Что такое вычислительные навыки
Формирование вычислительных навыков у младших школьников
Формирование у школьников 1-3 классов вычислительных навыков остается одной из главных задач начального обучения математике, поскольку вычислительные навыки необходимы как в практической жизни человека, так и в учении.
Эти навыки должны формироваться осознанно и прочно, так как на их базе строиться весь начальный курс обучения математике предусматривает, формирование вычислительных навыков на основе сознательн6ого использования приемов вычислений. Последнее становится возможным благодаря тому, что в программу включено знакомство с некоторыми важнейшими свойствами арифметический действий и вытекающими из них следствиями.
Прием вычислений складывается из ряда последовательных операций, а число операций определяется прежде выбором теоретической основы вычислительного приёма.
Полноценный вычислительный навык характеризуется правильностью, осознанностью, рациональностью, обобщенностью, автоматизмом, прочностью.
1. Подготовка к введению нового приёма.
2. Ознакомление с вычислительным приёмом.
На этом этапе ученики усваивают суть приёма: какие операции надо выполнять, в каком порядке и почему именно так можно найти результат арифметического действия.
При введении большинства вычислительных приёмов важно использовать наглядность. В некоторых случаях это оперирование множествами. Например, прибавляя к 6 число 3, придвигаем к 6 квадратам 3 квадрата по одному.
В других случаях в качестве наглядности используется развернутая запись. Например, при введении приёма внетабличного умножения выполняется запись:
Выполнение каждой операции важно сопровождать пояснениями вслух.
Сначала эти пояснения выполняется под руководством учителя, а потом самостоятельно учащимися.
3. Закрепление знаний приёма и выработка вычислительного навыка.
На устный счёт на каждом уроке я отвожу от 5 до 10 минут и стараюсь провести его в форме игры, соревнования или ввести в него элементы занимательности.
Запоминанию таблиц сложения и вычитания, а также умножения и деления способствует выполнение большого количества тренировочных упражнений в различной форме (остановлюсь на некоторых из них).
В 1 классе хорошо использовать домино. Работа с ним способствует формированию навыков табличного сложения и вычитания в пределах 10, а также знанию соответствующих случаев состава чисел.
Работа с «домино» проводится с постепенным повышением трудностей.
2. Счётные закладки:
Это пособие позволяет первоклассникам не только производить сложение и вычитание, но и сравнивать число.
Хорошо использовать при проведении математического диктанта в 1-2 классах. Сам же диктант активизирует внимание и мышление детей, способствует формированию вычислительных навыков.
При проведении устного счёта я так же использую задачи в стихотворной форме. Эти упражнения оживляют работу класса, вносят элементы занимательности.
Рифмованные задачи помогают усваивать таблицы сложения и вычитания, умножения и деления.
В 1 и 2 классах при ознакомлении с новым приёмом сложения и вычитания, умножения и деления я довожу практическую работу. Ученики делают зарисовки в тетрадях
В начальных классах важно систематически тренировать учащихся в устном решении примеров.
Я использую для этого карточки, покрытые целлофаном:
1. Лабиринт.
2. Лесенка.
На карточках могут быть написаны различные задания, но главное, что прозрачность целлофановой плёнки даёт возможность их использовать несколько раз. Изготовление их занимает меньше времени.
Работа с карточками способствует лучшему усвоению учебного материала, формированию вычислительных навыков, вызывает интерес к учебе.
При формировании умения выполнять новый вычислительный приём я стремлюсь развивать у учащихся способность создавать зрительные опоры и умение ими пользоваться.
При изучении сложения и вычитания без перехода через 10 использую дуги (соединяю десятки с десятками, единицы с единицами)
Такие зрительные опоры помогают учащимся видеть теоретическую основу вычислительного приёма, способствуют осознанности и самостоятельности вычислений.
Формированию осознанных знаний, прочных умений и навыков способствуют самодельные таблицы.
Свои уроки в основном я строю так, чтобы мое сообщение, объяснение нового опиралось на знание детей. Это опора на завтрашний день детского развития.
При работе над темой «Сложение и вычитание» с переходом через 10 (в пределах 20) облегчает работу таблица.
Окошечки работают на детей. Дети сами учатся складывать двузначные и однозначные числа и делают выводы. Объясняя, как к 65 прибавить 3, учащиеся сами передвигают на таблице нужную ленту с цифрами и показывают полученное число единиц. То же самое происходит и десятками. Затем при повторении используется нижняя часть таблицы, где стрелками обозначено само объяснение.
При объяснении материала по теме «Порядок действий» помогает таблица.
-О чем задумался Незнайка и зачем к нему прилетели птички?
(Уставшие и голодные птички должны свить гнездышко. Незнайка задумался, как им помочь. Ему на помощь пришли сами же птички: «Сначала давайте соберем зернышки, поклюем их, а потом, став сильными, полетим за веточками для гнездышка.»).
-А как на таблице изображены зернышки и веточки? Какими знаками они обозначены? (поисковая работа).
Незнайка запомнил порядок действий, который ему предложили птички и решил попробовать выполнить примеры на порядок действий.
Разбор примеров
-Что сначала предложили птички?
-Как вы будете делать?
На следующем этапе предлагаются примеры в 3-4 действия:
Дети сами объясняют порядок действий.
На следующих уроках ввожу примеры со скобками:
Напротив каждого ряда прикрепляется картинка, под которой записаны примеры.
2). Списать числа. Обвести числа, которые делятся на 5 в кружок, а числа, которые делятся на 3 в квадрат
Такие задания не только формируют вычислительные навыки, но и развивают устойчивость внимания, увеличивают его объем, учат распределять и переключать его.
Статья «Понятие «вычислительный навык» и его основные характеристики»
.Понятие «вычислительный навык» и его основные характеристики
М.А. Бантова определила вычислительный навык как высокую степень овладения вычислительными приемами. «Приобрести вычислительные навыки — значит, для каждого случая знать, какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия, и выполнять эти операции достаточно быстро».
Вычислительные навыки рассматриваются как один из видов учебных навыков, функционирующих и формирующихся в процессе обучения. Они входят в структуру учебно-познавательной деятельности и существуют в учебных действиях, которые выполняются посредством определенной системы операций. Полноценный вычислительный навык обучающихся характеризуется следующими показателями: правильностью, осознанностью, рациональностью, обобщенностью, автоматизмом и прочностью.
Правильность – ученик правильно находит результат арифметического действия над данными числами, т.е. правильно выбирает и выполняет операции, составляющие прием.
Осознанность – ученик осознает, на основе каких знаний выбраны операции и установлен порядок их выполнения. Это для ученика своего рода доказательство правильности выбора системы операции. Осознанность проявляется в том, что ученик в любой момент может объяснить, как он решал пример и почему можно так решать. Это, конечно, не значит, что ученик всегда должен объяснять решение каждого примера. В процессе овладения навыком объяснение должно постепенно свертываться.
Рациональность – ученик, сообразуясь с конкретными условиями, выбирает для данного случая более рациональный прием, т. е. выбирает те из возможных операций, выполнение которых легче других и быстрее приводит к результату арифметического действия. Разумеется, что это качество навыка может проявляться тогда, когда для данного случая существуют различные приемы нахождения результата, и ученик, используя различные знания, может сконструировать несколько приемов и выбрать более рациональный. Как видим, рациональность непосредственно связана с осознанностью навыка.
Автоматизм (свернутость) – ученик выделяет и выполняет операции быстро и в свернутом виде, но всегда может вернуться к объяснению выбора системы операции. Осознанность и автоматизм вычислительных навыков не являются противоречивыми качествами. Они всегда выступают в единстве: при свернутом выполнении операции осознанность сохраняется, но обоснование выбора системы операции происходит свернуто в плане внутренней речи. Благодаря этому ученик может в любой момент дать развернутое обоснование выбора системы операции. Высокая степень автоматизации должна быть достигнута по отношению к табличным случаям. Здесь должен быть достигнут уровень, характеризующийся тем, что ученик сразу же соотносит с двумя данными числами третье число, которое является результатом арифметического действия, не выполняя отдельных операций. По отношению к другим случаям арифметических действий происходит частичная автоматизация вычислительных навыков: ученик предельно быстро выделяет и выполняет систему операций, не объясняя, почему выбрал эти операции и как выполнял каждую из них.
Прочность – ученик сохраняет сформированные вычислительные навыки на длительное время.
Формирование вычислительных навыков, обладающих названными качествами, обеспечивается построением курса математики и использованием соответствующих методических приемов.
В целях формирования осознанных, обобщенных и рациональных навыков начальный курс математики строится так, что изучение вычислительного приема происходит после того, как учащиеся усвоят материал, являющийся теоретической основой этого вычислительного приема. Например, сначала ученики усваивают свойство умножения суммы на число, а затем это свойство становится теоретической основой приема внетабличного умножения. Так, при умножении 15 на 6 выполняется следующая система операций, составляющая вычислительный прием:
1) число 15 заменяем суммой разрядных слагаемых 10 и 5;
2) умножаем на 6 слагаемое 10, получится 60;
3) умножаем на 6 слагаемое 5, получится 30;
4) складываем полученные произведения 60 и 30, получится 90.
Как видим, здесь применение свойства умножения суммы на число (термин «распределительный закон» в начальном курсе не вводится) определило выбор всех операций, поэтому и говорят, что прием внетабличного умножения основан на свойстве умножения суммы на число или что свойство умножения суммы на число — теоретическая основа приема внетабличного умножения.
Легко заметить, что кроме свойства умножения суммы на число здесь использованы и другие знания, а также ранее сформированные вычислительные навыки: знание десятичного состава чисел (замена числа суммой разрядных слагаемых), навыки табличного умножения и умножения числа 10 на однозначные числа, навыки сложения двузначных чисел. Однако выбор именно этих знаний и навыков диктуется применением свойства умножения суммы на число.
Формирование вычислительных навыков у младших школьников
Одной из центральных задач начального курса математики является формирование прочных и сознательных вычислительных навыков. Практика современной школы показывает, что в основе формирования навыка вычислений должно лежать осмысление тех конкретных действий, от которых зависят правильность и скорость выполнения вычислений. Ученик, прежде всего, должен осознать цель, ради которой он формирует тот или иной навык. А учитель должен помочь ему в осознании этой цели. Вычислительные навыки необходимы как в практической жизни каждого человека, так и в учении.
2. Характеристика вычислительного навыка.
Вычислительный навык – это высокая степень овладения вычислительными приёмами. Приобрести вычислительные навыки – значит, для каждого случая знать, какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия, и выполнять эти операции достаточно быстро.
Полноценный вычислительный навык характеризуется правильностью, осознанностью, рациональностью, обобщенностью, автоматизмом и прочностью.
Правильность – ученик правильно находит результат арифметического действия над данными числами, т.е правильно выбирает и выполняет операции, составляющие прием.
Осознанность – ученик осознает, на основе каких знаний выбраны операции и установлен порядок их выполнения. Это для ученика своего рода доказательство правильности выбора системы операций. Ученик в любой момент может объяснить, как он решал пример и почему можно так решать.
Рациональность – ученик, сообразуясь с конкретными условиями, выбирает для данного случая более рациональный прием, т.е. выбирает из возможных операций, выполнение которых легче других и быстрее приводит к результату арифметического действия.
Обобщенность – ученик может применить прием вычисления к большему числу случаев, т.е. он способен перенести прием вычисления на новые случаи.
Автоматизм – ученик выделяет и выполняет операции быстро и в свернутом виде, но всегда может вернуться к объяснению выбора системы операций. Высокая степень автоматизации должна быть достигнута по отношению к табличным случаям сложения и вычитания, умножения и деления.
Особенность изучения письменных вычислений обусловлена тем, что у детей быстро развивается усталость при работе с числами. Это объясняется большим количеством операций как письменного сложения и вычитания, так и письменного умножения и деления. Избежать быстрой утомляемости и снижения внимания при изучении письменных вычислений поможет:
Действие контроля должно присутствовать на каждом этапе выполнения вычислительного приёма. Только в этом случае возможно постоянное прослеживание хода выполнения учебных действий, своевременное обнаружение различных больших и малых погрешностей в их выполнении, а также внесение необходимых корректив в них. Обнаруженная ошибка в процессе вычислений позволит сохранить ребёнку внутренние силы, предотвратить преждевременную усталость. Для контроля в выполнении письменных вычислений целесообразно показать ученикам, как использовать опорные сигнал, например точки, напоминающие о том, что следует учесть перенесённую через разряд единицу.
В связи с этим необходимо больше внимания уделять формированию действия контроля. В процессе работы над вычислительными приёмами и навыками, так как организационное на уроке математики действие контроля, приводит к концентрации внимания всех обучающихся, формирует в практической деятельности каждого ученика умение рассуждать, исключает ошибки в тетрадях, что позволяет совершенствовать умения осознанно выполнять вычислительные приёмы.
Этапы формирования вычислительного навыка.
В ходе формирования вычислительных навыков М.А Бантова выделяет следующие этапы:
1. Подготовка к введению нового приема.
На этом этапе создается готовность к усвоению которых основывается приём вычислений, а также овладеть каждой операцией, составляющей вычислительного приёма.
Например, можно считать, что ученики подготовлены к восприятию вычислительного приёма ±2, если они ознакомлены с конкретным смыслом действий сложения и вычитания, знают состав числа 2 и овладели вычислительными навыками сложения и вычитания вида ±1; готовностью к введению приёма внетабличного умножения (13х6) будет знание учащимся правила умножения суммы на число, знание десятичного состава чисел в пределах 100 и овладение навыками табличного умножения, навыками умноженная числа 10 на однозначные числа.
2. Ознакомление с вычислительным приемом.
На этом этапе ученики усваивают суть приёма: какие операции надо выполнять, в каком порядке и почему именно так можно найти результат арифметического действия.
В других случаях в качестве наглядности используется развернутая запись. Например, 13х6=(10+3)х6=10х6+3х6=60+18=78
Выполнение каждой операции важно сопровождать пояснениями вслух.
Сначала эти пояснения выполняется под руководством учителя, а потом самостоятельно.
3. Закрепление знания приема и выработка вычислительного навыка.
На этом этапе ученики должны твердо усвоить систему операций, составляющие приём, и быстро выполнить эти операции; то есть овладеть вычислительным навыком.
Развивающее обучение видит формирование навыков через три принципиально различных этапа:
Первый этап – осознание основных положений, лежащих в фундаменте выполнения операции, создание алгоритма ее выполнения.
Теоретической основой вычислительных приёмов служат определения арифметических действий, свойства действий и следствия. Имея это в виду и принимая во внимание методический аспект, можно выделить группы приёмов в соответствии с их общей
теоретической основой. Существуют различные классификации вычислительных приёмов.
Традиционная школа все вычислительные приемы делит на устные и письменные приемы вычислений. Далее все приемы группирует по теоретической основе, по конкретному смыслу арифметических действий, по законам и свойствам, по изменению результатов арифметических действий, по связи между компонентами, учитывает вопросы нумерации и правила. Классификация вычислительных приёмов по общности теоретической основы
Группы вычислительных
арифметических действий
а х 2, 3, 4; 18:6; 2х3 и т.д.
Законы и свойства арифметических действий
54х2; 54х20; 27х3; 14х4; 81:3; 120:45;
Связи между компонентами и результатами
арифметических действий
Письменные приемы деления и умножения
Изменение результатов арифметических действий
46+19; 25х5; 300:5 и т.д.
Вопросы нумерации чисел
1200:100; 40х20 и т.д.
Письменные приемы деления и умножения
Все вычислительные приёмы строятся на той или иной теоретической основе, причём в каждом случае учащийся осознают сам факт использования соответствующих теоретических положений, лежащих в основе вычислительных приёмов. В качестве сформированности полноценного вычислительного навыка можно выделить следующие критерии: правильность, осознанность, рациональность, обобщённость, автоматизм и прочность. Вместе с тем, учитывая, что ученик при выполнении вычислительного приёма должен отдавать отчёт в правильности и целесообразности каждого выполненного действия, то есть постоянно контролировать себя, соотнося выполняемые операции с образцом – системой операций, мы относим к основным критериям и степень овладения умением контролировать себя при выполнении вычислительного приёма. О сформированности любого умственного действия можно говорить лишь тогда, когда ученик сам, без вмешательства со стороны, выполняет все операции приводящие к решению. Нами выделены и представлены в таблице уровни и критерии сформированности вычислительного навыка.
Критерии и уровни сформированности вычислительного навыка
Ученик правильно находит результат арифметического действия над данными числами.
Ребенок иногда допускает ошибки в промежуточных операциях.
Ученик часто неверно находит результат арифметического действия, правильно выбирает и выгоняет операции.
Ученик осознает, на основе каких знаний выбраны операции. Может объяснить решение примера.
Ученик осознает на основе каких знаний выбраны операции, но не может самостоятельно объяснить, почему решал так, а не иначе.
Ребенок не осознает, порядок выполнения операции.
Ученик, сообразуясь с конкретными условиями, выбирает для данного случая более рациональный прием. Может сконструировать несколько приемов и выбрать более рациональный.
Ученик, сообразуясь с конкретными условиями, выбирает для данного случая более рациональный прием, но в нестандартных условиях применить знания не может.
Ребенок не может выбрать операции, выполнение которых быстрее производит арифметического действия.
Ученик может применить приём вычисления к большому числу случаев, т.е. он способен перенести прием вычисления на новые случаи. |
Ученик может применить приём вычисления к большому числу случаев только в стандартных условиях.
Ученик не может применить приём вычисления к большому числу случаев.
Ученик выделяет и выполняет операции быстро и в свернутом виде.
Ученик не всегда выполняет операции быстро и в свернутом виде.
Ученик медленно выполняет систему операций, объясняя каждый шаг своих действий.
Ученик сохраняет сформированные вычислительные навыки на длительное время.
Ученик сохраняет сформированные вычислительные навыки на короткий срок.
Ученик не сохраняет сформированные вычислительные навыки.
В качестве одного из показателей полноценного вычислительного навыка мы выделим контроль. Умение контролировать себя в процессе формирования вычислительного навыка требует от ученика полноценного, осознанного, обобщённого и самостоятельного владения всеми операциями, определяющими процесс выполнения вычислительного приёма. Одним из видов контроля можно смело назвать введение тренажей на уроках математики. Нами собраны в систему все виды тренажей по основным ключевым приемам. Тренажи не перегружают учителя подготовительной и проверочной работой. Например, тренаж по теме «Сложение и вычитание с переходом через 10»:
Такой набор примеров обучающийся должен записать ответы за одну минуту.
Приводим пример одного набора тренажа по усвоению таблицы умножения за минуту:
3 х 8
12 : 4
6 х 5
27 : 3
7 х 8
6 х 2
4 х 3
36 : 9
9 х 7
56 : 8
2 х 9
64 : 8
8 х 9
42 : 6
6 х 8
15 : 3
7 х 7
36 : 6
4 х 5
25 : 5
5 х 8
32 : 4
9 х 5
81 : 9
9 х 3
24 : 3
8 х 4
36 : 4
63 : 7
12 : 3
Только систематическая работа учителя над сформированностью вычислительного навыка доказывает следующие результаты по контрольному тренажу по методике В.Зайцева:
Таблица сформированности вычислительных навыков в 4Ж классе.
Итого по 4Ж классу десять обучающихся показали высокий уровень сформированности вычислительных навыков, шестеро показали средний уровень и трое учеников показали низкий уровень. Причина низкого уровня сформированности вычислительных навыков – эти учащиеся прибыли в класс только в этом году, один учится с 3 четверти. Методисты М.Н Никитина, Е.Н Кушнерук выделяют наглядность как один из основных приемов для успешного формирования вычислительного навыка. Они считают, что, работая с наглядными пособиями, учащиеся учатся анализировать, сравнивать, обобщать, что без опоры на наглядность и иллюстрирования каждого выражения детям еще труднее будет усвоить вычислительные приемы. М.И. Моро, Л.Г.Петерсон предлагают на этапе закрепления вычислительных навыков большое внимание уделять устному счету, так как устные упражнения вызывают интерес, в начале урока дисциплинируют учащихся, помогают сразу выявить ошибки. Овладение умениями и навыками устных вычислений имеет большое образовательное, воспитательное и практическое значение. Они помогают усвоить алгоритмы письменных вычислений, так как представляют собой их практическую основу, способствуют усвоению многих вопросов теории арифметических действий, играют большую роль в развитии мышления школьников, их сообразительности, математической зоркости, наблюдательности.
Отслеживание уровня сформированности вычислительных навыков через анализы контрольных работ показывает, что в целом от 20 до 30% обучающихся в начальной школе допускают ошибки при решении примеров. Это в целом по школе. Индивидуально по классам показатели очень разные. Это зависит от системы работы учителя, от стажа работы, от набора детей. В моем классе допускают ошибки при решении примеров 3 человека. Анализ ошибок в контрольных работах учащихся показал, что допущенные ошибки могли быть вследствие недостаточно сформированного навыка, не доведенного до автоматизма. Так как навык не автоматизирован, вычисления выполняются медленно.
Действительно, используя целенаправленно и систематически различные методические приемы и средства на всех этапах формирования вычислительных навыков, можно добиться скорости вычислений, прочности, осознанности, автоматизма.
Умение выполнять вычислительный прием – есть умение выполнять систему умственных операций, следовательно, контроль – есть умение осознанно контролировать выполняемые операции. При развитии действия контроля на уроках математики, совершенствуется умение осознанно выполнять вычислительные приемы. И, наоборот, в случае отсутствия действия контроля, сформированность вычислительных приемов и навыков имеет низкий уровень. Следовательно, процесс выполнения вычислительного приема и осознанное его контролирование, должны быть двумя сторонами единого процесса, процесса овладения вычислительными приемами и навыками.
С целью изучения интереса детей к математике, вычислительным приемам нами был проведен письменный опрос, который включал следующие вопросы:
По результатам исследования получили следующие результаты: 69,5 % детей предпочитают находить значения выражений, и делают это с удовольствием, причем 8,6 % из них на сложение и вычитание. Самостоятельно обнаружить и исправить ошибки способны 34 % учащихся. Следовательно, дети не стремятся к выполнению действия контроля по результату.
Бантова М.А. Система формирования вычислительных навыков. Начальная школа №11, 1993