивание необходимых частот на выходе генератора.

Далее находится группа фильтров, имеющих сходства с описанным только, однако чуть более сложных. Они занимаются амплитудным и фазовым затенением, формированием направления и формы пучка (это все описывалось выше). Еще некоторые их функции будут со временем рассмотрены.

Следом сигнал подается на усилитель и на антенну, где он становится звуком. Излучаемый звуковой сигнал имеет некоторую протяженность во времени и называется импульсом. Импульс движется к исследуемому объекту, отражается и возвращается назад к сонару. Сонар в это время находится в пассивном режиме и ожидает возвращения импульса, который снова переводится в электрический сигнал. Длительность импульса должна быть короче времени, которое, как предполагается, будет затрачено на движение импульса от сонара к цели и обратно, иначе на приемнике результат будет суммироваться с исходящими волнами.
Давайте еще раз обратимся к фильтрам и процессам, которые сигнал проходит после до того, как будет излучен антенной. Впрочем, после приема отраженный сигнал ждут вполне похожие процедуры.

Квадратурная модуляция

Чем выше частота звука (= меньше длина волны), тем выше разрешающая способность сонара (более мелкие элементы могут быть обнаружены). С другой стороны, высокая частота несет меньше энергии в каждом колебании, поэтому оно подвергается большему воздействию шума и отношение сигнал-к-шуму уменьшается.
Рассмотрим одно колебание в отдельности. Оно несет в себе максимум и минимум своей амплитуды. Информацию при этом передает максимум амплитуды, а минимум фактически не используется. Что будет, если дублировать исследуемый сигнал, сместить его по фазе на 90 градусов и сравнить с исходным? Максимум второго сигнала окажется на одном уровне с минимумом первого. Если передавать одновременно в одном канале эти два сигнала, их частоты останутся прежними, однако информационная насыщенность возрастет в 2 раза, так как передающий информацию максимум амплитуды будет встречаться в 2 раза чаще. Такая одновременная передача двух сигналов называется квадратурной модуляцией. Это довольно распространенный прием и он используется во множестве электронных устройств.

Сжатие импульса

Уровень мощности антенны сонара, конечно же, ограничен какими-то пределами. Однако мы заинтересованы в том, чтобы энергия сигнала была как можно более высокой, так как это уменьшает влияние шумов на сигнал, этим увеличивая разрешающую способность. Используя более длинные импульсы, можно уменьшить пиковую мощность у передаваемого импульса при сохранении того же уровня энергии. При приеме импульс сжимается в более короткий, что увеличивает пиковую мощность импульса. Пиковая мощность импульса после сжатия во много раз превышает пиковую мощность, которая была бы без сжатия. Перед отправкой импульс удлинняется в той же пропорции, в которой по прибытию будет сжат.

Линейная частотная модуляция

Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонарыПусть был послан такой сигнал, как расположен слева, а в ответ был получен сигнал, как выше отрезка Х. Как мы сможем отличить этот сигнал от аналогичного над отрезком Y? Это сделать невозможно, так как оба сигнала одинаковы, лишь смещены во времени. То есть появится некая неопределенность в интерпретации временного отрезка, которому соответствует пришедший сигнал, соответственно будет неопределенность в расстоянии до объекта.
Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары
Если же сигнал будет такой, как сейчас на рисунке справа, становится возможным отличить соответствующие ему временные отрезки. Этот прием называется линейной частотной модуляцией, когда частота увеличивается или уменьшается линейно.

Гауссова огибающая

Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонарыВ предыдущем параграфе рассматривались бобковые лепестки, возникающие под действием интерференции. Этими лепестками описывалось распределение давления звуковой волны в трехмерной среде. Хочется отметить, что боковым лепесткам соответствуют волны меньших амплитуд. Амплитуда вместе с тем уменьшается и от дальности распространения сигнала. До сих пор мы подразумевали, что пик каждого колебания имеет одинаковую амплитуду. Будет ли полезным менять амплитуды каждого колебания по определенному правилу? Конечно, поскольку в этом случае мы сможем дополнительно дифференцировать сигналы боковых лепестков, частоты которых уменьшены. Сравнивая, как изменяются амплитуды переданного и полученного сигналов на определенной частоте и находя несоответствия, можно отсекать сигналы с боковых лепестков.

Эффект Доплера

Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонарыЕсли приближать и отдалять телефонную трубку, когда в ней раздается гудок, можно почувствовать плавные изменения в тональности. Это изменяется воспринимаемая частота звука. Эффект изменения частоты звука при движении называется эффектом Доплера. Эффект Доплера для электромагнитных волн существенно отличается от рассматриваемого здесь, так как для них отсутствует какая-либо среда-посредник, являющаяся третьей стороной в контакте приемника и передатчика волны. Для звука же такой средой является вода.
Если представить, что судно, к которому прикреплен сонар, находится в движении, либо двигается объект исследования, можно прийти к выводу, что частота принимаемого сигнала будет изменена в соответствии с эффектом Доплера. В этом случае линейная частотная модуляция снова является причиной неопределенности и может вводить в заблуждение: сигнал привязан к отрезкам времени изменяющейся частотой, однако эту частоту дополнительно изменяет эффект Доплера.

Диаграмма неопределенности

Как написано выше, одновременно используются две техники модуляции сигнала, чтобы сократить две неопределенности в исследуемых параметрах объекта. Первая неопределенность связана со способностью сонара различить временную задержку сигнала (расстояние до объекта), а вторая — связанная с эффектом Доплера (скорость объекта).
На диаграмме ниже показаны уровни неопределенности для немодулированного сигнала: временная задежка по горизонтальной оси и частотная — по вертикальной. Тут неопределенности возникают благодаря упоминавшимся выше причинам: боковые лепестки вызывают неопределенности, связанные с эффектом Доплера (это видно как поперечные дуги); формы одного цвета показывают неопределенности в оценке дальности, которые поясняются неоднозначностью временного отрезка, к которому можно отнести пришедший сигнал (по причине неизменности каждого его периода при неизменной частоте). Диаграмма неопределенности напрямую отражает разрешающую способность сонара.
Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары
Следующий график отображает линейно частотно модулированный сигнал. Благодаря частоте, изменяемой пропорционально времени, можно более точно определять временную задержку сигнала и дальность до цели. Эффект Доплера, меняя частоту, вносит искажения. Также искажения вносят боковые лепестки.
Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары
Следующий график отображает линейно частотно модулированный сигнал с гауссовой огибающей (амплитудная модуляция). Теперь мы можем убрать боковые лепестки частот, поскольку дополнительно сравниваем амплитуды исходящего и пришедшего сигналов, а у боковых лепестков амплитуды меньше, чем у основного.
Для чего используют эхолоты и сонары. Смотреть фото Для чего используют эхолоты и сонары. Смотреть картинку Для чего используют эхолоты и сонары. Картинка про Для чего используют эхолоты и сонары. Фото Для чего используют эхолоты и сонары
При увеличении дальности объекта пропорционально затухает амплитуда сигнала во время его движения к объекту и обратно. Если на этот же сигнал еще влияет и эффект Доплера, то становится неясным, что на сигнал влияло больше — уменьшение амплитуды из-за дальности (сигнал будет сверяться по частотам с исходным, а по разнице амплитуд будут формирования предположения о дальности), либо эффект Доплера (сигнал будет сверяться по амплитудам с исходным, а по разнице частот будет сделан вывод о скорости объекта). Эти две пересекающихся стратегии оценки на диаграмме ярко выражены тем, что форма растягивается по диагонали.

Согласующий фильтр

Ранее много раз упоминалось, что принятый сигнал сравнивается с исходным. Это происходит в согласующем фильтре, в нем имеются копии исходных сигналов. Здесь сигнал не только делится на фрагменты и сравнивается, но и суммируется с исходным сигналом, что позволяет уменьшить количество шумов, которые испытал на себе сигнал во время движения к цели и обратно. Здесь же первично оцениваются искажения сигнала и производятся вычисления, что же было причиной искажений. Например, здесь присутствует абсорбционная модель, которая учитывает возможное рассеивание импульса во время его движения к цели и обратно. Здесь же происходит сжатие импульса.

Быстрое преобразование Фурье

Согласно преобразованию Фурье, любой сигнал (даже шум) можно представить в виде суммы синусоид разных частот и фаз (говоря более строго, можно представить в виде спектральной плотности). В синусоиде, которая является периодическим сигналом, информация повторяется много раз — из периода в период одно и то же. После преобразования Фурье эти повторения информации исчезают. Быстрое преобразование Фурье позволяет выполнять преобразование с меньшим количеством вычислений. Вычисления в согласованном фильтре происходят со сжатыми быстрым преобразованием Фурье сигналами, для чего необходимы специальные микроконтроллеры, выполняющие математические операции.

Вот порядок того, что с сигналом происходит по прибытии на антенну:

Предварительный усилитель и фильтр полосы частот, автоматическая регулировка усиления => Квадратурная демодуляция => Фильтр антиалиасинга и конвертация в цифровой вид => Переход в согласующий фильтр (компрессия импульса, описанные выше действия; компенсация движения, микро-навигация, автофокус, искусственные методы повышения разрешения) => Обработка изображения (формирование частей изображения, объединение их, программируемые обнаружение и классификация целей) => Выведение на экран монитора.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *