Что такое выпрямленный ток
Выпрямитель тока
Выпрямители электрического тока представляют собой различные преобразователи сигналов. Согласно характеру устройства, могут быть полупроводниками на базе диодов или транзисторов, механическими либо вакуумными. Функция агрегата – превращение переменного сигнала, идущего ко входу, в постоянный на выходе. Большая часть подобных устройств может создать пульсирующий электрический ток, оставляя на выходе пульсации. Поэтому требуется дополнительно доукомплектовывать цепь фильтрами, которые бы сглаживали колебания. Устройство, которое преобразует постоянный ток в переменный, называется инвертором и применяется в источниках бесперебойного питания и аккумуляторах.
Какие бывают выпрямители
Построение устройств, выпрямляющих переменный ток, базируется на функции итогового агрегата. При необходимости только выравнивать колебания сборка на печатных платах производится за счет неуправляемых полупроводниковых элементов – диодов. Таким образом строятся простейшие выравнивающие элементы.
При необходимости изменений уровня мощности, которая передается на принимающее оборудование, устройство собирают с использованием контролируемых вентилей (тиристоров). Такие выпрямители тока требуются для работы некоторых двигателей, работающих за счет электричества. За счет регулировки подаваемого напряжения изменяется скорость вращения ротора.
N-фазные выпрямители
В подобных устройствах насчитывают более 3 фаз для выпрямления тока. Другие конструктивные особенности различаются. Многофазный выпрямитель может состоять как из полноценного моста, так и из четверти и половины. По количеству входов и распараллеливанию их делят на раздельные, объединенные звездами или кольцами. Кроме того, существуют последовательные виды.
Принцип работы выпрямителей сигналов
Что такое выпрямитель? Устройство работает за счет свойств полупроводниковых радиоэлементов по пропусканию тока исключительно от анода к катоду. Поэтому при прохождении через устройство синусоиды переменного тока происходит обрезка отрицательной части волны. Таким образом на выходе радиоэлемента остается только положительная полуволна. Электрический ток подобного типа называется однополупериодным с пульсациями. От анода к катоду проходит сигнал только ½ всего времени. Колебания происходят от нуля до максимального значения.
Строение двухполупериодных устройств базируется на мосту из четырех вентилей, которые приводят к попаданию всех полуволн. При этом отрицательная полуволна инвертируется. Фактически строение двухполупериодных выпрямителей аналогично двум или более однополупериодным с катодами, направленными один на другой.
Классификация по назначению и устройству
Выпрямители переменного тока разделяют на несколько различных видов, в зависимости от характеристик, использования периодов переменного тока, схем, по количеству фаз и типу пропускающего элемента. В общем виде классификация имеет следующий вид:
Однополупериодный выпрямитель (четвертьмост)
Представляет собой простейшее устройство, преобразовывающее сигнал из переменного электрического тока в постоянный. Таким образом происходит сглаживание уровня сигнала. Схема построена на одном полупроводниковом вентиле (диоде). Редко применяется в промышленности, так как для питания автоматики и аппаратуры требуется добавление в цепь питания фильтров, которые бы сглаживали полуволну. Поэтому размеры и масса устройств на базе данного выпрямителя выходят слишком значительными. Не подходит к электрическому току с промышленной частотой сигнала в 50-60 Герц.
Такая схема выпрямителя используется в импульсных БП. Требуется для компьютерной техники и с высокой частотой сигнала – около 10 Герц. Также применяется в промышленности для выпрямления высокочастотного тока.
Устройство отличается следующими достоинствами:
Два четвертьмоста параллельно
Данная схема состоит из двух четвертьмостов с одним периодом, которые работают независимо один от одного, на одну мощность. Принцип работы заключается в распараллеливании полуволны на 2 части. При первом временном промежутке происходит на одну половину, затем через часть схемы.
Два полных моста последовательно
Это двухфазная схема, которая включает два последовательных диодных моста. При этом электродвижущая сила равняется удвоенной относительно полного моста с одной фазой. Относительно сопротивление увеличивается в 4 раза.
Двухполупериодный выпрямитель, мостовая схема
В таком устройстве диодные мосты подключается ко вторичной обмотке трансформирующего прибора. Полупроводниковые элементы работают попарно, каждый со своей очередностью, пропуская только положительную или отрицательную полуволну. Таким образом частота колебания мощности, которая была выпрямлена, вдвое выше частоты тока в сети.
Три полных моста параллельно (12 диодов)
Это менее распространенная схема, состоящая из 12 параллельно соединенных диодов. По большинству характеристик значительно превосходит другие выпрямители напряжения. При прохождении электрического тока через всю схему исходящее напряжение выходит без пульсаций.
Три полных моста последовательно
Последовательная схема с двенадцатью диодами представляет собой трехфазный выпрямитель тока. Сопротивление в ней эквивалентно трем диодным мостам, в каждом из которых уровень сопротивления равен 3R. Таким образом, общий уровень препятствия движению заряженных частиц приблизительно равен 9R. В то время как частота колебаний в 6 раз выше, чем такая же от поступающего сигнала. Достоинством такого выпрямителя является наибольшая средняя электродвижущая сила, поэтому он часто используется в источниках мощности с большим выходным напряжением.
Трехфазная схема выпрямления
Устройства с тремя входящими фазами являются достаточно распространенными. Они обрезают часть волны, за счет чего значительно снижают колебания. Наиболее популярна трехдиодная схема Миткевича и шестидиодная схема Ларионова.
Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)
Такая схема нередко называется шестифазной. По свойствам похожа на выпрямитель, состоящий из трех полных диодных блоков, соединенных последовательно. Однако в данной схеме значительно повышается уровень эквивалентного сопротивления. Последовательная схема состоит из 6 диодов и резистора, поэтому относительный ток через каждый из проводящих элементов вдвое выше.
Модификации с гальванической развязкой
Накопительные элементы могут быть добавлены в схему для улучшения выходных характеристик. Применение конденсаторов и батарей позволит однопериодному выпрямителю во время отрицательной полуволны продолжать подавать на выход напряжение, которое накопилось во время положительной. Кроме того, накопление мощности на конденсаторе приводит к снижению максимального напряжения полуволны на выходе. Подобные схемы часто используются в усилителях.
Как происходит выпрямление переменного тока
Действие над полуволнами осуществляется за счет использования свойств полупроводниковых либо механических вентилей. За счет PN перехода диод пропускает ток только в том случае, если на аноде напряжение выше, чем на катоде. Поэтому при прохождении через полупроводниковый элемент остается только положительная полуволна. При использовании диодных мостов каждый элемент работает попарно, выдавая на выход положительное и отрицательное напряжение раздельно.
Среднее значение выпрямленного напряжения
Усредненный показатель сглаженного напряжения для выпрямителя рассчитывается по формуле:
В однополупериодных простейших схемах, которые построены на одном диоде (четверть моста), значение приблизительно равно 0.45 от входящего напряжения в вольтах.
Для чего постоянный ток
Переменный ток не подходит для некоторых задач. Аккумуляторные батареи возможно заряжать только постоянным током. То же самое касается электролизных установок. Также это требуется для работы осветительных приборов и большинства компактных устройств: компьютеров и телефонов.
Основные соотношения для выпрямителя
Главные параметры для выпрямителя выбираются в момент времени. Расчет величин происходит по образной формуле:
Средний ток диодов
Полупроводниковые радиоэлементы обладают выпрямляющими свойствами. Поэтому их важнейшей характеристикой считается средний ток. Данная величина представляет собой усредненную за время работы сглаженного постоянного тока через полупроводниковый период. В вентилях выпрямительного типа значение может достигать от сотых частей до 100 и выше Ампер.
Мостовой удвоитель напряжения
Схема сходна по структуре с мостом Гретца, однако дополнительно устанавливаются накопительные элементы. Это позволяет суммировать напряжение на выходе из мощности, накопленной конденсаторами за время прохождения тока. Удвоение представляет собой преобразование низкочастотного переменного напряжения в высокочастотное постоянное.
Выпрямитель – это устройство, которое превращают переменный ток, полученный из сети, в нужный постоянный. При этом электрический ток на выходе может обладать сниженной амплитудой колебаний либо быть полностью сглаженным. Таким образом, устройства, требующие для работы постоянного напряжения, получают питание. Используется для зарядки большинства аккумуляторов, например, в зарядном устройстве Рассвет, сварочных аппаратах и электросиловых установках. Класс устройства определяется количеством диодов.
Видео
Как происходит выпрямление переменного тока
Как известно, электростанции вырабатывают переменный ток. Переменный ток легко преобразуется с помощью трансформаторов, он передается по проводам с минимальными потерями, на переменном токе работают многие электродвигатели, в конце концов, все промышленные и бытовые сети работают сегодня именно на переменном токе.
Однако для некоторых применений переменный ток принципиально не годится. Заряжать аккумуляторы необходимо постоянным током, электролизные установки питаются постоянным током, светодиоды требуют постоянного тока, и много где еще просто не обойтись без постоянного тока, не говоря уже о гаджетах, где изначально используются аккумуляторы. Так или иначе, иногда приходится добывать постоянный ток из переменного путем его преобразования, для решения этой задачи и прибегают к выпрямлению переменного тока.
Для выпрямления переменного тока используют диодные выпрямители. Простейшая схема выпрямителя, содержащая всего один полупроводниковый диод, называется однополупериодным выпрямителем. Переменный ток здесь проходит через первичную обмотку трансформатора, вторичная обмотка которого одним своим выводом соединена с анодом диода, а другим — с цепью нагрузки, которая в свою очередь, будучи присоединена к катоду диода, замыкает вторичную цепь трансформатора.
Рассмотрим, что происходит в первый момент времени, когда к аноду диода приложено положительное, относительно его катода, напряжение, действующее в течение первого полупериода переменного тока.
Итак, поскольку ток в цепи течет лишь во время одного из полупериодов, такой тип выпрямления называется однополупериодным выпрямлением. А по причине того, что во время отрицательных полупериодов ток в цепь нагрузки не попадает, форма его получается пульсирующей, ведь действует он в одном направлении, хотя и изменяется по величине.
Сглаживающий фильтр, состоящий из дросселя (катушки индуктивности) и конденсаторов, применяется в данной схеме для того, чтобы снизить уровень пульсаций на нагрузке, и сделать ток почти идеально постоянным. Практически переменную составляющую схема фильтра в нагрузку не пропускает, пропускает лишь постоянную составляющую.
Катушка обладает индуктивным сопротивлением, которое зависит от частоты тока, и чем выше частота — тем больше индуктивное сопротивление катушки, поэтому переменной составляющей пульсирующего тока катушка сопротивляется. Постоянную составляющую катушка пропускает легко.
Конденсатор же пропускает переменную составляющую, но не пропускает постоянную, и чем выше частота тока, тем сильнее конденсатор ее пропускает. В общем и целом чем больше емкость конденсатора и чем выше индуктивность катушки дросселя — тем меньше ненужной переменой составляющей в постоянном токе, текущем конкретно через нагрузку.
Итак, когда в цепи действует положительная полуволна тока, первый конденсатор заряжается до амплитудной величины переменного напряжения вторичной обмотки (минус падение напряжения на диоде). Когда действует отрицательная полуволна, электричество в конденсатор не поступает, и он, разряжаясь на нагрузку, поддерживает в ней постоянный ток.
Если бы не было дросселя, то поскольку напряжение на конденсаторе в ходе данного процесса уменьшалось бы, ток на нагрузке так или иначе имел бы сильные пульсации. Чтобы пульсации понизить, в цепь и добавляется дроссель (катушка), да еще и с дополнительным конденсатором, расположенным за ним. Второй конденсатор принимает на себя ток, идущий через дроссель, который уже почти не содержит пульсаций.
Чтобы пульсации сгладить еще лучше, применяют двухполупериодный выпрямитель. Двухполупериодный выпрямитель может быть реализован одним из двух способов. Он может быть выполнен по мостовой схеме (состоящей из четырех диодов), либо включать в себя всего два диода, но тогда вторичная обмотка трансформатора должна иметь удвоенное количество витков и вывод посередине между половинами обмоток.
Двухполупериодный выпрямитель работает следующим образом. В течение одного из полупериодов (допустим, положительного) ток направлен от анода к катоду верхнего по схеме диода, а нижний по схеме диод ток в это время не пропускает, он заперт (так же ведет себя единственный диод в однополупериодном выпрямителе во время отрицательной полуволны тока).
Ток замыкается через фильтр, нагрузку, и далее — через средний вывод на обмотку трансформатора. Когда наступает второй полупериод, полярность тока такова, что нижний по схеме диод пропускает ток через фильтр и через нагрузку, а верхний диод заперт. Далее процессы повторяются.
Поскольку ток здесь подается к нагрузке в течение каждого из двух периодов, такое выпрямление называется двухполупериодным выпрямлением, а выпрямитель — двухполупериодным выпрямителем. Пульсации на выходе здесь вдовое меньше, чем у однополупериодного выпрямления, поскольку частота выпрямленных импульсов вдвое больше, индуктивное сопротивление дросселя получается вдвое большим, а конденсаторы не успевают значительно разряжаться.
Более подробно типовые схемы различных выпрямителей рассмотрены здесь: Схемы однофазных выпрямителей электрического тока
Ликбез КО. Лекция №1 Схемы выпрямления электрического тока.
Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.
В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.
Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.
В переменном электрическ.
Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.
В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.
Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.
Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.
Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.
Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.
Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.
Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:
Uср = 2*Umax / π = 0,636 Umax
— максимальное обратное напряжение диода – Uобр ;
— максимальный ток диода – Imax ;
Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.
Максимальное обратное напряжение диода Uобр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n, который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.
Значение максимального тока Imax выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.
Прямое падение напряжения на диоде – Uпр, это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.
Как работает выпрямитель напряжения
Выпрямитель напряжения – это устройство для преобразования переменного электричества в постоянный ток. В его основе находится полупроводниковый прибор, имеющий одностороннюю проводимость. Такими приборами служат диод или тиристор. Если существует небольшая мощность, несколько сотен Ватт, используется однофазный выпрямитель. Они применяются в самых различных электрических устройствах.
Существуют преобразователи, рассчитанные на тысячи и более Ватт. Здесь используются другие элементы электроники, рассчитанные на такие высокие мощности. В данной статье будут рассмотрены все типы выпрямителей тока, зачем они нужны и по каким принципам они функционируют. В качестве дополнения материал содержит несколько видеороликов и одну научно-популярную статью.
Структура и особенности
Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.
Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.
Выпрямителем называется электронное устройство, предназначенное для преобразования электрической энергии переменного тока в постоянный. В основе выпрямителей лежат полупроводниковые приборы с односторонней проводимостью – диоды и тиристоры.
Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.
Полупроводниковые схемы
Любой выпрямитель — это схема. Она включает в себя вторичную обмотку трансформатора, выпрямляющий элемент, электрический фильтр и нагрузку. При этом существует возможность получать умножение напряжения. Выпрямленное напряжение — это сумма постоянного и переменного напряжений. Переменная составляющая — это нежелательная компонента, которую уменьшают тем или иным способом. Но поскольку используются полуволны переменного напряжения, иначе быть не может.
Его можно уменьшить двумя способами:
Простейший выпрямитель однополупериодный. Он отсекает одну из полуволн переменного напряжения. Поэтому коэффициент пульсаций в такой схеме получается самым большим. Но если выпрямляется трехфазное напряжение с одним диодом в каждой фазе, а также одним и тем же фильтром, получится в три раза меньший коэффициент пульсаций. Однако наилучшими характеристиками обладают двухполупериодные выпрямители.
Использовать обе полуволны переменного напряжения можно двумя способами:
Сравним обе эти схемы для одного и того же значения выпрямленного напряжения. В схеме моста используется меньше витков вторичной обмотки трансформатора, что является преимуществом. Но при этом в однофазном выпрямительном мосте необходимы четыре диода. В схеме со средней точкой необходимо в два раза больше витков вторичной обмотки со средней точкой, что является недостатком. Еще один недостаток этой схемы — необходимость симметрии частей обмотки относительно средней точки.
Асимметрия будет дополнительным источником пульсаций. Но зато в этой схеме нужны только два диода, что является преимуществом. При выпрямлении на диоде существует напряжение. Его величина почти не изменяется в зависимости от силы тока, протекающего через этот диод. Поэтому мощность, рассеиваемая на полупроводниковом диоде, растет по мере увеличения силы выпрямленного тока.
При выпрямлении тока большой силы два диода схемы со средней точкой будут экономичнее и компактнее в сравнении с четырьмя диодами выпрямительного моста. Схемы выпрямителей в свое время не появились из ниоткуда. Их изобрели инженеры. Поэтому схемы выпрямителей в литературе иногда называются в связи с именами своих первооткрывателей. Мостовая схема именуется как «полный мост Гретца». Схема со средней точкой — «выпрямитель Миткевича».
Силовой трансформатор
Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства. Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста Uн.
Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iн одновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.
Диодный мост
Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный. В блоке применяются чаще всего элементы в виде диодов. На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.
Устройство фильтрования
Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки. В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.
Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.
Отличия выпрямителя и стабилизатора
В связи с ростом энергопотребления домохозяйств подстанции не редко приходится модернизировать. В ином случае качество энергоснабжения заметно снижается. Решением проблемы может стать установка стабилизатора или выпрямителя напряжения. Под выпрямителем тока понимается полупроводниковое, механическое, электровакуумное устройство. Большинство таких приборов создают «пульсирующий» ток. Их основные преимущества заключаются в следующем:
Представленные в продаже выпрямители тока просты в обслуживании и отличаются высокой степенью ремонтопригодности. Для них характерен высокой энергетический фактор, то есть небольшое реактивное энергопотребление (за исключением тиристорных моделей).
Стабилизаторы компенсационного типа работают за счет воздействия колебаний выходного напряжения через цепочку обратной связи на регулирующий элемент. Как правило, это замкнутые системы автоматической регулировки, поэтому их иногда именуют регуляторами напряжения. Через регулирующий орган ток проходит импульсно или непрерывно. Преимущества стабилизаторов напряжения:
В качестве еще одного примера схемы выпрямления переменного тока рассмотрим двухтактный выпрямитель. Его еще называют однофазным диодным мостом. Принципиальная схема двухтактного выпрямителя переменного напряжения приведена на рисунке
Временные диаграммы токов и напряжений этого устройства совпадают с временными диаграммами двухфазного однотактного выпрямителя тока, приведенными на рисунке 4. В выпрямителе переменного тока на диодном мосте присутствует только одна вторичная обмотка, поэтому k = 1. В то же самое время количество импульсов тока за период равно 2, поэтому пульсность в данной схеме равна p= k · q = 1 · 2 = 2. По этой формуле полное название устройства, приведенного на рисунке 5, это двухтактный однофазный выпрямитель тока.
Частота первой гармоники пульсаций в данном случае, как и для двухфазного однотактного выпрямителя вдвое выше частоты сети. Тем не менее, области применения этих типов выпрямителей тока несколько отличаются. Для низковольтных устройств лучше подходит схема, показанная на рисунке 3, так как в ней падение напряжения происходит только на одном диоде.
В ряде случаев это настолько важно, что можно пренебречь возрастанием стоимости трансформатора. В преобразователях AC/DC с относительно высоким выходным напряжением лучше применять схему, приведенную на рисунке 5, так как на ее диодах действует одинарное обратное напряжение (в схеме двухфазного однотактного выпрямителя — удвоенное, так как напряжение на нагрузке и напряжение обмотки трансформатора складываются).
Однофазный выпрямитель напряжения подходит только для схем с относительно небольшим потребляемым током. При необходимости получить значительные величины постоянного тока лучше использовать трехфазный выпрямитель тока. Его основным преимуществом является меньший уровень пульсаций выходного напряжения, что значительно снижает требования к сглаживающему фильтру. В качестве примера приведем схему трехфазного однотактного выпрямителя тока. Она показана на рисунке 6.
Механическое выпрямление напряжения
Определение выпрямления означает получение однонаправленного электрического тока. Его величина при этом будет зависеть от формы переменного напряжения в каждом полупериоде. Но однонаправленный электрический ток при этом получается, как при положительном полупериоде напряжения, так и при его отрицательном значении. При этом нагрузка при переходе напряжения через ноль должна отключаться от ненужной полуволны напряжения. Первые выпрямители выполняли эту задачу механическими контактами.
Они либо приводились в движение синхронным двигателем, либо перемещались достаточно быстродействующим соленоидом. В обеих схемах контакты, переключающие напряжение, перемещаются синхронно с напряжением. В схеме с двигателем они вращаются, замыкаясь в нужный момент времени. Узел, предназначенный для выпрямления напряжения, при вращении аналогичен коллектору двигателя постоянного тока. Количество ламелей – контактов определяется числом оборотов синхронного двигателя.
При переходе синусоиды выпрямляемого напряжения через ноль обе щетки контактируют либо с началом, либо с концом ламели. Начало ламели совпадает с острием стрелки, указывающей направление вращения двигателя. Время контакта щеток с ламелью совпадает с длительностью половины периода выпрямляемого напряжения.
Синхронный двигатель вращается точно и кратно частоте питающего напряжения, которое он выпрямляет присоединенным к нему коллектором. Но его инерционность не позволит выпрямить скачкообразное изменение частоты питающего напряжения. Поэтому он эффективен только как выпрямитель напряжения электросети.
Выпрямитель на соленоиде замыкает контакт либо на время, когда сердечник втягивается, либо наоборот. Он может сработать только при некотором минимальном напряжении, которое достаточно для перемещения контактов. Поэтому часть полуволны вблизи перехода напряжения через ноль не будет обработана как следует.
Но зато такой выпрямитель может быть изготовлен довольно-таки небольшим. Поэтому он был широко распространен в свое время. Очевидно то, что без коммутации электрической цепи выпрямления напряжения не может быть. А возможности механического контакта ограничены мощностью искры, которая возникает в момент разрыва электрической цепи. Она постепенно уничтожает этот контакт тем быстрее, чем больше электрическая мощность при его размыкании.