Что такое высокомолекулярные соединения в химии
Классификация соединений
Высокомолекулярные соединения делятся на природные и синтетические. К первым относятся различные каучуки, полисахариды, нуклеиновые кислоты. Искусственно создаются полиэтилен, полипропилен, смолы на основе фенола и альдегидов. Атомы вещества в виде макромолекулы классифицируются следующим образом:
Полимеры в химии — это соединения, которые называются таковыми из-за большой массы и прочных химических связей и формул вдоль цепи вида C6H5CH.
Они могут быть стереополимерами, сополимерами и общими блок-сополимерами, которые делятся на стереорегулярные и нестереорегулярные в зависимости от периодичности чередования звеньев. Это зависит от степени расположения цепей, периодичности чередования и особенности строения.
Свойства и характеристики
Высокомолекулярные реакции обладают рядом химических свойств. Некоторые из них присущи исключительно ВМС (аббревиатура для обозначения таких соединений). Самыми важными характеристиками, которые лежат в основе классификации, можно назвать:
Указанные свойства обусловлены массой, строением цепей и способностью макромолекул изменять форму от внешних воздействий. Переход от линейных цепей к разветвленным и трехмерным делает такие характеристики менее выраженными.
В химии реакция полимеризации это процесс сшивания множества молекул мономера в макромолекулы. В нее вступают непредельные соединяющие элементы. Существует гомополимеризация и сополимеризация. В первом варианте идет слияние молекул одного мономера, а во втором воссоединяются два и более веществ. Она идет по радикальному или ионному механизму.
В случае радикальной полимеризации процесс инициируется свободными радикалами. К примеру, реакция поливинилхлорида идет по следующим стадиям:
В ионной полимеризации роль активных центров играют катионы и анионы. Это позволяет разделить ее на катионную и анионную вариацию в зависимости от доноров и акцепторов. По ней протекает реакция полимеризации полиизобутилена, бутадиена, синтетического каучука и прочих неорганических реакций.
Применение полимеров
Полимеры благодаря высокой механической прочности и вязкости используются во многих отраслях промышленности. Среди них автомобилестроение, электротехника, сельское хозяйство, медицина. Основными примерами являются пластмассы, резины, лаки, краски и эмали, а также капрон и прочие элементарные полимерные соединения.
Высокомолекулярные соединения и вещества встречаются в химии часто и занимают особое место. Под расшифровкой ВМС понимают такие реакции полимеризации и поликонденсации, в которых выделяются аминокислоты, полиэтилены и остальные соединения.
ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ
Название линейного полимера образуют прибавлением приставки «поли» (в случае неорганич. полимеров -«кате на-поли»): а) к названию составного повторяющегося звена, заключенному в скобки (систематич. названия); б) к названию мономера, из к-рого получен полимер (полусистематич. названия, к-рые ИЮПАК рекомендует использовать для обозначения наиб. часто применяемых полимеров). Название составного повторяющегося звена образуют по правилам номенклатуры химической. напр. (первыми указаны полусистематич. названия):
Макромолекулы одного и того же хим. состава м. б. построены из разл. стереоизомеров звена. В. с., молекулы к-рых состоят из одинаковых стереоизомеров или из разл. стереоизомеров, чередующихся в цепи с определенной периодичностью, наз. стереорегулярными. B.C., в к-рых каждый или нек-рые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, наз. стереоблоксополимерами. В нестереорегулярных, или атактических, B.C. звенья разл. пространств. конфигурации чередуются в цепи произвольно. См. также Стереорегулярные полимеры.
По хим. составу макромолекулы различают гомополимеры (полимер образован из одного мономера, напр. полиэтилен) и сополимеры (полимер образован по меньшей мере из двух разл. мономеров, напр. бутадиен-стирольный каучук). В. с., состоящие из одинаковых мономерных звеньев, но различающиеся по мол. массе, наз. полимергомологами.
В зависимости от состава основной (главной) цепи макромолекулы все B.C. делят на два больших класса: гомоцепные, основные цепи к-рых построены из одинаковых атомов, и гетероцепные, в основной цепи к-рых содержатся атомы разных элементов, чаще всего С, N, Si, P. Среди гомоцепных В. с. наиб. распространены карбоцепные (главные цепи состоят только из атомов углерода), напр. полиэтилен, полиметилметакрилат, политетрафторэтилен (см. Фторопласты), гуттаперча. Примеры гетероцепных В. с.- полиэфиры (напр., полиэтиленоксид, полиэтилентерефталат, поликарбонаты), полиамиды, кремнийорганические полимеры, мочевино-формалъдегидные смолы, белки, целлюлоза. В. с., в макромолекулы к-рых наряду с углеводородными группами входят атомы неорганогенных элементов, наз, элементоорганическими. В полимерах, содержащих атомы металла (напр., Zn, Mg, Си), обычные ковалентные связи могут сочетаться с координационными (см. Координационные полимеры). Отдельная группа В. с.- неорганические полимеры (напр., полифосфазены), макромолекулы к-рых построены из неорг. главных цепей и не содержат орг. боковых радикалов (обрамляющих групп).
Свойства и основные характеристики. В. с. обладают специфич. комплексом физ.-хим. и мех. св-в. Важнейшие из них: 1) способность образовывать высокопрочные анизотропные волокна и пленки (см. Ориентированное состояние, Пленки полимерные); 2 )способность к большим обратимым, т. наз. высокоэластическим, деформациям (см. Высокоэластическое состояние);3) способность набухать перед растворением и образовывать высоковязкие р-ры (см. Растворы полимеров). Эти св-ва обусловлены высокой мол. массой B.C., цепным строением макромолекул, их гибкостью и наиб. полно выражены у линейных В. с. По мере перехода от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к частым сетчатым структурам комплекс характерных св-в В. с. становится все менее выраженным. Трехмерные В. с. с очень большой частотой сетки нерастворимы, неплавки и неспособны к высокоэластич. деформациям.
Св-ва отдельных B.C. определяются хим. составом, строением, конформацией и взаимным расположением макромолекул (надмолекулярной структурой). В зависимости от этих факторов св-ва B.C. могут изменяться в широких пределах. Так, цис-1,4-полибутадиен, построенный из гибких углеводородных цепей, при т-рах ок. 20
Высокомолекулярные соединения (ВМС)
Вещества, состоящие из молекул больших размеров, обладающие большой (от сотен до миллионов) относительной молекулярной массой называются высокомолекулярными.
1. Полимерного строения (полимеры)
2. Неполимерного строения (олигомеры)
Вещества полимерного строения (полимеры) – состоят из молекул, характеризующихся многократным повторением одного или более составных звеньев и обладают такими свойствами, что они остаются практически неизменными при добавлении или удалении одного или нескольких составных звеньев.
Вещества неполимерного строения (олигомеры) также включают определенное число (не более 100) повторяющихся составных звеньев, но любое изменение их числа приводит к изменению свойств.
Свойства полимеров определяются размером и строением макромолекул:
где: СЗ – составное звено;
n – степень полимеризации.
По типу составных звеньев:
Самые распространенные – природные силикаты и алюмосиликаты, составляющие основу земной коры:
Рис. 24. Полимерные кремнекислородные цепочки в составе силикатов
Органические полимеры — основа большинства пластических масс.
Полиэтилен – один из наиболее распространенных промышленных полимеров. Обладает высокой химической стойкостью, водо- и газонепроницаемостью. Используется как электроизолятор, а также для производства упаковочных пленок, шлангов и т.п.
Недостатки: низкая прочность и устойчивость к свету, растворителям (бензин).
Содержат в составных звеньях макромолекул наряду с углеводородными группами неорганические фрагменты.
Различают элементоорганические полимеры:
1. С основными цепями, содержащими атомы других элементов, обрамленными органическими группами
2. С основными цепями, содержащими чередующиеся атомы углерода и других элементов
3. С углеродными основными цепями, обрамленными элементоорганическими группами.
Пример последнего типа элементоорганических полимеров: фторопласт.
Классификация полимеров по происхождению:
1. Природные (натуральный каучук, белки)
2. Модифицированные (измененные природные, например, резина);
3. Синтетические (полученные из низкомолекулярных веществ путем синтеза, например, полиэтилен).
Классификации полимеров по строению макромолекул:
4. Трехмерные сшитые
Рис. 25. Строение макромолекул полимеров
По отношению к нагреванию:
Линейные полимеры (полиэтилен, поливинилхлорид, полистирол) способны обратимо размягчаться при нагреве и отверждаться при охлаждении, сохраняя основные свойства.
Переход в пластичное состояние связан с тем, что межмолекулярные и водородные связи между цепями полимеров разрываются при умеренном повышении температуры.
Пространственные полимеры с жестким каркасом, которые будучи отверждены, не переходят при нагреве в пластичное состояние. При повышении температуры они претерпевают деструкцию (химическое разложение) и загораются (карбамидные полимеры, фенолформальдегидные и эпоксидные смолы).
Ковалентные связи между цепями этих полимеров имеют прочность того же порядка, что и прочность связей внутри цепи. Поэтому повышение температуры приводит к разрыву связей не только между цепями, но и внутри цепей, то есть к необратимой деструкции термореактивных полимеров.
Классификация полимеров по типу химической реакции, используемой для получения:
Полимеризация – процесс образования макромолекул из молекул низкомолекулярного вещества (мономера), содержащего кратные связи.
Поликонденсация — процесс образования макромолекул из молекул низкомолекулярного вещества (мономера), содержащих две или более функциональных групп, сопровождающийся выделением воды, аммиака или др. веществ.
Полимеризационные смолы получаются полимеризацией этиленовых углеводородов и их производных: полиэтилен, полипропилен, полистирол, поливинилхлорид, полиакрилаты, каучуки и др.
Получается при полимеризации пропилена.
Конденсационные смолы получаются поликонденсацией разнообразных мономеров.
Полимеры, получаемые при реакциях
поликонденсации: фенолформальдегидные, полиэфирные, полиамидные смолы, полиуретаны и др.
Пластическими массами называют композиционные материалы на основе полимеров, содержащие дисперсные или коротковолокнистые наполнители, пигменты и другие компоненты, обладающие пластичностью на определенном этапе производства, которая полностью или частично теряется после отверждения полимера.
Некоторые строительные пластмассы целиком состоят из полимера ( например, органическое стекло: полиметилметакрилат, полиэтилен).
Роль наполнителей в пластмассах часто очень важна.
Пример: в начале 1990-х годов началось производство резины для автомобильных шин с использованием в качестве наполнителей технического углерода и оксида кремния. Введение оксида кремния позволило повысить сцепление шин с мокрой дорогой. Связать оксид кремния с бутадиенстирольным каучуком удалось введением в шинную массу органосиланов.
ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ
Макромолекулы одного и того же хим. состава м. б. построены из разл. стереоизомеров звена. Высокомолекулярные соединения, молекулы к-рых состоят из одинаковых стереоизомеров или из разл. стереоизомеров, чередующихся в цепи с определенной периодичностью, наз. стереорегулярными. Высокомолекулярные соединения, в к-рых каждый или нек-рые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, наз. стереоблоксополимерами. В нестереорегулярных, или атактических, высокомолекулярных соединениях звенья разл. пространств. конфигурации чередуются в цепи произвольно. См. также Стереорегулярные полимеры.
По хим. составу макромолекулы различают гомополимеры (полимер образован из одного мономера, напр. полиэтилен) и сополимеры (полимер образован по меньшей мере из двух разл. мономеров, напр. бутадиен-стирольный каучук). Высокомолекулярные соединения, состоящие из одинаковых мономерных звеньев, но различающиеся по мол. массе, наз. полимергомологами.
В зависимости от состава основной (главной) цепи макромолекулы все высокомолекулярные соединения делят на два больших класса: гомоцепные, основные цепи к-рых построены из одинаковых атомов, и гетероцепные, в основной цепи к-рых содержатся атомы разных элементов, чаще всего С, N, Si, P. Среди гомоцепных высокомолекулярных соединений наиб. распространены карбоцепные (главные цепи состоят только из атомов углерода), напр. полиэтилен, полиметилметакрилат, политетрафторэтилен (см. Фторопласты), гуттаперча. Примеры гетероцепных высокомолекулярных соединений- полиэфиры (напр., полиэтиленоксид, полиэтилентерефталат, поликарбонаты), полиамиды, кремнийорганические полимеры, мочевино-формалъдегидные смолы, белки, целлюлоза. Высокомолекулярные соединения, в макромолекулы к-рых наряду с углеводородными группами входят атомы неорганогенных элементов, наз, элементоорганическими. В полимерах, содержащих атомы металла (напр., Zn, Mg, Си), обычные ковалентные связи могут сочетаться с координационными (см. Координационные полимеры). Отдельная группа высокомолекулярных соединений- неорганические полимеры (напр., полифосфазены), макромолекулы к-рых построены из неорг. главных цепей и не содержат орг. боковых радикалов (обрамляющих групп).
Свойства и основные характеристики. Высокомолекулярные соединения обладают специфич. комплексом физ.-хим. и мех. св-в. Важнейшие из них: 1) способность образовывать высокопрочные анизотропные волокна и пленки (см. Ориентированное состояние, Пленки полимерные); 2)способность к большим обратимым, т. наз. высокоэластическим, деформациям (см. Высокоэластическое состояние); 3) способность набухать перед растворением и образовывать высоковязкие р-ры (см. Растворы полимеров). Эти св-ва обусловлены высокой мол. массой высокомолекулярных соединений, цепным строением макромолекул, их гибкостью и наиб. полно выражены у линейных высокомолекулярных соединений. По мере перехода от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к частым сетчатым структурам комплекс характерных св-в высокомолекулярных соединений становится все менее выраженным. Трехмерные высокомолекулярные соединения с очень большой частотой сетки нерастворимы, неплавки и неспособны к высокоэластич. деформациям.
Высокомолекулярные соединения могут вступать в следующие р-ции: 1) соединение макромолекул поперечными хим. связями (т. наз. сшивание), происходящее, напр., при вулканизации каучуков, отверждетш реактопластов, дублении кож; 2) распад молекулярных цепей на более короткие фрагменты (см. Деструкция полимеров); 3) р-ции макромолекул с низкомол. соединениями, при к-рых изменяется природа боковых функц. групп, но сохраняются длина и строение скелета осн. цепи (т. наз. полимераналогичные превращения), напр. омыление поливинилацетата с образованием поливинилового спирта; высокомолекулярные соединения, образующиеся в результате таких р-ций, наз. полимераналогами; 4) внутримолекулярные р-ции между функц. группами одной макромолекулы, напр. внутримолекулярная циклизация. Гетероцепные высокомолекулярные соединения в отличие от карбоцепных обычно относительно легко гидролизуются. Скорость р-ций высокомолекулярных соединений, особенно сетчатых, с низкомол. в-вами часто лимитируется скоростью диффузии низкомол. в-ва в фазу высокомолекулярных соединений. В кинетич. области (напр., в разб. р-ре) скорость взаимод. макромолекул с низкомол. в-вами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным р-циям между функц. группами, принадлежащими одной цепи.
Нек-рые св-ва высокомолекулярных соединений, напр. р-римость, способность к вязкому течению, стабильность, существенно зависят от небольших кол-в примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из р-римого в полностью нерастворимый, достаточно одной-двух поперечных связей на одну макромолекулу.
Важнейшие характеристики высокомолекулярных соединений-хим. состав, мол. масса, ММР, стереохим. строение, степень разветвленности и гибкость макромолекулярных цепей, распределение по типам функциональности (см. Функциональность полимеров).
Карбоцепные высокомолекулярные соединения обычно синтезируют полимеризацией мономеров по кратным углерод-углеродным связям. Гетероцепные высокомолекулярные соединения получают поликонденсацией, а также полимеризацией мономеров по кратным гетероатомным связям типа С=О, N=C—О, СN (напр., альдегиды, изоцианаты, нитрилы) или с раскрытием гетероциклич. группировок (напр., окисей олефинов, лактамов).
Историческая справка. Термин «полимерия» введен в науку Й. Берцелиусом в 1833 для обозначения особого вида изомерии, при к-рой в-ва одинакового состава имеют разл. мол. массу, напр. этилен и бутилен, кислород и озон (т. обр., содержание термина не соответствовало совр. представлениям о полимерах).
Ряд высокомолекулярных соединений был получен, по-видимому, еще в 1-й пол. 19 в. Однако в то время их рассматривали как нежелат. побочные продукты «осмоления». Первые упоминания о син-тетич. высокомолекулярных соединениях относятся к 1838 (поливинилхлорид) и 1839 (полистирол).
До кон. 20-х гг. 20 в. наука о высокомолекулярных соединениях развивалась гл. обр. в русле интенсивного поиска способов синтеза каучука (Г. Бушарда, У. Тилден, И.Л.Кондаков, С, В. Лебедев. и др.). В 30-х гг. было доказано существование свободнорадикального (Г. Штаудингер и др.) и ионного (Ф. Уитмор и др.) механизмов полимеризаций. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса, к-рый ввел в химию высокомолекулярных соединений понятия функциональности мономера, линейной и трехмерной поликонденсации. Он же в 1931 синтезировал совместно с Дж. А. Ньюландом хлоропреновый каучук (неопрен) и в 1937 разработал метод получения полиамида для формования волокна типа найлон.
Автором принципиально новых представлений о высокомолекулярных соединениях как о в-вах, построенных из макромолекул, был Штаудингер. Победа его идей (к нач. 40-х гг. 20 в.) привела к тому, что высокомолекулярные соединения стали рассматривать как качественно новый объект исследования химии и физики. В 40-60-х гг. значит. вклад в исследование закономерностей поликонденсации, теорию р-ров высокомолекулярных соединений и статистич. механику макромолекул внес П. Флори.
Развитие химии и физики высокомолекулярных соединений в СССР связано с именами: С. С. Медведева, к-рый в 30-х гг. впервые установил свободнорадикальную природу активных центров роста цепи при инициировании полимеризации пероксидами и сформулировал понятие передачи цепи; А.П. Александрова, впервые развившего в 30-х гг. представления о релаксац. природе деформации полимерных тел; В. А. Каргина, установившего в кон. 30-х гг. факт термодинамич. обратимости р-ров полимеров и сформулировавшего систему представлений о трех физ. состояниях аморфных высокомолекулярных соединений; К. А. Андрианова, впервые синтезировавшего в 1937 полиорганосилоксаны, и др.
===
Исп. литература для статьи «ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ» : Энциклопедия полимеров, т. 1-3, М., 1972-77; Стрепихеев А. А., Деревицкая В.А., Основы химии высокомолекулярных соединений, 3 изд., М., 1976; Ван Кревелен Д.В., Свойства и химическое строение полимеров, пер. с англ., М., 1976; Шур A.M., Высокомолекулярные соединения, 3 изд., М., 1981; Encyclopedia of polymer science and technology, v. 1-16, N. Y.-[a. o.j, 1964-72, Suppl. v. 1-2, 1976-77. B.A. Кабанов.
Страница «ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ» подготовлена по материалам химической энциклопедии.
Учебное пособие: Химия высокомолекулярных соединений
Название: Химия высокомолекулярных соединений Раздел: Остальные рефераты Тип: учебное пособие Добавлен 04:35:53 13 сентября 2011 Похожие работы Просмотров: 12302 Комментариев: 7 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно Скачать | |||
Полимеры, проявляющие высокую степень стереорегулярности, называются тактическими.
Для стереорегулярных полимеров, полученных из двух замещенных мономеров типа RCH=CHR, предложено название диизотактические. Причем для описания конфигураций последовательности удобно принять номенклатуру, используемую в органической химии для описания стереоспецифического присоединения цис- и транс- олефиновым звеньям:
транс- присоединение к транс- олефину
транс- присоединение к цис- олефину
По определению соседние асимметрические центры в эритро- структуре обладают одинаковой конфигурацией, тогда как в трео- структуре конфигурации альтернативны. Таким образом, полимер, полученный из олефина RCH=CHR’ может быть обозначен как эритро- диизотактический или трео- диизотактический. Возможно также существование полимера на основе 1,2-дизамещенного этилена, где асимметрические центры цепи состоят из равного количества эритро- и трео- структур.
Стереорегулярные структуры полимеров дизамещенного этилена
R Н H R H R
Н R ’ H R ’ H R ’
R Н H R R H
Н R ’ H R ’ R ’ H
R Н H R H R
H R ’ H R ’ H R ’
R H H R R H
Если бы макромолекулы были действительно построены таким образом, то это соответствовало бы цис- структуре в расположении заместителей, а следовательно, и структура эта обладала бы максимальной потенциальной энергией, поэтому в действительности отдельные группы атомов поворачиваются относительно друг друга на определенный угол. Повороты атомов относительно друг друга приводят к тому, что молекулы стереорегулярных полимеров в пространстве располагаются в виде более или менее сложных спиралей, с разной симметрией, в зависимости от строения (рис. 2).
Стереорегулярная конфигурация энергетически значительно выгоднее, чем атактическая. Это приводит к тому, что даже при химической деструкции в присутствии катализаторов, когда получаются низкомолекулярные обрывки макромолекул, последние все-таки сохраняют стереорегулярность.
Стереорегулярные полимеры более склонны к плотной упаковке макромолекул и максимальному сближению цепей и построены только по типу a,b. Также полимеры обладают способностью кристаллизоваться.
Рис. 2. Спиральные структуры стереорегулярных макромолекул
с различной симметрией
Стереорегулярную структуру имеют, например, природные полимеры, в том числе и натуральный каучук. Получить изопреновый каучук, аналогичный по свойствам природному, – это значит получить искусственный каучук с регулярно построенными макромолекулами. В решении этой задачи приоритет принадлежит нашим ученым.
Стереорегулярность полимера определяет его механические, физические и другие свойства. Например, высококристаллический полипропилен обладает высокими механическими свойствами и прекрасной теплостойкостью. В то же время полипропилен с неупорядоченным строением (атактический) представляет собой мягкий материал, напоминающий каучук. Такой полипропилен не нашел до сих пор существенного практического применения, если не считать его использования в качестве дешевой добавки к дорожному асфальту.
7. СИНТЕЗ МОНОМЕРОВ
Синтез того или иного полимера состоит из двух этапов: получения мономера и превращения его в полимер.
Мономеры – низкомолекулярные вещества, молекулы которых, взаимодействуя между собой, образуют макромолекулы. Для успешного протекания реакций молекула мономера должна содержать кратные связи, неустойчивый цикл или не менее двух реакционноспособных функциональных групп.
Наиболее важными видами сырья для производства мономеров являются нефть, попутный и природный газы, дающие наиболее чистые соединения (схема 1 и 2).
Несколько меньшее значение имеют продукты сухой перегонки каменного угля и некоторых других видов твердого топлива.
Схема 1
Схема переработки природного и попутного газов в полимеры
Схема 2
Схема переработки нефти в полимеры
8. ПОЛУЧЕНИЕ ПОЛИМЕРОВ ИЗ НИЗКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ
Для синтеза ВМС из мономеров применяются два метода – полимеризация и поликонденсация.
Полимеризация является, по существу, частным случаем реакции присоединения и заключается в соединении между собой большого числа мономерных молекул, содержащих кратные связи или циклы, без выделения существенных количеств побочных продуктов, вследствие этого полимер и мономер имеют один и тот же элементарный состав.
Характерные особенности механизмов полимеризации и поликонденсации могут быть сведены к следующим признакам:
2. ВМС образуется почти сразу после начала реакции и вплоть до завершения ее, в реакционной смеси находятся мономер и полимер большой молекулярной массы. Промежуточные продукты, как правило, не могут быть выделены.
2. ВМС образуются, как правило, только при практически полном завершении реакции. Почти сразу исчезает мономер вследствие образования небольших полимерных молекул, которые затем реагируют между собой, превращаясь в более крупные частицы. Промежуточные продукты можно в принципе выделить.
3. До достижения сравнительно большой глубины реакции увеличение продолжительности ее практически не влияет на молекулярную массу полимера, растет в основном его качество.
3. Молекулярная масса непрерывно растет в ходе реакции, и лишь при практическом завершении ее образуется высокомолекулярный полимер.
Один и тот же полимер может быть синтезирован при помощи как полимеризации, так и поликонденсации; однако, как показывает практика, в одних случаях целесообразно применять полимеризацию, а в других поликонденсацию. Например, теоретически полиэтилен может быть получен при полимеризации этилена (1) или поликонденсации дихлорэтана с металлическим натрием (2):
ClCH2 CH2 Cl + 2Na + ClCH2 CH2 Cl + 2Na + ClCH2 CH2 Cl +
Однако практическое значение имеет первый метод. Так как реакции полимеризации и поликонденсации резко отличаются друг от друга, каждая из этих реакций рассматривается отдельно.
Схема реакции полимеризации в общем виде может быть выражена уравнением
Различают несколько механизмов полимеризации:
3) ионно-координационная (стереоспецифическая);
В реакцию полимеризации вступают в основном ненасыщенные мономеры, у которых двойная связь находится между углеродными атомами:
Х
или между углеродным и любым другим атомом:
n H−C=О [−СН2 –О–]n
Н
В первом случае образуются карбоцепные полимеры, во втором – гетероцепные.
Возможна полимеризация и неустойчивых предельных соединений циклического строения с гетероатомом в цикле. В этом случае полимеризация происходит за счет размыкания цикла с образованием гетероцепных полимеров:
O
оксид этилена полиэтиленоксид
Радикальная и ионная полимеризация протекают по цепному механизму. Отличительная особенность цепных реакций заключается в том, что энергия, выделяющаяся на отдельных стадиях, не рассеивается в реакционной среде, а расходуется на осуществление следующих стадий.
8.1.1. Радикальная полимеризация
Радикальная полимеризация – один из распространенных способов синтеза полимеров. Активным центром такой полимеризации является свободный радикал. Как и всякий цепной процесс, радикальная полимеризация протекает через три основные стадии.
Инициирование (образование активного центра).
На этой стадии происходит образование свободного радикала (R×), который легко взаимодействует с различными непредельными соединениями (мономерами):
В зависимости от условий образования свободных радикалов, начинающих реакционную цепь, различают несколько видов полимеризации: термическую, фотохимическую, радиационную и инициированную.
При термической полимеризации свободные радикалы образуются из мономеров под действием высоких температур (700–1000 °С). Происходящий при этом разрыв двойной связи в молекуле приводит к появлению бирадикала
CH2 =CHR ® ĊH2 −ĊHR который, взаимодействуя с молекулой мономера, образует более сложный бирадикал
Он, в свою очередь, в последующем превращается в монорадикал. Следует, однако, отметить, что термическая полимеризация не имеет пока широкого применения, так как ее скорость сравнительно невелика.
. Н
Так как образование активных центров при фотополимеризации протекает в результате прямого поглощения квантов энергии, процесс может проводиться при температурах, при которых полимеризация, инициируемая другими методами, не протекает. При фотохимическом инициировании полимеризация продолжается иногда после прекращения светового облучения («темновой» период) за счет активных центров, возникших при облучении.
Радиационная полимеризация протекает при действии на мономеры a-,
b-, g- и R — излучения. Образующиеся при этом свободные радикалы инициируют затем реакцию полимеризации.
Такие соединения называют инициаторами полимеризации. Зачастую в качестве инициаторов могут быть органические пероксиды и гидропероксиды, некоторые азо- и диазосоединения и другие вещества:
О О
6 Н5 −С−О−О−С−С6 Н 2С6 Н5 −СОО 2С6 Н5
пероксид бензоила фенил-радикал
При распаде пероксида бензоила образуются бензоатные и фенильные радикалы. Оба радикала могут соединяться с молекулами мономера, инициируя полимеризацию. Но, наряду с этим, они могут участвовать и в побочных реакциях. Например:
АН – присутствующие в реакционной смеси водородсодержащие вещества, в том числе и мономер.
СН3 СН3
С6 Н5 −С−О−ОН С6 Н5 −С−О + НО
CH3 CH3 CH3
NC−C−N=N−C−CN 2NC−C × + N2
C6 H5 −N=N−OH HO + C6 H5 −N=N ® N2 + Ċ6 H5
Скорость распада инициатора на свободные радикалы можно увеличить не только повышением температуры, но и добавкой в реакционную среду специальных восстановителей – промоторов и активаторов.
Промоторы возбуждают химическую реакцию, действуя только в начале процесса, а активаторы поддерживают активность катализатора (инициатора) в течение всего процесса. Эти вещества способствуют образованию свободных радикалов из инициаторов при более низких температурах (окислительно-восстановительное инициирование). Роль таких добавок могут выполнять соли Fе 2+ и других металлов, а также пирогаллол, третичные амины, аскорбиновая кислота и другие:
R−O−OH + Fe 2+ ® Fe 3+ + RO + OH
Количество вводимого инициатора обычно невелико (0,1–1 %). Общая скорость радикальной полимеризации возрастает пропорционально корню квадратному из величины концентрации инициатора:
U = k [I], где [I ] – концентрация инициатора.
В тоже время средняя степень полимеризации Р обратно пропорциональна корню квадратному из этой величины:
.
Таким образом, при увеличении концентрации инициатора ускоряется процесс радикальной (инициированной) полимеризации с одновременным снижением средней степени полимеризации (а значит, и молекулярной массы полимера).
Процесс роста цепи заключается в многократном присоединении молекул мономера к усложняющемуся каждый раз промежуточному радикалу с сохранением свободного электрона в концевом звене растущей макромолекулы. Другими словами, растущая макромолекулярная цепь должна оставаться в период ее роста свободным макрорадикалом :
R’–[−CH2 −CHR−]n +1 −CH2 −CHR и т. д.
В результате таких последовательных реакций присоединения двойная связь мономера превращается в простую, что сопровождается выделением энергии за счет разности энергии d— и p-связей.
Конец роста цепи связан с исчезновением свободного электрона у последнего звена макромолекулы. Чаще всего это происходит в результате соединения между собой двух радикалов (реакция рекомбинации ), что приводит к возникновению цепи, которая не способна к дальнейшему росту:
Обрыв цепи может протекать и за счет процесса диспропорционирования (см. с. 33).
Свободные радикалы (монорадикалы), являясь исключительно реакционноспособными частицами, взаимодействуют не только с мономерами, но и с растворителем, различными примесями и с образовавшимися макромолекулами. При этом неподеленный электрон (активный центр) может перейти на любую другую молекулу, например молекулу растворителя, которая, превращаясь в радикал, дает начало новой макромолекуле:
Такие реакции называют реакциями передачи цепи или теломеризации. В данном случае передача цепи происходит через растворитель – тетрахлорид углерода. Вероятность такой передачи увеличивается с повышением температуры полимеризации. При этом скорость реакции полимеризации не уменьшается, но, так как реакционная цепь распадается на несколько молекулярных цепей, степень полимеризации образующегося полимера заметно понижается. Изменяя таким образом соотношение количества мономера и растворителя, можно получать полимеры с различной молекулярной массой. Вещества, через которые осуществляется передача цепи и регулируется средняя молекулярная масса полимера, называют регуляторами. В качестве регуляторов применяют тетрахлорид углерода, тиолы, тиогликолевую кислоту и др.
Реакции обрыва и передачи цепи часто используют в практических целях для стабилизации мономеров при их хранении. Это необходимо для предотвращения преждевременной полимеризации мономеров и для управления процессом полимеризации в целом. Для этого часто при взаимодействии со свободными радикалами образуют малоактивные частицы, не способные в дальнейшем инициировать процесс полимеризации. Если следует только уменьшить скорость полимеризации, а не остановить процесс окончательно, применяют специальные вещества – замедлители.
Характер действия ингибиторов и замедлителей практически одинаков, а различие между ними скорее количественное, чем качественное.
Методом радикальной полимеризации получены такие известные полимеры, как поливинилхлорид, полистирол, бутадиенстирольные каучуки, полиметилметакрилат и др. По активности при радикальной полимеризации мономеры можно расположить в ряд: бутадиен > стирол > метилметакрилат > винилхлорид.
8.1.2. Ионная полимеризация
Если в радикальной полимеризации активным центром является радикал, то в ионной – ионы. Полимеризация, при которой ее активный центр – заряд иона – передается последовательно по макромолекулярной цепи при ее росте, называется ионной полимеризацией.
Ионная полимеризация, как и радикальная, – цепной процесс. Однако растущая макромолекула при ионной полимеризации в отличие от радикальной представляет собой (в процессе роста) не свободный радикал, а ион – катион или анион. В зависимости от этого различают катионную (карбониевую) и анионную (карбанионную) полимеризации.
Ионная полимеризация протекает в присутствии катализаторов, способствующих образованию ионов. Но, в противоположность инициаторам, они не входят в состав полимера, то есть не расходуются в процессе полимеризации; поэтому ионная полимеризация называется также каталитической.
Особенностью ионной полимеризации является ее очень высокая скорость при низких температурах (от –50 до –70 °С). Эта скорость зависит от полярности среды, в которой протекает полимеризация.
По ионному механизму могут полимеризоваться соединения с кратными связями: >С=С С=О, −С≡N и гетероциклические соединения с неустойчивым циклом, например
СН2 −СН2 (этиленоксид)
8.1.2.1. Катионная (карбониевая) полимеризация
По катионному механизму получаются, например, производные этилена с электронодонорными заместителями, карбонильные гетероциклические соединения, а также нитрилы (изобутилен, триоксан, тетрагидрофуран). Катионная полимеризация протекает через три основные стадии.
1. Инициирование. На этой стадии происходит взаимодействие катализатора (АlСl3 ) и сокатализатора (НВ) с образованием комплексного соединения, которое проявляет свойства сильной кислоты:
AlCl3 + HB ® [AlCl3 B] – H + эта кислота, отдавая протон молекуле мономера, превращает его в карбониевый ион, уравновешенный комплексным противоионом (ионная пара ):
[AlCl3 B] – H + + CH2 =CHR ® CH3 −C + HR + AlCl3 B – (s,p-сопряжение).
Большое значение имеет характер заместителя в мономере. Электронодонорные заместители создают избыток электронной плотности на противоположном конце молекулы мономера и этим способствуют присоединению протона (или положительно заряженного иона). Таким образом, в катионной полимеризации особую активность могут проявлять такие мономеры, как пропилен, бутилен, изобутилен, диены.
CH3 −C + HR + CH2 =CHR ® CH3 −CHR−CH2 −С + НR
CH3 −CHR−[−CH2 −CHR−]n −CH2 −CHRВ + AlCl3
CH3 −CHR−[−CH2 −CHR−]n −CH=CHR + НВ + AlCl3
В результате обрыва цепи катализатор снова выделяется в свободном виде.
Суммарная скорость катионной полимеризации прямо пропорциональна концентрации катализатора, а средняя степень полимеризации от концентрации катализатора не зависит, но прямо пропорциональна концентрации мономера:
где [K] – концентрация катализатора,
[M] – концентрация мономера.
8.1.2.2. Анионная (карбанионная) полимеризация
Приведем механизм анионной полимеризации в присутствии катализатора (KNH2 ) в среде жидкого аммиака при низких температурах.
KNH2 K + + NH2 NH2 + CH2 =CHR ® NH2 −CH2 −CHR K +
В присутствии металлорганических соединений (R–Na) образование активного центра происходит внедрением мономера по поляризованной связи металл – углерод:
R–Na ® R – + Na + R−CH2 −CHR Na +
Например, анионная полимеризация бутадиена-1,3 в присутствии катализатора С4 Н9 Li начинается с нуклеофильной атаки диена алкиланионом С4 Н9 – :
n CH2 =CH−CH=CH2 _
H2 N−CH2 −CHR H2 N−CH2 −CHR−CH2 −CHR
В процессе этой реакции, как и при катионной полимеризации, мономер занимает место между макрокарбкатионом и противоионом.
Обрыв цепи . Реакция передачи цепи на растворитель или мономер может вызвать прекращение роста макромолекулярной цепи:
Установлено, что скорость анионной полимеризации пропорциональна квадрату концентрации мономера и корню квадратному из концентрации катализатора:
V = k [M 2 ] , где [M] – концентрация мономера;
[K] – концентрация катализатора.
Активность карбаниона значительно снижается c увеличением стерического влияния (например, напряжения) в отдельных участках макромолекулы.
В качестве катализатора анионной полимеризации часто выступают щелочные металлы. Они способствуют окислительно-восстановительным реакциям, протекающим между этими металлами и мономерами. Образующиеся металлорганические соединения катализируют дальнейший рост макромолекулярной цепи:
2Na + CH2 =CH−CH=CH2 ® Na + CН2 – −CH=CH−CH2 – Na + CH 2 = CH −C H = CH 2
® Na + CH2 – −CH=CH−CH2 −CH2 −CH=CH−CH2 Na + CH 2 =CH-CH=CH 2
Полимеризация в этом случае протекает на поверхности металла (натрия). Мономер (бутадиен), адсорбируясь на металле, поляризуется и реагирует с карбанионом. Однако образующийся натрийбутадиеновый (и натрийизопреновый) каучук нестереорегулярен.
Впервые синтез каучука из бутадиена методом анионной полимеризации с применением металлического натрия в промышленных масштабах был осуществлен в нашей стране.
Мономеры, вступающие в анионную полимеризацию, по реакционной активности можно расположить в ряд:
акрилонитрил > метакрилонитрил > метилметакрилат > стирол > бутадиен.
Сейчас методом анионной полимеризации осуществляется промышленное производство полиамидов, полимеров формальдегида, этиленоксида, силоксанов, каучуков.
8.1.2.3. Ионно-координационная полимеризация
Иногда называется стереоспецифической полимеризацией и отличается от ионной тем, что акту присоединения мономера предшествует его координация на активном центре или катализаторе. Координация мономера может иметь место как при анионной (что более характерно), так и при катионной полимеризации.
Анионно-координационная полимеризация диенов
В зависимости от условий полимеризации в полимерной цепи изопрена могут быть обнаружены четыре типа изомерных звеньев:
Цифры в названиях изомерных звеньев обозначают номер атома углерода, входящего в основную цепь молекулы изопрена.
Добавление всего лишь нескольких процентов электронодонорных соединений – эфира, тетрагидрофурана, алкиламинов и других веществ – резко изменяет микроструктуру образующегося полиизопрена – становится преобладающей 1,4-транс- (80–90 %) и 3,4-структура (10–20 %). Электронодорное соединение способствует поляризации связи С−Li до разделения на ионы:
В этом случае микроструктуру цепи полимера определяет координация иона Li + с концевым звеном макроиона, которое имеет аллильную структуру. В аллильной структуре p-электроны делокализованы и, следовательно, два крайних атома углерода по электронной плотности эквивалентны. Для карбаниона это выражается следующим образом:
С учетом этого координацию иона Li + с конечным звеном цепи изопрена, несущим заряд, можно представить циклической структурой.
Мономер может присоединяться как к первому, так и к третьему атому углерода, что приводит к 1,4-транс- или 3,4-структуре.
Полимеризация на катализаторах Циглера – Натта
В настоящее время к группе катализаторов Циглера – Натта относят каталитические системы, образующиеся при взаимодействии органических соединений непереходных элементов I–III групп и солей переходных элементов IV–VIII групп. Известны гетерогенные и гомогенные катализаторы Циглера – Натта. На первых в основном получаются изотактические полимеры, на вторых могут быть получены также и синдиотактические.
Механизм анионно-координационной полимеризации в присутствии катализатора Циглера – Натта можно представить следующим образом. При взаимодействии Al(C2 H5 )3 и TiCl4 образуется активный комплекс:
2Al(C2 H5 )3 + 2TiCl4 2Al(C2 H5 )2 Cl + 2TiCl3 + C2 H4 + C2 H6
Выпавший из раствора TiCl3 адсорбируется поверхностью хлордиэтилалюминия, создавая центры активации, к которым присоединяются молекулы мономера путем внедрения между атомом алюминия и этильной группой. Все последующие акты присоединения мономеров протекают с удлинением углеродной цепи комплекса:
TiCl3 … Al−C2 H5 + CH2 =CH2 ® TiCl3 … Al−CH2 CH2 −C2 H5
® TiCl3 … Al−CH2 −CH2 −CH2 −CH2 −C2 H5
® TiCl3 … Al− (CH2 CH2 )n +2 −C2 H5
При распаде комплекса образуется смесь высокомолекулярных продуктов стереорегулярного строения:
CH2 =CH(CH2 CH2 )n +1 −C2 H5
TiCl3 … Al−(CH2 CH2 )n +1 −C2 H5 –AlCl3 –TiCl4
Cl (CH2 CH2 )n −C2 H5 CH2 =CH(CH2 CH2 )n -1 C2 H5
Сополимеризация – процесс образования сополимеров совместной полимеризацией двух или нескольких различных по природе мономеров. Этим методом получают высокомолекулярные соединения с широким диапазоном физических и химических свойств. Например, в результате сополимеризации бутадиена с акрилонитрилом образуется бутадиеннитрильный каучук (СКН), обладающий высокой стойкостью к маслам и бензинам. Из него изготовляют уплотнительные прокладки для деталей, соприкасающихся с маслами и растворителями:
СN CN
Сополимеризацией изобутилена с изопреном получают бутилкаучук с высокой газонепроницаемостью:
СН3
n CH2 =C−CH3 + m CH2 =C−CH=CH2 –® [−CH2 −C−CH2 −C=CH−CH2 −]n
На химическое состояние сополимеров в ионной сополимеризации оказывают влияние катализатор и растворитель.
При сополимеризации мономеры могут вести себя несколько иначе, чем при их раздельной полимеризации. В этом случае проявляется взаимное влияние различных мономеров, в результате чего реакционная способность одного из них сильно зависит от природы второго. Процесс сополимеризации еще более усложняется, если в реакции участвует несколько мономеров.
Сополимеризация широко используется в практике, поскольку является простым и очень эффективным методом модификации свойств крупнотоннажных полимеров. Наиболее распространена и изучена двухкомпонентная или бинарная сополимеризация.
Макромолекулы сополимеров состоят из элементарных звеньев всех мономеров, присутствующих в исходной реакционной смеси. Каждый мономер придает сополимеру, в состав которого он входит, свои свойства, при этом свойства сополимера не являются простой суммой свойств отдельных гомополимеров. Так, содержание небольшого количества стирола в цепях поливинилацетата повышает температуру стеклования последнего, устраняет свойство хладотекучести и увеличивает его поверхностную твердость.
Реакции сополимеризации могут протекать как по радикальному, так и по ионному механизму. При ионной сополимеризации значительное влияние на процесс оказывает природа катализатора и растворителя. Поэтому сополимеры, получаемые из одних и тех же сомономеров при одинаковом исходном соотношении в присутствии разных катализаторов, имеют разный химический состав. Так, сополимер стирола и акрилонитрила, синтезированный в присутствии пероксидов, содержит 58 % стирольных звеньев. Вместе с тем, при анионной сополимеризации на катализаторе С6 Н5 MgBr содержание в макромолекулах звеньев стирола составляет 1 %, а при катионной полимеризации в присутствии SnCl4 – 99 %.
В практическом отношении интересны блок- и привитые сополимеры. В макромолекулах этих сополимеров существуют участки большой протяженности из звеньев обоих сомономеров.
Блоксополимеры получают разными методами. Во-первых, при анионной полимеризации одного мономера возникающие «живые» цепи, то есть макромолекулы, могут инициировать полимеризацию другого мономера
Во-вторых, при интенсивном механическом воздействии на разные полимеры происходит деструкция цепей и образование макрорадикалов. Макрорадикалы, взаимодействуя между собой, формируют блоксополимеры.
Блоксополимеры могут образовываться также из олигомеров за счет взаимодействия концевых групп.
Сначала возникает макрорадикал:
Затем этот макрорадикал инициирует полимеризацию мономера с образованием боковых ветвей:
Получение блок- и привитых сополимеров почти всегда сопровождается образованием гомополимеров из присутствующих в зоне реакции мономеров.
8.3. Способы полимеризации
Способы проведения процессов полимеризации очень разнообразны. В промышленности применяют следующие способы полимеризации: блочный, в растворителе, эмульсионный, суспензионный, в твердой и газовой фазе.
А. Полимеризация в газовой фазе используется для получения ограниченного числа полимеров. Мономер – газ. Важным преимуществом газофазного способа является отсутствие растворителя и необходимости выделения готового полимера из раствора. Промышленное значение в настоящее время имеет лишь газофазная полимеризация этилена, протекающая в присутствии небольшого количества кислорода, играющего роль инициатора, при высоком давлении – до 2000 атм.
Б. Полимеризация в твердой фазе . Ее природа пока не установлена (ионный или радикальный характер). Особенность этой полимеризации в том, что она протекает при температурах ниже температуры плавления полимеров. Отсутствие жидкой фазы ограничивает возможность инициирования процесса, в частности возможность тепловой активации. Поэтому наиболее употребительными методами инициирования в твердой фазе являются радиационно-химические и фотохимические
В. Полимеризации в блоке подвергаются жидкие мономеры в присутствии растворенных в них инициаторов (могут быть органические примеси). Такую полимеризацию можно осуществлять по периодическому и непрерывному способу. В первом случае полимер образуется в формах, помещаемых в обогреваемые камеры. В зависимости от используемой формы готовое изделие может иметь вид пластины, трубы и т. д. Непрерывная полимеризация проводится в полимеризационных башнях. Мономер, проходя через башню, попадает в зоны с различной температурой, повышающейся в направлении продвижения полимера. В последнюю зону поступает готовый полимер, где он расплавляется и выдавливается в виде жгутов, которые нарезаются на гранулы (так получают, например, прозрачное органическое стекло из стирола и метилметакрилата).
Г. Полимеризация в растворителях осуществляется в среде, растворяющей либо мономер и полимер, либо только мономер. В первом случае продукт реакции – раствор полимера в растворителе. Этот продукт используют в виде лака или отделяют полимер от растворителя. Отделяют полимер отгонкой растворителя либо осаждением полимера, добавляя осадитель (например, воду). Во втором случае полимер по мере образования выпадает в твердом виде и может быть отделен фильтрованием. В растворе проводят главным образом ионную полимеризацию.
Е. Суспензионную полимеризацию проводят в жидкости, не растворяющей мономер, обычно в воде. Размер капель мономера в водной фазе в сотни раз больше (от 1 мкм до 1 мм), чем при эмульсионной полимеризации. Также добавляются эмульгаторы, образующие с каплями мономера дисперсию. Инициаторы – органические пероксиды, растворимые в мономере (не в воде). Получаемые частицы имеют форму бисера или гранул. Полимер легко отделяется от водной фазы в центрифуге без специальной коагуляции. Стабилизаторы суспензии легко отмываются с поверхности гранул, полимер содержит мало примесей. Недостаток метода – загрязнение сточных вод.
8.4. Высокомолекулярные соединения, получаемые
Наиболее распространенные ВМС, полученные методом полимеризации, относятся к группе виниловых полимеров с общей формулой
Свойства, структура, условия получения и области применения некоторых важнейших полимеров этого типа представлены в табл. 2.
Полимеры, получаемые реакцией полимеризации
- Что такое высокомолекулярная гиалуроновая кислота и низкомолекулярная
- Что такое высокомолекулярные соединения