Динамическое торможение самолета что это
Как тормозится самолёт 2. при посадке
Проблема торможения самолета после посадки на пробеге была малозначимой, наверное, только на заре авиации, когда самолеты летали медленнее современных автомобилей и были значительно легче последних. Но в дальнейшем этот вопрос становился все более важным и для современной авиации с ее скоростями он достаточно серьезен.
Чем же можно затормозить самолет? Ну, во-первых, конечно тормозами, установленными на колесном шасси. Но дело в том, что если самолет имеет большую массу и садится с достаточно большой скоростью, то часто этих тормозов просто не хватает. Они бывают не в состоянии за короткий промежуток времени поглотить всю энергию движения многотонной машины. К тому же если условия контакта (трения) между шинами колес шасси и бетонной полосой не очень хорошие (например, если полоса обледенела или мокрая во время дождя), то торможение будет еще хуже.
Однако, существуют еще два способа:
Первый – это тормозной парашют, т.е. использовать трение о воздух. Система достаточно эффективная, но не всегда удобная в применении. Представьте себе какой нужен парашют, чтобы затормозить, например, огромный Боинг-747, и какая должна быть парашютная служба в большом аэропорту, где самолеты садятся один за другим.
Второй способ в этом плане значительно более удобен. Это реверс тяги двигателя на самолете. Принципиально это достаточно простое устройство, которое создает обратную тягу, т.е. направленную против движения самолета, и, тем самым, его тормозит (см.фото). В реактивных двигателях существуют специальные ковшевые створки, которые перенаправляют воздушный поток. В нашем случае створки делят реактивную струю в направлениях: северо-запад и юго-запад. Если сложить их, получается, что струя отбрасывается влево, на запад, толкая при этом самолёт вправо, на восток, а самолёт в это время движется влево, на запад.
Как устроена система шасси и тормозов пассажирского самолета
Всем привет. В продолжение темы описания авиационных систем «для чайников» (тут и тут), я подготовил новый текст про шасси и колёсные тормоза самолётов.
Параграф добавлен после прочтения комментариев: Прежде чем продолжить, хочу уточнить, что основной моей специализацией является бортовое радиоэлектронное оборудование, а не отдельные системы самолёта. Соответственно «чайникам» я тоже рассказываю «усеченную» картину мира, достаточную для их работы. Мне кажется, что эти материалы могут быть интересны и более широкому кругу читателей. При этом на полноту освещения рассматриваемой темы не претендую. Так что не стреляйте в пианиста, он играет как умеет. 🙂
Система колёс, на которые опирается самолёт при движении по земле, называется шасси. В современных авиалайнерах используется трёхстоечная система шасси с двумя основными стойками, расположенными под крылом позади центра тяжести и одной передней стойкой, расположенной в носу самолёта. Основные стойки шасси оснащаются тормозами, а передняя стойка делается поворотной, чтобы самолет мог маневрировать при движении по земле.
1. Поворотная носовая стойка
Кроме распределения веса самолета, носовая стойка поворачивается влево-вправо, чтобы самолет мог маневрировать при движении на земле.
Поворотом носовой стойки можно управлять двумя способами:
Управление поворотом носовой стойки с помощью педалей осуществляется на разбеге при взлёте и пробеге при посадке, когда скорость самолета достаточно велика. Одновременно, с помощью этих же педалей, летчик управляет отклонением руля направления.
картинка кликабельная
Предел отклонения носовой стойки при управлении от педалей специально ограничен, как правило это 10 градусов. Поворачивать на рулёжные дорожки, когда надо отклонять носовую стойку на углы порядка 50-70 градусов, не получится. На малых скоростях для руления используется ручка управления носовой стойкой.
Эта ручка используется только при рулёжке и автоматически отключается при больших скоростях движения.
картинка кликабельная
2. Основные опоры шасси и Колёсные тормоза
Основные опоры шасси представляют собой тележку, на которую навешиваются колеса, оснащённые тормозами.
Тормоза на самолёте похожи на автомобильные, только существенно мощнее, что не удивительно, т.к. им приходится тормозить машину массой 30-600 тонн со скоростей порядка 250 км/ч до нуля на ограниченной по длине взлётно-посадочной полосе (ВПП).
Самолётные тормоза состоят из «бутерброда» тормозных дисков и колодок.
В комментариях уточнили, что статическая часть тормозов в нашем случае тоже называется дисками. В разговоре с профильными специалистами я всегда слышал про «колодки». Возможно это жаргонизм, но на описание системы «для чайников» это влияет мало. В любом случае принцип действия тот же, что и в автомобильных тормозах, а реализация гораздо более мощная.
Колёсные тормоза могут быть задействованы двумя разными способами: «вручную» и автоматически.
«Вручную» пилот тормозит педалями. Может возникнуть вопрос, как пилот умудряется педалями и носовой стойкой управлять и тормозить? Дело в том, что педали самолёта устроены совсем не так, как в автомобиле. Управление по направлению выполняется перемещением педалей вперёд-назад. При этом две педали двигаются синхронно: левая вперёд-правая назад и наоборот. Управление тормозами осуществляется нажатием на педаль. Каждую педаль можно нажимать отдельно, так называемое дифференциальное торможение — это ещё один из способов управления направлением движения по земле. Если левым тормозом пользоваться интенсивнее, чем правым, то и самолёт будет разворачивать влево и наоборот.
Автоматический режим торможения включается сам при наступлении определенного события. Таких событий может быть два:
Активировать/деактивировать режим автоторможения в самолётах Airbus и SSJ-100 лётчик может с помощью одной из четырёх кнопок под ручкой уборки-выпуска шасси (В Boeing для этого используется переключатель). Три кнопки (LOW, MED, MAX) соответствуют различным интенсивностям торможения при посадке, а четвертая (RTO) активирует режим прерванного взлёта.
С автоторможением при посадке всё очевидно. Давайте рассмотрим режим прерванного взлёта.
Прерванный взлёт — это режим, когда экипаж решает прекратить взлёт по причине существенного отказа. Прервать взлёт можно только до достижения «скорости принятия решения». Скорость принятия решения зависит от длины и состояния поверхности ВПП и рассчитывается исходя из возможности затормозить, не выкатившись за пределы ВПП. Если в процессе набора скорости неисправность происходит после достижения скорости принятия решения, экипаж продолжит взлёт, что бы не случилось. Если до — будет тормозить.
Перед каждым взлётом экипаж обязан активировать автоторможение. Скорость начала и интенсивность торможения при прерванном взлёте напрямую влияет на то, выкатится ли самолёт за пределы полосы или нет. Активированное автоторможение гарантирует, что торможение начнётся немедленно после вывода двигателей из взлётного режима.
Если прерывать взлёт приходится при максимальной взлётной массе и на предельной скорости, то несмотря на то, что кроме колёсных тормозов экипаж задействует реверс и воздушные тормоза, энергия, которую должны поглотить тормоза, разогревает их так, что они начинают светиться не хуже лампочки. После полной остановки самолёта работа тормозов не заканчивается. Они должны выдержать ещё не менее 90 секунд, прежде чем подожгут стойки шасси. По нормативам, что за 90 секунд к самолёту подоспеет пожарная команда, которая всегда дежурит в аэропортах (и успевает!).
Спасибо комментариям — напомнили об одной очень важной функции тормозов авиалайнера: антиблокировочной системе (АБС). Основное отличие АБС самолёта от таковой автомобиля заключается в последствиях блокировки колёс: если у автомобиля блокировка приводит к снижению управляемости и увеличению тормозного пути, то заблокированные колёса самолёта при посадке просто взрываются от трения об асфальт. А без покрышек основных стоек торможение не будет ни эффективным ни безопасным. Так что АБС на самолёте неотключаемая и довольно критическая функция.
3. Уборка — выпуск шасси
Кроме тормозов и управления носовой стойкой с шасси связана ещё одна важная функция — уборка/выпуск шасси. Управление уборкой-выпуском шасси в нормальном режиме осуществляется с помощью соответствующей ручки на приборной панели.
Для улучшения аэродинамических свойств ЛА ниши, в которых размещаются убранные шасси, закрываются створками, поэтому процедура нормальной уборки шасси выглядит примерно так:
Весь процесс занимает 20-40 секунд. Если в процессе что-то идёт не так, то система прерывает процесс, т.к. есть вероятность что-то сломать. Нормальный выпуск шасси происходит в обратном порядке.
На случай неисправностей в системе уборки-выпуска предусмотрен особый порядок выпуска шасси — аварийный выпуск. Аварийный выпуск активируется кнопкой аварийного выпуска, расположенной под колпачком рядом с ручкой уборки-выпуска шасси. При аварийном выпуске средствами, не зависящими от вычислителя системы уборки-выпуска шасси, снимаются замки убранного положения стоек шасси и створок. Шасси вываливается под собственным весом. Массы каждой из стоек достаточно чтобы выломать створку, даже если та не откроется сама. На замки нижнего положения стойки также встают под действием собственного веса.
4. Датчики обжатия стоек шасси
Информация об обжатии стоек шасси, которые я упоминал выше, это очень нужная многим системам информация. Пожалуй, стоит перечислить кое-какие функции, зависящие от этого сигнала:
При появлении сигнала обжатия шасси:
При снятии сигнала обжатия шасси:
Параграф добавлен после прочтения комментариев: Датчики обжатия стоек шасси как правило выполняются многоканальными и располагаются на каждой из стоек. Данные с многочисленных датчиков собираются специальными устройствами, концентраторами данных. На основании полученных данных формируются сигналы об обжатии каждой из стоек и сигнал обжатия всех стоек. В логике работы описанных выше функций используются разные сигналы: для начала автоторможения достаточно сигналов обжатия двух основных стоек, а для включения режима тех. обслуживания надо чтобы были обжаты все три стойки. Но это уже другая история.
Бонус
Пока я готовил этот текст, решил для себя разобраться, почему на некоторых самолётах, например Boeing 757 тележка основных стоек шасси в полете наклонена так, что передние колёса находятся выше задних:
А на Boeing 767 наоборот, передние колеса ниже задних:
Как выяснилось всё дело в том, как спроектирована ниша, куда убираются стойки шасси, спасибо видео:
И, что самое любопытное, в военно-транспортном C5 Galaxy основные стойки шасси выпускаются в положении поперёк движения самолёта и только потом разворачиваются на 90 градусов в нужное положение.
О тормозных возможностях летательного аппарата. Тормоза самолета и тормозной парашют.
Здравствуйте, уважаемые читатели!
Посадка самолета А340.
Сегодня немного поговорим о такой важной штуке, как тормоза в авиации. Всем известно, что посадочные скорости современных самолетов достаточно высоки. В большей степени это относится к военной авиации, но и гражданская от нее не очень-то отстает. Однако, чем для более высоких скоростей полета предназначен самолет, тем труднее ему уверенно чувствовать себя на малых посадочных.
«Единство и борьба противоположностей» имеет место в явном виде :-). Планер, к примеру, типичного истребителя-перехватчика на малых скоростях, которые как раз и целесообразны на посадке, летает, мягко говоря, не очень охотно. Его стихия совсем другая, и большая скорость там обязательно присутствует :-).
Но ведь сколько не летай, садиться (а значит и замедляться) все равно надо. Различные конструкторские ухищрения типа изменяемой стреловидности, мощной взлетно-посадочной механизации и т.п. и т.д. позволяют в некоторой степени решить проблему, но всему есть предел. Скорость на посадке остается немаленькой.
А отсюда напрямую проистекают такие неприятности, как большая посадочная дистанция (или длина пробега) летательного аппарата и немалая нагрузка на элементы посадочных устройств или, говоря простым языком, колеса (их шины или « пневматики »).
Еще надо заметить (как бы в скобках :-)), что практически любой летательный аппарат перед взлетом и после посадки может (и, видимо, должен) осуществлять перемещения по летному полю ( руление ), и для правильной организации этого процесса без надежных тормозов не обойтись.
Для остановки ее необходимо рассеять (или преобразовать в другие виды энергии, с движением самолета не связанные). Все способы торможения на это как раз и направлены.
О реверсе мы с вами уже говорили ранее. Теперь коснемся остальных способов торможения летательных аппаратов.
Колесные тормоза самолета. Они являются по сути своей аналогами тормозов автомобильных и от них же в свое время и произошли. Ничего супернового в этом плане здесь не изобрели. Кинетическая энергия летательного аппарата в этом случае расходуется на борьбу с трением и при этом переходит в тепло.
Пример автомобильных колодочных тормозов (внутренне расположение колодок). У авиационных принцип тот же.
Под воздействием силового механизма (он обычно распорного типа гидравлический, либо пневматический, хотя на ранних самолетах был и простой механический привод) колодки своими накладками при задействовании тормоза прижимаются к поверхности (внутренней) тормозного барабана (или тормозной рубашки), неподвижно закрепленного на внутренней поверхности корпуса колеса и поэтому вращающимся вместе с ним. Тормозная рубашка изготавливалась обычно из малоуглеродистой стали.
При выключении тормоза колодки возвращаются в исходное положение под действием пружинного механизма, смонтированного вместе с силовым. Вобщем достаточно похоже на автомобильный или мотоциклетный тормоз часто называемый в просторечии барабанным (кто в курсе:-)).
Такого рода тормоза самолета применялись где-то начиная с 20-х годов. Они были (и есть :-)) относительно малоэффективны. Неэнергоемкие, с небольшим тормозным моментом (особенно без гидро- или пневматического усиления) и неравномерным износом колодок.
При включении тормоза внутрь камеры подается воздух или жидкость (значительно реже) под давлением. Камера увеличивается в объеме и тормозные накладки прижимаются к барабану. Далее все понятно :-). Такого рода тормоза достаточно компактны и просты как в изготовлении, так и в эксплуатации, равномерно передают тормозное усилие и имеют небольшую массу.
Однако, быстродействие их невелико, расход воздуха немалый, а эластичность резиновой камеры – величина непостоянная, особенно при низких температурах наружного воздуха.
Тормозной момент и энергоемкость двух этих конструкций тормозов самолета относительно невелики. Правда и посадочные скорости, да, кстати сказать, и массы самих летательных аппаратов, на которых они применялись не такие уж большие по сравнению с современными типами.
Надо сказать, что применение более мощных тормозов на самолетах, создаваемых до 50-х годов в определенном смысле ограничивалось еще и схемой шасси. Оно было в большинстве своем трехопорное с хвостовым колесом, что в принципе грозило переворачиванием самолета на нос при резком торможении.
Учебно-тренировочный самолет ЯК-18.
Спортивный самолет ЯК-55М. Виден дисковый тормоз колеса.
Анимация работы колодочного и дискового тормоза.
По обе стороны диска в специальном устройстве, называемом тормозной суппорт (встречается еще название тормозная машинка), попарно расположены тормозные пластины (иногда их называют колодками).
Эти пластины при включении тормоза одновременно прижимаются к диску при помощи гидравлически приводимых толкателей (поршней), что, естественно, вызывает возникновение тормозного момента.
Однодисковый тормоз колеса легкого летательного аппарата.
Однодисковые тормоза легкого летательного аппарата.
Однако, наиболее распространены в наше время (и наиболее эффективны) многодисковые тормоза самолета. Такие устройства сейчас стоят практически на всех современных гражданских лайнерах и военных самолетах. Конструкций их существует множество, но принцип действия у всех одинаковы. Они похожи на обычную фрикционную муфту сцепления.
Многодисковый тормоз в основе своей представляет из себя пакет, состоящий из нескольких тормозных дисков. Часть из них вращаются вместе с колесом, часть неподвижны в плоскости вращения. Они расположены друг за другом через один. Вращающиеся диски имеют специальные выступы, а в корпусе колеса сделаны прорези для этих выступов (для совместного вращения).
Многодисковый тормоз самолета McDonnell Douglas MD-11.
Многодисковый тормоз самолета McDonnell Douglas MD-11.
Тормоз самолета McDonnell Douglas MD-11.
Самолет McDonnell Douglas MD-11.
При введении тормоза в действие, специальные поршни с гидравлическим (или пневматическим) управлением сжимают все эти диски в один пакет. Из-за больших сил трения, возникающих при сжатии вращающихся и невращающихся дисков, возникает тормозной момент, что нам, собственно, и нужно :-). При отключении тормоза пружинные механизмы возвращают поршни в исходное положение.
Тормозные диски бывают как металлические (малоуглеродистая сталь), так и биметаллические. Делают их также с применением порошковой металлургии с использованием чугуна и бронзы. Кроме того в последнее время используются различные синтетические материалы и ткани с применением специальной термообработки, углеводородное волокно и различные смолы.
Современные карбоновые тормоза фирмы Goodrich.
Карбоновый блок электрического тормоза фирмы Goodrich (ориентировочнно для Boeing-787).
Карбоновые electric brake фирмы Messier-Bugatti-Dowty.
Принцип работы авиационных electric brake.
При использовании такого тормоза информация о нажатии пилотом на тормозную педаль передается компьютером в электронный блок управления, который преобразует эти команды в электрические сигналы, передаваемые на электродвигатель, чье вращение через редуктор превращается в механическое перемещение карбоновых тормозных дисков.
Дисковые тормоза создают большое тормозное усилие и очень энергоемки. Однако, именно из-за последнего их большим недостатком является то, что они при неоднократном торможении довольно быстро нагреваются и своевременный отвод тепла от них затруднен. Поток тепла может быть очень большим, и оно отрицательно влияет на элементы тормозного механизма, на корпус колеса и на его резиновую шину (пневматик).
Следующие два видеоролика на эту тему. Первый показывает испытания тормоза самолета А380-800. Второй показывает возможность разрушения пневматика из-за перегрева. Колесо, правда, автомобильное, но для нашей темы все это актуально.
В связи с этим для определения возможно произошедшего перегрева колеса существует такая интересная фишка, как термосвидетель. Этим странным словом называется специальная легкоплавкая пробка, которая размещается в корпусе колеса, обычно в районе обода.
Термосвидетелей чаще всего три. Они размещаются под 120 º друг относительно друга в корпусе колеса и могут быть легко осмотрены. Обычно допустимая температура нагрева колеса составляет что-то около 110 градусов, температура плавления выступающей части (головки) термосвидетеля примерно 125 градусов, а его полное выплавление наступает примерно при 140 градусах.
В случае, если один из них (или же два и даже три) оказываются выплавленными, то выполняется специальный (для каждого случая) комплекс работ, как смотровых, так и работ по замене определенных частей тормозного механизма или полностью всего узла, корпуса колеса или пневматика.
Разрушение пневматиков и тормозов основной стойки шасси.
Последствия неблагоприятных условий для работы посадочных устройств.
Для защиты колеса могут также применяться специальные тепловые экраны, дополнительное охлаждение воздухом, забираемым от компрессора ТРД или же автоматически распыляемая на диски вода.
А что касается, например, наших военных самолетов, то здесь, по-моему, до сих пор более распространено простое охлаждение колес водой из шланга специальной поливочной машины ( КПМ ) вручную. Сам этим занимался в свое время неоднократно на летних полетах самолетов СУ-24МР :-). Обобщать, правда, не стоит. Не все тормозные диски можно поливать водой в разогретом состоянии. Все зависит от их материала и конкретной конструкции узла.
Тормозные устройства (многодисковые) основной стойки бомбардировщика В-1.
Основная стойка шасси тестового самолета фирмы Bombardier Aerospace с электрическими карбоновыми тормозами.
Основная стойка шасси МИГ-31. Виден датчик анитюзовой автоматики.
Поэтому на самолете (как и на автомобиле :-)) есть система управления антиюзовой автоматикой ( автомат торможения ), которая опираясь на данные датчиков, установленных на колесе ( электрические, электроинерционные и др.) регулирует величину тормозного усилия периодическим отключением и включением тормоза в зависимости от возникновения условий для юза.
А вообще грамотное использование тормозов самолета вполне можно отнести к такому понятию, как мастерство летчика, и оно во многом может зависить от его опыта и качеств, как профессиональных, так и человеческих.
Ремонтные работы на шасси ТУ-22М3.
Однако, как бы не были хороши современные дисковые тормоза самолета, они имеют определенный диапазон применения по скорости. Сразу после касания шасси современного самолета ВПП они не могут быть задействованы из-за возможности перегрева и повреждения элементов посадочных устройств (в частности, пневматиков колес).
Более того (и это, пожалуй, главное) на большой скорости тормоза малоэффективны. Ведь крыло еще продолжает выполнять свои функции и создает подъемную силу. Самолет как бы «привстает на цыпочки» 🙂 над ВПП, и поэтому сцепление колес с бетонкой, скажем так, невелико, а отсюда и коэффициент трения далек от своих оптимальных значений.
Кроме того эффективность применения традиционных тормозов самолета зависит от состояния поверхности ВПП. Ведь коэффициент трения (сцепления) ощутимо меняется, если бетонка намокнет под дождем или ее покроет снег или даже лед.
Тормоза самолета обычно применяются начиная со скорости около 150- 180 км/ч. Но до такой скорости его надо еще довести. Вот для этого как раз и используются средства торможения, эффективность которых проявляется именно на большой посадочной скорости. Их относят к разряду аэродинамических и действие их абсолютно не зависит от состояния поверхности ВПП.
СУ-27. Поднят тормозной щиток.
Тормозные щитки F-16.
В большей степени они применяются в полете, однако на пробеге для торможения тоже могут быть использованы, пока скорость еще высока. Все определяет конструкция и характеристики самолета.
Они, конечно, повышают аэродинамическое сопротивление самолета и способствуют его торможению. Однако, на пробеге после посадки главное их предназначение — это гашение подъемной силы крыла за счет турбулизации и повышения давления потока (а по сути дела срыва) на его верхней поверхности.
Посадка самолета А320. Выпущены интерцепторы и спойлеры.
Одним из самых эффективных средств торможения самолета на большой скорости (то есть сразу после посадки), в том числе и по сравнению с тормозными щитками является тормозной парашют.
Полезное в этом плане применение парашюта интересовало технарей практически сразу после его изобретения. Сам создатель ранцевого парашюта Г.Е. Котельников уже в 1912 году продемонстрировал его тормозящие свойства.
Однако массового применения тормозных парашютов в то время не последовало. Это и понятно: скорости движения не были столь велики. Такого рода тормозные устройства стали применяться позже, сначала в единичных случаях и в основном на специализированных летательных аппаратах.
Впервые на самолете тормозной парашют был применен 21 мая 1937 года. Это был самолет АНТ-6-4М-34Р «Авиаарктика» (командир М.В. Водопьянов ) доставлявший участников экспедиции «СП-1» и оборудование к Северному полюсу. Посадочные площадки на льдинах, понятно, были не подготовлены :-), поэтому тормозной парашют сослужил хорошую службу.
Самолет АНТ-6-4М-34Р «Авиаарктика» (командир М.В. Водопьянов) после посадки в районе Северного Полюса с использованием тормозного парашюта. На фото командир.
Реактивный бомбардировщик Arado 234B 2 с тормозным парашютом (стрелка) и американскими опознавательными знаками.
Скорости применения современного тормозного парашюта составляют порядка 180-350 км/ч. В соответствии с условиями использования и типом летательного аппарата рассчитывается его площадь и форма купола. Она может быть круглой, ленточной или крестообразной и самих куполов может быть больше одного (два или даже три). Многое зависит от массы самолета и способа размещения на нем тормозного парашюта.
Посадка North American XB-70 Valkyrie. Парашют трехкупольный.
Работы NASA по испытанию тормозного парашюта для космического челнока Discovery на самолете В-52. Видны выпущенные интерцепторы.
Ткань парашюта имеет специальную структуру, поддерживающую ее проницаемость на определенном уровне. То есть она должна создавать нужное лобовое сопротивление, но при этом быть достаточно проницаемой для того, чтобы исключить раскачивание купола, а вместе с ним и самолета.
Одно из преимуществ этого средства торможения в том, что большой по площади тормозной парашют, создающий такое же большое аэродинамическое сопротивление (а значит и достаточно эффективный) после укладки может быть размещен в небольших по объему полостях планера самолета.
B-52 Stratofortress. Посадка с использованием тормозного парашюта.
Установка тормозного парашюта в контейнер самолета СУ-7Б.
Контейнер тормозного парашюта самолета ЯК-28Р.
Самолет ЯК-28Л после сброса тормозного парашюта. Контейнерт открыт, виден чехол ТП.
Установка тормозного парашюта на самолет ЯК-28.
Стропы парашюта сходятся в силовой трос, на конце которого находится скоба. Она при установке парашюта в контейнер закрывается в замке тормозного парашюта ( ЗТП ), укрепленном в корпусе планера самолета.
С другой стороны чехол парашюта зачековывается специальной чекой-шпилькой с тросиком на конце. После установки парашюта в контейнер и закрытия створок контейнера чека вытягивается (через спецотверстие) и парашют оказывается готовым к применению.
СУ-27. Тормозной парашют установлен в контейнер. Видна чека на парашюте, которая будет снята после закрытия контейнера. Техник проверяет закрытие замка тормозного парашюта (ЗТП).
МИГ-25РУ. Вытяжной парашют пошел.
СУ-24МР. Вытяжной купол вышел, пошел основной.
Су-24М. Тормозной парашют выпущен. Выпушены также тормозные щитки.
Самолет МИГ-25РУ. Тормозной парашют выпущен.
МИГ-31. Парашют выпущен. Видны выпущенные тормозные щитки.
После использования парашюта, когда он становится уже неэффективен, в определенном месте летного поля он сбрасывается. Для этого в кабине нажимается кнопка «Сброс», замок ЗТП открывается и парашют остается на бетонке. Далее специальные парашютные службы подбирают его и отправляют на переукладку. В среднем тормозной парашют может выдержать около 50-75 применений. Все, в общем, зависит от внешних условий и назначенного ресурса :-).
МИГ-31. Сброс парашюта.
СУ-24М после посадки и сброса парашюта. Контейнер тормозного парашюта пуст
Что касается момента и способов ввода тормозного парашюта в действие. Обычно это выполняется после касания ВПП основных стоек шасси вручную, то есть дистанционным способом из кабины, как уже было сказано. Однако могут быть ньюансы.
Самолет МИГ-31. Выход основного купола тормозного парашюта.
На самом деле имеется практика применения специального тормозного парашюта в воздухе, до касания ВПП колесами шасси. Такого рода парашют называется « парашютом подхода ». С его помощью можно формировать профиль снижения летательного аппарата и укорачивать посадочную дистанцию.
Однако, массового применения такой парашют из-за сложности и специфичности пилотажа не имеет и применялся в основном на скоростных специализированных самолетах при определенных обстоятельствах.
Например, на американском бомбардировщике конца 40-х, начала 50-х годов Boeing B-47 Stratojet два тормозных парашюта. Один диаметром около 5 метров, второй вдвое большего диаметра. Меньший парашют как раз и был парашютом подхода.
А применялся он из-за специфической причины. Двигатели этого самолета имели очень большую приемистость. Более 20 сек. им нужно было для выхода с малого газа на максимальный режим. Это сильно ограничивало возможности самолета при необходимости ухода на второй круг.
Поэтому обороты двигателей при заходе на посадку не опускались ниже средних значений, а для торможения самолета еще в воздухе выпускался малый парашют. В случае необходимости он сбрасывался, и самолет уходил на второй круг. А в случае штатной посадки дополнительно к нему на земле выпускался основной тормозной парашют.
Стратегический бомбардировщик В-47.
Бомбардировщик В-47 (наше время, музейная выставка).
Вот, примерно так обстоят дела с самолетными тормозными устройствами. Современные «серьезные» 🙂 самолеты обычно имеют «комплект» как минимум из двух такого рода систем. Только авиация общего назначения, как правило, обходится одними тормозами самолета.
Кроме того, в свое время первый реактивный пассажирский лайнер ТУ-104 (а за ним и ТУ-124 ) использовал тормозной парашют. Более того до сих пор летающий ТУ-134 тоже когда-то использовал это полезное устройство. И только после оборудования этого самолета двигателями с реверсом тяги (самолет ТУ-134А с 1970 года), от тормозных парашютов отказались.
В таких ситуациях применяются эти самые специализированные системы (если конечно, они есть в наличии :-)). Но это уже аэродромное оборудование, то есть разговор совсем другой темы и другой статьи.
В заключение небольшая подборка видеороликов. Первых два показывают непосредственную работу тормозов самолета, то есть сжатие тормозных дисков поршнями силовых цилиндров. Далее четырехминутный ролик о самолете ХВ-70, в котором показана его посадка с разрушением пневматика основной стойки шасси. И последний ролик — испытание парашюта для шаттла на самолете В-52 (фото есть в тексте).