Диаграмма гаусса что это
Распределение Гаусса
Нормальное распределение, также называемое распределением Гаусса, — распределение вероятностей, которое играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех. Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений в природе чаще всего встречается именно нормальное распределение — отсюда и произошло одно из его названий.
Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).
Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.
Содержание
Моделирование нормальных случайных величин
Простейшие, но неточные методы моделирования основываются на центральной предельной теореме. Именно, если сложить много независимых одинаково распределённых величин с конечной дисперсией, то сумма будет распределена примерно нормально. Например, если сложить 12 независимых базовых случайных величин, получится грубое приближение стандартного нормального распределения. Тем не менее, с увеличением слагаемых распределение суммы стремится к нормальному.
Использование точных методов предпочтительно, поскольку у них практически нет недостатков. В частности, преобразование Бокса — Мюллера является точным, быстрым и простым для реализации методом генерации.
Статистическая проверка принадлежности нормальному распределению
Поскольку нормальное распределение часто встречается на практике, то для него разработаны специальные статистические критерии проверки на «нормальность»:
Заключение
Нормальное распределение наиболее часто встречается в природе, нормально распределёнными являются следующие случайные величины:
Такое широкое распространение закона связано с тем, что он является предельным законом, к которому приближаются многие другие (например, биномиальный). Доказано, что сумма очень большого числа случайных величин, влияние каждой из которых близко к 0, имеет распределение, близкое к нормальному. Этот факт является содержанием предельной теоремы Ляпунова.
См. также
Полезное
Смотреть что такое «Распределение Гаусса» в других словарях:
РАСПРЕДЕЛЕНИЕ ГАУССА — син. термина распределение нормальное. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия
распределение Гаусса — Gauso skirstinys statusas T sritis fizika atitikmenys: angl. Gauss distribution; gaussian distribution; Laplace Gauss distribution vok. Gauß Verteilung, f rus. Гауссово распределение, n; распределение Гаусса, n pranc. distribution de Gauss, f;… … Fizikos terminų žodynas
РАСПРЕДЕЛЕНИЕ ГАУССА — (Gaussian distribution) см. Частота распределения, значимость … Толковый словарь по медицине
Распределение Гаусса (Gaussian Distribution) — см. Частота распределения, значимость. Источник: Медицинский словарь … Медицинские термины
Континуальное распределение Гаусса — было введено в квантовой теории поля как расширение понятия распределения Гаусса для конечномерных векторов на континуальные пространства скалярных и векторных полей. Континуальное распределение активно используется в аппарате функциональных… … Википедия
ГАУССА РАСПРЕДЕЛЕНИЕ — (Гаусса закон распределения вероятностей) то же, что нормальное распределение … Большой Энциклопедический словарь
Гаусса распределение — (Гаусса закон распределения вероятностей), то же, что нормальное распределение. * * * ГАУССА РАСПРЕДЕЛЕНИЕ ГАУССА РАСПРЕДЕЛЕНИЕ (Гаусса закон распределения вероятностей), то же, что нормальное распределение (см. НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ) … Энциклопедический словарь
Гаусса распределение — [Gaussian distribution] см. Нормальное распределение … Экономико-математический словарь
Новичкам. Опционы и Гауссово (нормальное) распределение.
Продолжаем грызть тему опционов по книгам Саймона и Натенберга, сегодня добрались до темы волатильность.
Волатильность — это то, что отличает торговлю фьючерсами от опционов. Кто не знает как работает волатильность, по каким законам она живет, не сможет работать с опционами. Там, где волатильность, там есть и теория вероятности, а там, где теория вероятности — сидит определенный математический аппарат.
Именно в этой точке гуманитарий опускает руки, потому что не может разобраться как работать с моделью Блэка-Шоулза, не знает элементарных понятий из теории вероятности, не знает как работает Гауссово распределение.
Будем двигаться понемногу, сегодня разберемся именно с Гауссовым распределением, я покажу на пальцах что это такое и уже потом будем постепенно углубляться в модель Блэка-Шоулза (да-да, уважаемые новички, без понимания как работает эта модель вы будете терять деньги на опционном рынке).
Что же такое Гауссово распределение, оно же распределение Гаусса-Лапласа? Это такое распределение вероятностей, которое в одномерном случае задаётся функцией плотности вероятности, совпадающей с функцией Гаусса:
Важно знать следующие свойства функции плотности распределения Гаусса:
С вероятностью 68,2% случайная величина не отклонится от своего математического ожидания дальше, чем 1 сигма.
С вероятностью 95,4% случайная величина не отклонится от своего математического ожидания дальше, чем 2 сигма.
С вероятностью 99,7% случайная величина не отклонится от своего математического ожидания дальше, чем 3 сигма.
Что это такое и как с этим работать трейдеру?
Есть удивительный индикатор Боллинджера, который показывает среднюю, верхнюю и нижнюю границу диапазона изменения цены актива, по умолчанию там настроен параметр 2сигма. Таким образом, если бы рынок подчинялся распределению Гаусса, то с вероятностью 95,4% цена не должна выходить за границы диапазона. Но почему же иногда она выходит? Потому что нормальное распределение по Гауссу это всего лишь математическая модель, рынки же в основе своей живут не по распределению Гаусса, на рынках есть тренд и память. Именно поэтому о каком-то случайном блуждании цены говорить не приходится, но в то же время рынки очень часто живут также и по Гауссу, мы это видим во время боковиков, когда цена хаотично движется туда-сюда, но не выходит за границы диапазона. Это как раз частный случай хаотичного движения (пропал тренд).
Более простого изложения на практике «куполообразного» распределение вероятностей я нигде не видел ранее, именно этим меня и цепанула книга Натенберга. Респект автору, умеет он всё же нетривиальные вещи объяснить простым языком.
Случайное блуждание.
Возьмем для примера игру пинбол. Шарик катится вниз через частокол штырьков. Наткнувшись на штырек, он отклоняется вправо или влево с вероятностью 50%. После этого шарик попадает на новый уровень, где натыкается на другой штырек. Наконец, внизу он падает в одну из лунок.
Движение шарика через частокол штырьков называют случайным блужданием. Как только шарик попадает в этот частокол, никто не может повлиять на его траекторию, равно как и предсказать эту траекторию.
Если бросить достаточное количество шариков, то можно получить распределение, которое называется Гауссовым — большинство шариков попадает в центр игрового поля; чем дальше лунки расположены от центра, тем меньше шариков в них оказывается. Такое распределение называется еще нормальным или колоколообразным:
Если бросить бесконечно большое количество шариков, то распределение будет описываться колоколообразной кривой, изображенной на рисунке.
Низковолатильное распределение.
Теперь давайте слегка изменим условия игры, поставив вертикальные перегородки таким образом, что теперь, наткнувшись на штырек и отклонившись влево или вправо, шарик опустится до соприкосновения со следующим штырьком не на один, а на два уровня. Если бросить достаточное количество шариков, то получится распределение, представленное кривой на рисунке (низковолатильное распределение):
Поскольку боковые движения шариков ограничены, пик этой кривой будет выше, а ее хвосты будут более узкими, чем у кривой на предыдущем рисунке. Несмотря на изменения формы, это по-прежнему кривая нормального распределения, но с несколько иными характеристиками (для тех, кто владеет математическим аппаратом — параметр эксцесс отвечает за высоту пика).
Высоковолатильное распределение.
Наконец, мы можем поставить горизонтальные перегородки так, что, попадая на следующий уровень, шарик будет каждый раз отклоняться на два штырька влево или вправо. И снова, если бросить достаточное количество шариков, то получится распределение, представленное на рисунке:
У этой кривой, которая также отражает нормальное распределение вероятностей, пик намного ниже, а хвосты убывают намного медленнее, чем у кривых на предыдущих рисунках.
Для чего нам всё это нужно было?
Пусть боковые движения шарика символизируют повышательные и понижательные изменения цены базового актива, а движение вниз — течение времени. Если предположить, что цена Ri каждый день повышается или понижается на 2500 пунктов (шаг 1 страйка), то распределение значений цены через 15 дней будет представлено на рисунке с «колоколообразной» плотностью распределения вероятностей.
Если предположить, что цена Ri повышается на 2500 пунктов каждые 2 дня, то распределение будет похоже на рисунок «низковолатильного распределения».
А если предположить, что цена Ri за день растет или падает на 5000 пунктов (2 страйка), то распределение будет напоминать рисунок «высоковолатильного распределения».
Если сегодня Ri стоит 107 500, а срок действия опциона истекает через 15 дней, то как определить стоимость 112 500 колла?
Об этом в следующих сериях.
Если такие вот топики вам заходят — ставьте лайки, жмите колокольчик, пишите каменты.
Да сопутствует вам всем удача в опционном мире!
Нормальное распределение (Гаусса) в Excel
В статье подробно показано, что такое нормальный закон распределения случайной величины и как им пользоваться при решении практически задач.
Нормальное распределение в статистике
История закона насчитывает 300 лет. Первым открывателем стал Абрахам де Муавр, который придумал аппроксимацию биномиального распределения еще 1733 году. Через много лет Карл Фридрих Гаусс (1809 г.) и Пьер-Симон Лаплас (1812 г.) вывели математические функции.
Лаплас также обнаружил замечательную закономерность и сформулировал центральную предельную теорему (ЦПТ), согласно которой сумма большого количества малых и независимых величин имеет нормальное распределение.
Нормальный закон не является фиксированным уравнением зависимости одной переменной от другой. Фиксируется только характер этой зависимости. Конкретная форма распределения задается специальными параметрами. Например, у = аx + b – это уравнение прямой. Однако где конкретно она проходит и под каким наклоном, определяется параметрами а и b. Также и с нормальным распределением. Ясно, что это функция, которая описывает тенденцию высокой концентрации значений около центра, но ее точная форма задается специальными параметрами.
Кривая нормального распределения Гаусса имеет следующий вид.
График нормального распределения напоминает колокол, поэтому можно встретить название колоколообразная кривая. У графика имеется «горб» в середине и резкое снижение плотности по краям. В этом заключается суть нормального распределения. Вероятность того, что случайная величина окажется около центра гораздо выше, чем то, что она сильно отклонится от середины.
На рисунке выше изображены два участка под кривой Гаусса: синий и зеленый. Основания, т.е. интервалы, у обоих участков равны. Но заметно отличаются высоты. Синий участок удален от центра, и имеет существенно меньшую высоту, чем зеленый, который находится в самом центре распределения. Следовательно, отличаются и площади, то бишь вероятности попадания в обозначенные интервалы.
Формула нормального распределения (плотности) следующая.
Формула состоит из двух математических констант:
е – основание натурального логарифма 2,718;
двух изменяемых параметров, которые задают форму конкретной кривой:
m – математическое ожидание (в различных источниках могут использоваться другие обозначения, например, µ или a);
ну и сама переменная x, для которой высчитывается плотность вероятности.
Конкретная форма нормального распределения зависит от 2-х параметров: математического ожидания (m) и дисперсии ( σ 2 ). Кратко обозначается N(m, σ 2 ) или N(m, σ). Параметр m (матожидание) определяет центр распределения, которому соответствует максимальная высота графика. Дисперсия σ 2 характеризует размах вариации, то есть «размазанность» данных.
Параметр математического ожидания смещает центр распределения вправо или влево, не влияя на саму форму кривой плотности.
А вот дисперсия определяет остроконечность кривой. Когда данные имеют малый разброс, то вся их масса концентрируется у центра. Если же у данных большой разброс, то они «размазываются» по широкому диапазону.
Плотность распределения не имеет прямого практического применения. Для расчета вероятностей нужно проинтегрировать функцию плотности.
Вероятность того, что случайная величина окажется меньше некоторого значения x, определяется функцией нормального распределения:
Используя математические свойства любого непрерывного распределения, несложно рассчитать и любые другие вероятности, так как
P(a ≤ X 0 =1 и остается рассчитать только соотношение 1 на корень из 2 пи.
Таким образом, по графику хорошо видно, что значения, имеющие маленькие отклонения от средней, выпадают чаще других, а те, которые сильно отдалены от центра, встречаются значительно реже. Шкала оси абсцисс измеряется в стандартных отклонениях, что позволяет отвязаться от единиц измерения и получить универсальную структуру нормального распределения. Кривая Гаусса для нормированных данных отлично демонстрирует и другие свойства нормального распределения. Например, что оно является симметричным относительно оси ординат. В пределах ±1σ от средней арифметической сконцентрирована большая часть всех значений (прикидываем пока на глазок). В пределах ±2σ находятся большинство данных. В пределах ±3σ находятся почти все данные. Последнее свойство широко известно под названием правило трех сигм для нормального распределения.
Функция стандартного нормального распределения позволяет рассчитывать вероятности.
Понятное дело, вручную никто не считает. Все подсчитано и размещено в специальных таблицах, которые есть в конце любого учебника по статистике.
Таблица нормального распределения
Таблицы нормального распределения встречаются двух типов:
— таблица плотности;
— таблица функции (интеграла от плотности).
Таблица плотности используется редко. Тем не менее, посмотрим, как она выглядит. Допустим, нужно получить плотность для z = 1, т.е. плотность значения, отстоящего от матожидания на 1 сигму. Ниже показан кусок таблицы.
В зависимости от организации данных ищем нужное значение по названию столбца и строки. В нашем примере берем строку 1,0 и столбец 0, т.к. сотых долей нет. Искомое значение равно 0,2420 (0 перед 2420 опущен).
Функция Гаусса симметрична относительно оси ординат. Поэтому φ(z)= φ(-z), т.е. плотность для 1 тождественна плотности для -1, что отчетливо видно на рисунке.
Чтобы не тратить зря бумагу, таблицы печатают только для положительных значений.
На практике чаще используют значения функции стандартного нормального распределения, то есть вероятности для различных z.
В таких таблицах также содержатся только положительные значения. Поэтому для понимания и нахождения любых нужных вероятностей следует знать свойства стандартного нормального распределения.
Функция Ф(z) симметрична относительно своего значения 0,5 (а не оси ординат, как плотность). Отсюда справедливо равенство:
Это факт показан на картинке:
Значения функции Ф(-z) и Ф(z) делят график на 3 части. Причем верхняя и нижняя части равны (обозначены галочками). Для того, чтобы дополнить вероятность Ф(z) до 1, достаточно добавить недостающую величину Ф(-z). Получится равенство, указанное чуть выше.
Если нужно отыскать вероятность попадания в интервал (0; z), то есть вероятность отклонения от нуля в положительную сторону до некоторого количества стандартных отклонений, достаточно от значения функции стандартного нормального распределения отнять 0,5:
Для наглядности можно взглянуть на рисунок.
На кривой Гаусса, эта же ситуация выглядит как площадь от центра вправо до z.
Довольно часто аналитика интересует вероятность отклонения в обе стороны от нуля. А так как функция симметрична относительно центра, предыдущую формулу нужно умножить на 2:
Под кривой Гаусса это центральная часть, ограниченная выбранным значением –z слева и z справа.
Указанные свойства следует принять во внимание, т.к. табличные значения редко соответствуют интересующему интервалу.
Для облегчения задачи в учебниках обычно публикуют таблицы для функции вида:
Если нужна вероятность отклонения в обе стороны от нуля, то, как мы только что убедились, табличное значение для данной функции просто умножается на 2.
Теперь посмотрим на конкретные примеры. Ниже показана таблица стандартного нормального распределения. Найдем табличные значения для трех z: 1,64, 1,96 и 3.
Как понять смысл этих чисел? Начнем с z=1,64, для которого табличное значение составляет 0,4495. Проще всего пояснить смысл на рисунке.
То есть вероятность того, что стандартизованная нормально распределенная случайная величина попадет в интервал от 0 до 1,64, равна 0,4495. При решении задач обычно нужно рассчитать вероятность отклонения в обе стороны, поэтому умножим величину 0,4495 на 2 и получим примерно 0,9. Занимаемая площадь под кривой Гаусса показана ниже.
Таким образом, 90% всех нормально распределенных значений попадает в интервал ±1,64σ от средней арифметической. Я не случайно выбрал значение z=1,64, т.к. окрестность вокруг средней арифметической, занимающая 90% всей площади, иногда используется для проверки статистических гипотез и расчета доверительных интервалов. Если проверяемое значение не попадает в обозначенную область, то его наступление маловероятно (всего 10%).
Для проверки гипотез, однако, чаще используется интервал, накрывающий 95% всех значений. Половина вероятности от 0,95 – это 0,4750 (см. второе выделенное в таблице значение).
Для этой вероятности z=1,96. Т.е. в пределах почти ±2σ от средней находится 95% значений. Только 5% выпадают за эти пределы.
Еще одно интересное и часто используемое табличное значение соответствует z=3, оно равно по нашей таблице 0,4986. Умножим на 2 и получим 0,997. Значит, в рамках ±3σ от средней арифметической заключены почти все значения.
Так выглядит правило 3 сигм для нормального распределения на диаграмме.
С помощью статистических таблиц можно получить любую вероятность. Однако этот метод очень медленный, неудобный и сильно устарел. Сегодня все делается на компьютере. Далее переходим к практике расчетов в Excel.
Нормальное распределение в Excel
В Excel есть несколько функций для подсчета вероятностей или обратных значений нормального распределения.
Функция НОРМ.СТ.РАСП
Функция НОРМ.СТ.РАСП предназначена для расчета плотности ϕ( z ) или вероятности Φ(z) по нормированным данным (z).
z – значение стандартизованной переменной
интегральная – если 0, то рассчитывается плотность ϕ( z ) , если 1 – значение функции Ф(z), т.е. вероятность P(Z