Динамика это что определение
Значение слова «динамика»
1. Раздел механики, изучающий законы движения тел в зависимости от действующих на них сил.
[От греч. δυναμικός — действующий]
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
Системная динамика — направление в изучении сложных систем.
ДИНА’МИКА, и, мн. нет, ж. [от греч. dynamikos — действующий]. 1. Отдел механики, изучающий законы движения тел в зависимости от действующих на них сил (мех.). 2. Ход развития, изменения какого-н. явления под влиянием действующих на него сил; противоп. статика во 2 знач. (науч.). Д. социального процесса. 3. перен. Обилие движения, действия (книжн.). В пьесе много динамики.
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
дина́мика I
1. физ. раздел механики, изучающий движение тел под воздействием сил
2. состояние развития, движения
3. развитие, движение ◆ — Состояние тяжёлое, — пояснил врач, — но динамика положительная. Татьяна Устинова, «Большое зло мелкие пакости», 2003 г. (цитата из НКРЯ)
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.
Насколько понятно значение слова кондовый (прилагательное):
Динамика
Дина́мика (от греч. δύναμις — сила, мощь):
Содержание
В физике
В астрономии
В науках о Земле
В биологии
В технике
В музыке
Список значений слова или словосочетания со ссылками на соответствующие статьи. Если вы попали сюда из другой статьи Википедии, пожалуйста, вернитесь и уточните ссылку так, чтобы она указывала на статью. |
Полезное
Смотреть что такое «Динамика» в других словарях:
ДИНАМИКА — (греч., от dynamis сила). 1) часть механики, имеющая предметом своим законы движения тел. 2) учение об изменяемости какого нибудь явления под влиянием тех или других сил; противоп. статике. Словарь иностранных слов, вошедших в состав русского… … Словарь иностранных слов русского языка
ДИНАМИКА — (от греч. dynamis сила), раздел механики, посвящённый изучению движения матер. тел под действием приложенных к ним сил. В основе Д. лежат Ньютона законы механики, из к рых получаются все ур ния и теоремы, необходимые для решения задач Д. Согласно … Физическая энциклопедия
ДИНАМИКА — ДИНАМИКА, динамики, мн. нет, жен. (от греч. dynamikos действующий). 1. Отдел механики, изучающий законы движения тел в зависимости от действующих на них сил (мех.). 2. Ход развития, изменения какого нибудь явления под влиянием действующих на него … Толковый словарь Ушакова
динамика — кинетика Словарь русских синонимов. динамика сущ., кол во синонимов: 18 • биодинамика (1) • … Словарь синонимов
ДИНАМИКА — (dynamics) Изучение того, как меняется экономика с течением времени. Изменения в экономике могут происходить под воздействием внешних (экзогенных) и внутренних (эндогенных) факторов, отражающих реакцию людей, фирм и государственных органов на… … Экономический словарь
динамика — Раздел механики, в котором изучаются движения механических систем под действием сил. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая … Справочник технического переводчика
ДИНАМИКА — (от греческого dynamis сила), раздел механики. Изучает движение тел под действием приложенных к ним сил. Основа динамики Ньютона законы механики, сформулированные в конце 17 в … Современная энциклопедия
ДИНАМИКА — в музыке различной степени силы звучания, громкости и их изменения. Обозначаются итальянскими терминами: пиано (piano, сокр. p) тихо; форте (forte, сокр. f) громко; крещендо (crescendo) постепенно усиливая; диминуэндо (diminuendo) постепенно… … Большой Энциклопедический словарь
ДИНАМИКА — (от греч. dynamis сила) раздел механики, в котором изучается движение тел под действием приложенных к ним сил. Основа динамики Ньютона законы механики … Большой Энциклопедический словарь
ДИНАМИКА — ДИНАМИКА, отрасль МЕХАНИКИ, которая изучает движение предметов. Основными разделами ее являются кинематика, изучающая движение безотносительно к его причинам, и КИНЕТИКА, принимающая в расчет силы, вызывающие движение. см. также ИНЕРЦИЯ, МОМЕНТ,… … Научно-технический энциклопедический словарь
Динамика
Содержание
Содержание
1. Динамика в разных науках
2. Динамика в физике
4. Газовая динамика
Динамика – это состояние движения, ход развития, изменение какого-либо явления под влиянием действующих на него факторов.
Динамика в разных науках
В физике
В астрономии
В науках о Земле
Динамика подземных вод
Динамика русловых потоков
В биологии
Популяционная динамика старения
Динамика растительности (синдинамика) — процесс постепенной трансформации растительных сообществ под действием внешних и внутренних факторов.
В технике
Динамика машин и механизмов
В музыке
Динамика в музыке — совокупность понятий и нотных обозначений, связанных с оттенками громкости звучания.
Динамика в физике
Динамика (греч. δύναμις — сила) — раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями, как масса, сила, импульс, энергия.
Динамика, базирующаяся на законах Ньютона, называется классической динамикой. Классическая динамика описывает движения объектов со скоростями от долей миллиметров в секунду до километров в секунду.
Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света. Такие движения подчиняются другим законам.
С помощью законов динамики изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов.
В результате применения методов динамики к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, баллистика, динамика корабля, самолёта и т. п.
Основная задача динамики
Прямая задача динамики: по заданным силам определить характер движения тела.
Обратная задача динамики: по заданному характеру движения определить действующие на тело силы.
Классическая динамика основана на трёх основных законах Ньютона:
1-й: Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или их действие скомпенсировано.
2-й: В инерциальной системе отсчета сумма всех сил, действующих на тело, равна произведению массы этого тела на векторное ускорение этого же тела (действие на тело силы, проявляется в сообщении ему ускорения).
3-й: Тела действуют друг на друга силами равными по модулю и противоположными по направлению
Если при этом рассматриваются взаимодействующие материальные точки, то обе эти силы действуют вдоль прямой, их соединяющей. Это приводит к тому, что суммарный момент импульса системы состоящей из двух материальных точек в процессе взаимодействия остается неизменным. Таким образом, из второго и третьего законов Ньютона могут быть получены законы сохранения импульса и момента импульса
Законы Ньютона в неинерциальных системах отсчета
Существование инерциальных систем отсчета лишь постулируется первым законом Ньютона. Реальные системы отсчета, связанные, например, с Землей или с Солнцем, не обладают в полной мере свойством инерциальности в силу их кругового движения. Вообще говоря, экспериментально доказать существование ИСО невозможно, поскольку для этого необходимо наличие свободного тела (тела на которое не действуют никакие силы), а то, что тело является свободным, может быть показано лишь в ИСО. Описание же движения в неинерциальных системах отсчета, движущихся с ускорением относительно инерциальных, требует введения т. н. фиктивных сил таких как сила инерции, центробежная сила или сила Кориолиса.
Ряды динамики
Ряды динамики, статистические ряды, характеризующие изменение (развитие) социально-экономических явлений во времени. Например, данные о производстве электричества в СССР за период 1928—73 представляют Ряды динамики
Производство электричества в СССР, млрд. кетЧч
Последовательно расположенные во времени статистические данные называются уровнями Ряды динамики Они должны быть сопоставимы между собой, особенно в территориальном разрезе, по кругу охватываемых объектов, методике расчёта, критической дате, структуре. Уровни Ряды динамики могут характеризовать величину явлении за некоторые отрезки времени (интегральные Ряды динамики) или на определённую дату (моментные Ряды динамики). Анализ Ряды динамики состоит в определении скорости и интенсивности развития рассматриваемого явления, нахождении основные тенденции его развития (тренда), измерении колеблемости уровней, установлении связи с развитием др. явлений, проведении сравнительного анализа развития разных стран или районов. Для анализа Ряды динамики определяются статистические показатели: абсолютные приросты, темпы роста и прироста, средние уровни ряда, средние абсолютные приросты, средние темпы роста и прироста. Абсолютным приростом называют разность между последующим и предыдущим уровнями, а темпом роста — их отношение. Темп прироста составит разность между темпом роста и 1 (в коэффициенте) или 100%. Средний уровень ряда для интервальных рядов определяется как средняя арифметическая, а для моментных рядов — по формуле:
где — средний уровень, y1. — начальный, а уп — конечный, n — число уровней. Средний абсолютный прирост определяется как частное от деления абсолютного прироста за весь период на число единиц времени в периоде. Средний темп роста вычисляется как средняя геометрическая темпов роста за отдельные отрезки времени или как корень, степень которого определяется числом периодов, а под корнем берётся темп роста за весь период.
Определение тренда ведётся выравниванием статистическим. Колеблемость уровней Ряды динамики измеряется средней из квадратов отклонений фактических уровней от тренда. Для установления связи развития данного явления с другими пользуются методом корреляции Ряды динамики, отличающимся от обычного возможностью автокорреляции, авторегрессии, переменной корреляции и временного лага. Для сравнительного анализа разных стран (районов) часто используется приведение к одному основанию, состоящее в определении темпов роста для двух или более стран за одинаковые отрезки времени. Сравнительный анализ развития лучше вести с расчётом показателей на душу населения. Всесторонний анализ Ряды динамики позволяет выявить закономерности развития отражаемых в них явлений.
Газовая динамика
Газовая динамика, раздел гидро-аэромеханики, в котором изучается движение сжимаемых газообразных и жидких сред и их взаимодействие с твёрдыми телами. Как часть физики, Газовая динамика связана с термодинамикой и акустикой.
Фундаментальную роль в формировании Газовая динамика как самостоятельной науки сыграла опубликована в 1902 работа С. А. Чаплыгина «О газовых струях». Развитые в ней методы решения газодинамических задач получили впоследствии широкое распространение и обобщение. Плодотворный метод решения задач Газовая динамика предложили в 1908 нем. учёные Л. Прандтль и Т. Майер, исследовавшие частный случай течения газа с непрерывным увеличением скорости. В 1922 в работе «Опыт гидромеханики сжимаемой жидкости» советский учёный А. А. Фридман заложил основы динамической метеорологии. В 1929 нем. учёными Л. Прандтлем и А. Буземаном был разработан эффективный численно-графический метод решения широкого класса газодинамических задач, распространённый в 1934 сов. учёным Ф. И. Франклем на более сложные случаи течения газа. Эти методы широко применяются при решении задач Газовая динамика с помощью ЭВМ. В 1921 в СССР была создана, а в 1927 оформилась как научное учреждение газодинамическая лаборатория, деятельность которой совместно с Группой изучения реактивного движения (1932) заложила основы сов. ракетной техники.
Задачи газовой динамики при проектировании разнообразных аппаратов, двигателей и газовых машин состоят в определении сил давления и трения, температуры и теплового потока в любой точке поверхности тела или канала, омываемых газом, в любой момент времени. При исследовании распространения газовых струй, взрывных и ударных волн, горения и детонации методами Газовая динамика определяются давление, температура и др. параметры газа во всей области распространения. Изучение поставленных техникой сложных задач превратило современную газовою динамику в науку о движении произвольных смесей газов, которые могут содержать также твёрдые и жидкие частицы (например, выхлопные газы ракетных двигателей на жидком или твёрдом топливе), причём параметры, характеризующие состояние этих газов (давление, температура, плотность, электропроводность и др.), могут изменяться в широких пределах.
Для развития совресенной газовой динамики характерно неразрывное сочетание теоретических методов, использования ЭВМ и постановки сложных аэродинамических и физических экспериментов. Теоретические представления, частично опирающиеся на экспериментальные данные, позволяют описать с помощью уравнений движение газовых смесей сложного состава, в том числе многофазных смесей при наличии физико-химических превращений. Методами прикладной математики разрабатываются эффективные способы решения этих уравнений на ЭВМ. Наконец, из экспериментальных данных определяются необходимые значения физических и химических характеристик, свойственных изучаемой среде и рассматриваемым процессам (коэффициент вязкости и теплопроводности, скорости химических реакций, времена релаксации и др.).
Многие задачи, поставленные современной техникой перед газовой динамикой, пока не могут быть решены расчётно-теоретическими методами, в этих случаях широко пользуются газодинамическими экспериментами, поставленными на основе подобия теории и законов гидродинамического и аэродинамического моделирования. Газодинамические эксперименты в аэрогазодинамических лабораториях проводятся в сверхзвуковых и гиперзвуковых аэродинамических трубах, на баллистических установках, в ударных и импульсных трубах и на др. газодинамических установках специального назначения.
Газодинамические исследования ведутся в тех же научных учреждениях, что и исследования по аэродинамике, а результаты их публикуются в тех же научных журналах и сборниках.
Значение слова динамика
Словарь Ушакова
1. Отдел механики, изучающий законы движения тел в зависимости от действующих на них сил (мех.).
2. Ход развития, изменения какого-нибудь явления под влиянием действующих на него сил; ант. статика во 2 знач. (научн.). Динамика социального процесса.
3. перен. Обилие движения, действия (книж.). В пьесе много динамики.
Педагогическое речеведение. Словарь-Справочник
(греч. dinamys — сила)
1) движение, развитие, изменение какого-либо явления под влиянием действующих на него факторов;
2) (спец.) совокупность степеней силы звучания, громкости.
Лит.: Бондарко Л.В. Звуковой строй современного русского языка. — М, 1977; Романовский Н.В. Хоровой словарь. — М., 1980; Словарь иностранных слов. — М., 1984.
Начала Современного Естествознания. Тезаурус
(от греч. dynamis — сила, dynamikos — относящийся к силе, сильный)
1) раздел механики, изучающий движение тел под действием сил, согласно законам динамики Ньютона;
2) состояние движения, ход развития, изменение чего-либо под влиянием действующих на него факторов (противоположность — статика);
3) обилие движения, действия;
4) (в музыке) различные степени силы звучания, громкости и их изменения, обозначаемые итальянскими терминами: пиано — тихо, форте — громко, крещендо — постепенно усиливая, диминуэндо — постепенно затихая и др.
Справочный Коммерческий Словарь (1926)
движение; в переносном смысле — последовательное развитие какого-либо явления, в статистике под динамикой подразумевают изображение такого развития в относительных числах; напр. «динамика» движения оборотов за 4 квартала года (приняв оборот 1-го квартала за 100): 100, 125, 135, 150.
Словарь антонимов русского языка
Словарь музыкальных терминов
(от гр. dynamikos — силовой) — сила (громкость) музыкального звучания. Основные обозначения динамики: f (forte — форте) — громко, сильно; р (piano — пиано) — тихо, слабо; mf (mezzo-forte — меццо-форте) — умеренно громко; mp (mezzo-piano — меццо-пиано) — умеренно тихо; рр (pianissimo — пианиссимо) — очень тихо; ff (fortissimo — фортиссимо) — очень громко и т. д. Постепенное увеличение силы звучания — крешендо ( cresc. ); постепенное ослабление — диминуэндо ( dim. ). Динамика является важным выразительным средством, влияющим на восприятие музыки, вызывающим разнообразные ассоциации. Использование динамических оттенков обусловливается содержанием и характером музыки, особенностями ее структуры и стиля. Логика соотношения музыкальных звучностей — одно из основных условий художественного исполнения.
Тезаурус русской деловой лексики
Энциклопедический словарь
Словарь Ожегова
ДИНАМИКА, и, ж.
1. Раздел механики, изучающий движение тел под действием приложенных к ним сил.
2. Ход развития, изменения какогон. явления (книжн.). Д. общественного развития.
3. Движение, действие, развитие. В пьесе много динамики.
| прил. динамический, ая, ое (ко 2 знач.).
Динамика
Динамика – это раздел механики, который рассматривает законы движения тел и те причины, которые его вызывают или изменяют.
Инерция – это свойство тела сохранять состояние покоя или прямолинейного и равномерного движения при отсутствии воздействия на него других тел или их компенсации.
Инерциальные системы отсчета. Первый закон Ньютона
Инерциальные системы отсчета – это системы отсчета, относительно которых тела движутся с постоянной по модулю скоростью в отсутствие или при компенсации внешних воздействий.
Инерциальной системой отсчета является система отсчета, связанная с Землей.
Первый закон Ньютона
Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или их действие компенсируется:
Физический смысл закона:
Согласно первому закону Ньютона, когда силы, действующие на движущееся тело, уравновесят друг друга, оно станет двигаться прямолинейно и равномерно, а если оно ранее покоилось, то и останется в покое.
Следствие
Если существует хотя бы одна инерциальная система отсчета, то существует и бесконечное множество таких систем.
Важно!
Скорость движения тела постоянна, если на него не действуют другие тела или действие других тел компенсируется.
Принцип относительности Галилея
Принцип относительности Галилея
Все законы механики имеют одинаковый вид во всех инерциальных системах отсчета.
Никакими механическими опытами нельзя отличить одну инерциальную систему отсчета от другой.
Связь координат точки в системах отсчета, движущихся друг относительно друга, описывается преобразованиями Галилея. Преобразования всех других кинематических величин являются их следствиями.
Важно!
Преобразования Галилея вместе с утверждением о независимости течения времени от движения отражают суть классических представлений о пространстве – времени. Согласно этим представлениям расстояния между телами одинаковы во всех системах отсчета и течение времени одинаково во всех инерциальных системах отсчета.
Масса тела. Плотность вещества
Причиной изменения скорости движения тела является его взаимодействие с другими телами. Все тела обладают свойством, которое называется инертностью.
Инертность – это способность тела изменять свою скорость не мгновенно, а за определенный промежуток времени.
Масса – это скалярная физическая величина, являющаяся мерой инертности тела.
Чем больше масса тела, тем труднее изменить его скорость и тем сильнее оно притягивает другие тела.
Свойства массы:
Обозначение – \( m \) , единицы измерения – кг (г, мг, т).
Плотность тела – это скалярная физическая величина, равная отношению массы тела к его объему.
Сила – это векторная физическая величина, которая является количественной мерой взаимодействия тел, в результате которого они изменяют свою скорость или деформируются.
Обозначение – \( F \) , единицы измерения – Н (Ньютон).
1 Ньютон равен силе, которая телу массой 1 кг сообщает ускорение 1 м/с 2 :
Существуют четыре вида сил различной природы:
Принцип суперпозиции сил
Принцип суперпозиции сил
Если на тело действует несколько сил, то их можно заменить одной равнодействующей силой, которая равна векторной сумме всех сил, действующих на тело:
Сложение сил
Равнодействующая сил равна геометрической сумме действующих на тело сил:
Силы направлены вдоль одной прямой:
Силы направлены перпендикулярно друг другу:
Силы направлены под углом \( \alpha \) друг к другу:
Второй закон Ньютона
Второй закон Ньютона
Равнодействующая сил, приложенных к телу, равна произведению массы тела на сообщаемое ему ускорение:
Физический смысл закона:
Важно!
Направление ускорения всегда совпадает с направлением равнодействующей сил. Второй закон Ньютона применим для сил любой природы.
Важно!
При рассмотрении движения связанных тел часто употребляется модель «невесомая нерастяжимая нить». Условие «невесомости» нити позволяет не рассматривать ее как отдельное тело и не писать для нее основное уравнение второго закона Ньютона. Поэтому силы натяжения нити, приложенные к связанным телам, оказываются равными по модулю. Условие «нерастяжимости» позволяет считать, что все связанные тела движутся с одинаковым ускорением:
Алгоритм применения второго закона Ньютона к решению задач
Третий закон Ньютона
Третий закон Ньютона
Силы, с которыми два тела действуют друг на друга, равны по модулю, противоположны по направлению и действуют вдоль прямой, соединяющей центры этих тел:
Физический смысл закона:
Важно!
Несмотря на то, что эти силы равны и противоположны по направлению, они друг друга не компенсируют, т. к. приложены к разным телам. Компенсировать друг друга могут только силы, приложенные к одному и тому же телу, если они равны по модулю и противоположны по направлению. Например, утверждают, что коробка покоится на столе потому, что сила тяжести, действующая на тело, согласно третьему закону Ньютона равна по модулю и противоположна по направлению силе реакции опоры, действующей на нее со стороны стола.
На самом деле равенство \( \vec
Закон всемирного тяготения. Искусственные спутники Земли
Всякое тело, имеющее массу, является источником гравитационного поля – поля тяготения.
Закон всемирного тяготения
Два тела притягиваются друг к другу с силой, модуль которой прямо пропорционален произведению масс этих тел, обратно пропорционален квадрату расстояния между ними и направлен вдоль линии, соединяющей эти тела:
где \( G \) – гравитационная постоянная.
Гравитационная постоянная численно равна силе притяжения между двумя телами массой по 1 кг, расположенными на расстоянии 1 м:
Закон справедлив для:
Искусственный спутник Земли – это тело, которое обращается вокруг Земли.
Траектория движения искусственных спутников – эллипс, но мы для упрощения считаем, что они движутся по окружности.
Линейная скорость такого движения есть первая космическая скорость.
Первая космическая скорость – это горизонтально направленная минимальная скорость, с которой тело могло бы двигаться вокруг Земли по круговой орбите, т. е. стать искусственным спутником Земли.
На рисунке \( R \) – радиус Земли, \( H \) – высота спутника над поверхностью Земли, \( r \) – высота орбиты спутника:
Период обращения искусственного спутника Земли можно рассчитать по формуле:
Вторая космическая скорость – это наименьшая скорость, которую надо сообщить телу, чтобы его орбита в поле тяготения Земли стала параболической, т. е. чтобы тело могло стать искусственным спутником Солнца:
Третья космическая скорость – это скорость, которую необходимо сообщить телу на Земле, чтобы оно покинуло пределы Солнечной системы:
Важно!
При решении задач следует помнить, что в законе всемирного тяготения расстояние берется от центра тела, а не от его поверхности.
Сила тяжести
Сила тяжести – это сила, с которой Земля притягивает к себе тела.
Сила тяжести равна произведению массы тела на ускорение свободного падения:
Точка приложения силы тяжести – центр тела.
Сила тяжести всегда направлена вертикально вниз.
Сила тяжести является частным случаем силы всемирного тяготения, поэтому
где \( M \) – масса Земли, \( m \) – масса тела, \( R \) – радиус Земли.
Ускорение свободного падения не зависит от массы тела, зависит от массы Земли и от расстояния от центра Земли до тела.
Важно!
У поверхности Земли ускорение свободного падения не везде одинаково. Оно зависит от географической широты: на полюсах больше, чем на экваторе. Дело в том, что земной шар немного сплюснут у полюсов. Экваториальный радиус Земли больше полярного на 21 километр.
Вес и невесомость
Вес – это сила, с которой тело вследствие притяжения к Земле действует на опору или подвес.
Обозначение – \( P \) , единица измерения – Н.
Точка приложения веса – точка соприкосновения тела с опорой или подвесом. Вес тела всегда направлен против силы реакции опоры или силы натяжения. Модуль веса находится по третьему закону Ньютона.
Вес тела может изменяться:
если тело движется вниз с ускорением, равным ускорению свободного падения, то тело находится в состоянии невесомости.
Невесомость – это исчезновение веса при движении опоры вниз с ускорением свободного падения:
При таком движении тело испытывает перегрузку.
Перегрузка – это величина, которая показывает, во сколько раз вес тела, поднимающегося с ускорением или опускающегося с замедлением, больше его веса в состоянии покоя.
Обозначение – \( n \) , единиц измерения нет:
Сила упругости. Закон Гука
Сила упругости – это сила, возникающая при деформации тела.
Деформация – это изменение формы и объема тела в результате неодинакового смещения различных его частей под действием силы.
Основные величины, характеризующие деформацию
Обозначение – \( x \) или \( \Delta
где \( l_0 \) – длина тела до действия силы (начальная длина),
\( l \) – длина тела во время действия силы.
Обозначение – \( \varepsilon \) , единиц измерения нет.
Относительное удлинение равно отношению абсолютного удлинения к длине тела до действия силы (начальной длине тела):
Обозначение – \( \sigma \) , единицы измерения – Па (Паскаль):
Закон Гука
Сила упругости, возникающая при деформации тела, прямо пропорциональна удлинению тела и направлена в сторону, противоположную деформации:
где \( k \) – жесткость пружины.
Знак «–» в законе Гука говорит о том, что сила упругости всегда направлена противоположно смещению частиц тела при деформации. При решении задач им можно пренебречь.
Виды силы упругости
Сила реакции опоры – это сила, действующая на тело со стороны опоры.
Обозначение – \( N \) , единицы измерения – Н.
Сила натяжения – это сила, действующая на тело со стороны подвеса.
Обозначение – \( T \) , единицы измерения – Н.
Важно!
Соединения пружин:
Важно!
Если тело движется по окружности и нет силы трения между соприкасающимися поверхностями, то оно вынуждено наклоняться под углом к поверхности, по которой движется, иначе его центростремительное ускорение станет равным нулю и оно поедет по касательной к окружности согласно первому закону Ньютона. Чтобы удержаться на круге (сохранить равновесие), оно наклоняется к центру. В этом случае
Если тело совершает мертвую петлю, то в верхней точке петли и сила тяжести, и сила нормального давления будут направлены вниз, поэтому
В нижней точке мертвой петли сила нормального давления направлена вверх и больше силы тяжести. В этом случае
Сила трения
Сила трения – это сила, возникающая при движении тел или при попытке сдвинуть их с места вследствие неровностей поверхностей соприкасающихся тел.
Сила трения действует на поверхности тел и затрудняет их перемещение относительно друг друга.
Сила трения всегда направлена противоположно относительному перемещению тела, т. е. против направления вектора скорости.
Виды трения
Внешнее трение (сухое) – это трение, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении.
Сила трения покоя саморегулирующаяся, т. е. в зависимости от внешних воздействий она может меняться от 0 до максимального значения.
где \( \mu \) – коэффициент трения, \( N \) – сила реакции опоры.
Если в условии задачи не говорится, что сила трения покоя максимальна, то ее надо находить через другие силы по второму закону Ньютона.
Внутреннее трение (жидкое или вязкое) – между слоями жидкости или газа, скорости которых меняются от одного слоя к другому.
Если движение происходит по гладкой поверхности, то сила трения равна нулю.
Способы уменьшения трения:
Важно!
Сила трения не зависит от площади соприкосновения трущихся поверхностей. Она зависит от относительной скорости тел. В этом ее главное отличие от сил тяготения и упругости, зависящих только от координат.
Важно!
Если тело удерживается на горизонтальном вращающемся диске силой трения, то
Давление
Давление – это скалярная физическая величина, равная отношению модуля силы, действующей перпендикулярно поверхности, к площади этой поверхности.
Обозначение – \( p \) , единицы измерения – Па (Паскаль):
1 мм рт. ст. (миллиметр ртутного столба) = 133,3 Па.
1 атм (атмосфера) = 100 кПа.
Давление возрастает, если увеличивается сила давления или уменьшается площадь, на которую оказывается давление.
Давление уменьшается, если уменьшается сила давления или увеличивается площадь, на которую оказывается давление.