Что такое вычисли значение выражения
Нахождение значения выражения, примеры, решения.
После того, как мы узнали что такое значение выражения, логичным будет разобраться с вопросом как найти значение выражения. Сейчас мы рассмотрим правила нахождения значений выражений. Начнем с числовых выражений, и будем продвигаться от самых простых случаев, когда выражение содержит лишь числа и соединяющие их знаки арифметических действий, и закончим общим случаем, когда в выражении, значение которого нужно найти, содержатся скобки, дроби, корни, степени и другие функции. В конце покажем, как находить значения буквенных выражений и выражений с переменными при выбранных значениях переменных. Всю теорию снабдим примерами с подробным описанием решений.
Навигация по странице.
Как найти значение числового выражения?
Разберемся с правилами, по которым вычисляются значения выражений.
Простейшие случаи
Знакомство с правилами нахождения значений выражений начнем со случаев, когда числовое выражение не содержит в своей записи ничего другого, кроме чисел и знаков арифметических действий. Эти случаи мы и назвали простейшими.
Чтобы успешно находить значения таких выражений, нужно уметь выполнять действия с различными числами, а также иметь представление о порядке выполнения действий в выражениях без скобок.
Итак, если числовое выражение составлено из чисел и знаков +, −, · и :, то по порядку слева направо нужно сначала выполнить умножение и деление, а затем – сложение и вычитание, что позволит найти искомое значение выражения.
Приведем решение примеров для пояснения.
Найдите значение выражения .
Подставляем полученные значения в исходное выражение: .
Осталось записать десятичную дробь в виде обыкновенной дроби , вспомнить правило вычитания отрицательных чисел
, сгруппировать и сложить обыкновенные дроби
, и сложить обыкновенную дробь с натуральным числом
.
Так мы нашли искомое значение выражения.
.
Со скобками
Теперь разберемся, как найти значение выражения, содержащего в своей записи скобки, указывающие порядок выполнения действий. При этом сначала следует находить значение выражений в скобках, придерживаясь принятого порядка выполнения действий, а затем выполнять остальные действия, что приведет к искомому значению исходного выражения. Это правило перекликается с порядке выполнения действий в выражениях без скобокпорядком выполнения действий в выражениях со скобками.
Покажем решение примера.
Аналогично находятся значения выражений, содержащих скобки в скобках. Удобно нахождение значения начинать со внутренних скобок и продвигаться к внешним.
Итак, в нахождении значений выражений со скобками нет ничего сложного, главное – соблюдать последовательность выполнения действий, и не допускать вычислительных ошибок.
С корнями
Числовые выражения, значения которых требуется найти, могут в своей записи содержать различные знаки, в частности, корни. Как найти значение корня, под которым стоит число, объясняет материал статьи извлечение корней.
А как быть, когда под знаком корня находится числовое выражение? Чтобы получить значение такого корня, нужно сначала найти значение подкоренного выражения, придерживаясь принятого порядка выполнений действий. Например, .
В числовых выражениях корни следует воспринимать как некоторые числа, и корни целесообразно сразу заменить их значениями, после чего находить значение полученного выражения без корней, выполняя действия в принятой последовательности.
Найдите значение выражения с корнями .
Теперь вычислим значение второго корня из исходного выражения: .
Наконец, мы можем найти значение исходного выражения, заменив корни их значениями: .
.
Достаточно часто, чтобы стало возможно найти значение выражения с корнями, предварительно приходится проводить его преобразование. Покажем решение примера.
Каково значение выражения .
.
Со степенями
Когда в выражении, значение которого мы находим, присутствуют степени, то их значения вычисляются до выполнения остальных действий. Вычислению значений степеней чисел посвящена статья возведение в степень.
Стоит заметить, что более распространены случаи, когда целесообразно провести предварительное упрощение выражения со степенями на базе свойств степени.
Найдите значение выражения .
Судя по показателям степеней, находящихся в данном выражении, точные значения степеней получить не удастся. Попробуем упростить исходное выражение, может быть это поможет найти его значение. Имеем
.
Степени в выражениях зачастую идут рука об руку с логарифмами, но о нахождении значений выражений с логарифмами мы поговорим в одном из следующих пунктов.
Находим значение выражения с дробями
Числовые выражения в своей записи могут содержать дроби. Когда требуется найти значение подобного выражения, дроби, отличные от обыкновенных дробей, следует заменить их значениями перед выполнением остальных действий.
Рассмотрим решение примера.
Найдите значение выражения с дробями .
В исходном числовом выражении три дроби и
. Чтобы найти значение исходного выражения, нам сначала нужно эти дроби, заменить их значениями. Сделаем это.
В числителе и знаменателе дроби находятся числа. Чтобы найти значение такой дроби, заменяем дробную черту знаком деления, и выполняем это действие:
.
Третья дробь в числителе и знаменателе содержит числовые выражения, поэтому, сначала нужно вычислить их значения, а это позволит найти значение самой дроби. Имеем
.
Осталось подставить найденные значения в исходное выражение, и выполнить оставшиеся действия: .
.
Часто при нахождении значений выражений с дробями приходится выполнять упрощение дробных выражений, базирующееся на выполнении действий с дробями и на сокращении дробей.
Найдите значение выражения .
Корень из пяти нацело не извлекается, поэтому для нахождения значения исходного выражения для начала упростим его. Для этого избавимся от иррациональности в знаменателе первой дроби: . После этого исходное выражение примет вид
. После вычитания дробей пропадут корни, что нам позволит найти значение изначально заданного выражения:
.
.
С логарифмами
Когда под знаком логарифма и/или в его основании находятся числовые выражения, то сначала находятся их значения, после чего вычисляется значение логарифма. Для примера рассмотрим выражение с логарифмом вида . В основании логарифма и под его знаком находятся числовые выражения, находим их значения:
. Теперь находим логарифм, после чего завершаем вычисления:
.
Если же логарифмы не вычисляются точно, то найти значение исходного выражения может помочь предварительное его упрощение с использованием свойств логарифмов. При этом нужно хорошо владеть материалом статьи преобразование логарифмических выражений.
Найдите значение выражения с логарифмами .
Осталось лишь подставить полученные результаты в исходное выражение и закончить нахождение его значения:
.
Как найти значение тригонометрического выражения?
Когда числовое выражение содержит синус, косинус, тангенс, котангенс или арксинус, арккосинус, арктангенс, арккотангенс и т.п., то их значения вычисляются перед выполнением остальных действий. Если под знаком тригонометрических функций стоят числовые выражения, то сначала вычисляются их значения, после чего находятся значения тригонометрических функций.
Найдите значение выражения .
.
Стоит отметить, что вычисление значений выражений с синусами, косинусами и т.п. зачастую требует предварительного преобразования тригонометрического выражения.
Чему равно значение тригонометрического выражения .
Преобразуем исходное выражение, используя тригонометрические формулы, в данном случае нам потребуются формула косинуса двойного угла и формула косинуса суммы:
Проделанные преобразования помогли нам найти значение выражения.
.
Общий случай
В общем случае числовое выражение может содержать и корни, и степени, и дроби, и какие-либо функции, и скобки. Нахождение значений таких выражений состоит в выполнении следующих действий:
Перечисленные действия выполняются до получения конечного результата.
Найдите значение выражения .
Вид данного выражения довольно сложен. В этом выражении мы видим дробь, корни, степени, синус и логарифм. Как же найти его значение?
Продвигаясь по записи слева на право, мы натыкаемся на дробь вида . Мы знаем, что при работе с дробями сложного вида, нам нужно отдельно вычислить значение числителя, отдельно – знаменателя, и, наконец, найти значение дроби.
В числителе мы имеем корень вида . Чтобы определить его значение, сначала надо вычислить значение подкоренного выражения
. Здесь есть синус. Найти его значение мы сможем лишь после вычисления значения выражения
. Это мы можем сделать:
. Тогда
, откуда
и
.
Со знаменателем все просто: .
Таким образом, .
После подстановки этого результата в исходное выражение, оно примет вид . В полученном выражении содержится степень
. Чтобы найти ее значение, сначала придется найти значение показателя, имеем
.
Итак, .
.
Если же нет возможности вычислить точные значения корней, степеней и т.п., то можно попробовать избавиться от них с помощью каких-либо преобразований, после чего вернуться к вычислению значения по указанной схеме.
Рациональные способы вычисления значений выражений
Вычисление значений числовых выражений требует последовательности и аккуратности. Да, необходимо придерживаться последовательности выполнения действий, записанной в предыдущих пунктах, но не нужно это делать слепо и механически. Этим мы хотим сказать, что часто можно рационализировать процесс нахождения значения выражения. Например, значительно ускорить и упростить нахождение значения выражения позволяют некоторые свойства действий с числами.
К примеру, мы знаем такое свойство умножения: если один из множителей в произведении равен нулю, то и значение произведения равно нулю. Используя это свойство, мы можем сразу сказать, что значение выражения 0·(2·3+893−3234:54·65−79·56·2,2)· (45·36−2·4+456:3·43) равно нулю. Если бы мы придерживались стандартного порядка выполнения действий, то сначала нам бы пришлось вычислять значения громоздких выражений в скобках, а это бы заняло массу времени, и в результате все равно получился бы нуль.
Нахождение значения буквенного выражения и выражения с переменными
Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных. То есть, речь идет о нахождении значения буквенного выражения для данных значений букв или о нахождении значения выражения с переменными для выбранных значений переменных.
Правило нахождения значения буквенного выражения или выражения с переменными для данных значений букв или выбранных значений переменных таково: в исходное выражение нужно подставить данные значения букв или переменных, и вычислить значение полученного числового выражения, оно и является искомым значением.
Числовые и буквенные выражения
Числовые выражения
Числовое выражение — это запись, составленная со смыслом, в которой числа обозначены цифрами (в неё также могут входить знаки арифметических действий и скобки). Числовые выражения так же называются арифметическими выражениями.
7 — числовое выражение,
Значение числового выражения — это число, получившееся после выполнения всех вычислений. Например, в выражении
число 8 — это значение числового выражения 6 + 2.
Пример 1. Найдите значение числового выражения 4 + 3.
Пример 2. Вычислите значение числового выражения 4 · 3.
Пример 3. Запишите числовые выражения и найдите их значения.
1) Из числа 60 вычесть сумму чисел 23 и 7.
2) К частному чисел 30 и 6 прибавить 18.
3) Число 93 уменьшить на произведение 5 и 6.
4) Из разности чисел 57 и 7 вычесть число 8.
2) 30 : 6 + 18 = 5 + 18 = 23.
С помощью числовых выражений можно записывать решение задач.
Задача. Из куска шёлка длиной 18 метров сшили 4 платья, расходуя на каждое по 3 метра. Сколько метров шёлка осталось в куске?
Решение: Задача решается в два действия: сначала узнаём сколько шёлка было израсходовано на платья, а затем сколько шёлка осталось. Решение по действиям можно записать так:
1) 3 · 4 = 12 (м) — израсходовали на платья.
Объединив эти два действия, получим числовое выражение
Значение этого выражения является ответом на вопрос данной задачи.
Буквенные выражения
Буквенное выражение — это числовое выражение, в котором числа могут быть обозначены и цифрами, и буквами. Буквенные выражения так же называются алгебраическими выражениями.
При обозначении чисел буквами обычно используют строчные (маленькие) буквы латинского алфавита:
7 · a — буквенное выражение,
a – (b + c) — буквенное выражение.
Чаще всего в буквенных выражениях разные числа обозначены разными буквами, но, например, в выражении:
подразумевается, что a и b являются одним и тем же числом.
Значение буквенного выражения — это число, получившееся после выполнения всех вычислений. Действия в буквенных выражениях выполняются после подстановки вместо букв их численных значений.
Пример. Найдите значение буквенного выражения 2 · a + 3 при a = 7.
2 · 7 + 3 = 14 + 3 = 17.
Если в записи выражения одна и та же буква, например a, употребляется несколько раз, то под значением этой буквы во всех случаях мы должны иметь ввиду одно и тоже число.
В арифметике буквенные обозначения употребляют, когда необходимо выразить, что свойство (или правило) относится не к каким-нибудь отдельным числам, а является общим для любых чисел. Например:
Данное равенство показывает нам, что, как бы мы не переставляли слагаемые, сумма от этого не изменится. Подставив вместо букв любые числа, мы можем убедиться в этом сами:
Запись буквенных выражений
При записи буквенных выражений, знак умножения пишется только:
Знак умножения между числом и буквой, между буквами и перед открывающей скобкой не пишут:
В буквенных выражениях числовой множитель записывается перед буквенными множителями:
Частное двух чисел, обозначенных буквами, обычно записывается с помощью дробной черты, например:
Виды числовых выражений в математике и их преобразование
Числовые выражения — что это такое
Выражения в математике определяют как запись утверждения с помощью чисел, букв алфавитов или переменных и знаков, которые обозначают действия.
Математические выражения бывают:
Маша решает 5 однотипных заданий за час. Сколько заданий может решить Маша за 2 часа?
Чтобы узнать, сколько заданий может решить Маша, нужно 5 заданий умножить на 2 часа усилий. Значит, 10 заданий Маша решит за два часа.
Числовые выражения записываются с помощью чисел.
Числовым выражением называется запись, которою составили с помощью чисел, арифметических знаков и скобок.
Число — это абстрактное выражения количества чего-либо. Не несет определяющей смысловой нагрузки о качественной характеристике объекта или предмета.
К арифметическим знакам относят — плюс, минус, деление, умножение.
Действия выполняются по арифметическим правилам слева направо. Сначала выполняют умножение / деление по порядку. После этого — сложение или вычитание.
Первыми выполняют действия в скобках, если они есть. При этом сохраняются правила «старшинства»: сначала умножение / деление, потом сложение / вычитание.
После выполнения действий в правильном порядке, получают число, которое называют значением числового выражения.
Значением числового выражения называют конечный результат вычисления.
Рассмотрим равенство 3+11=14.
3+11 — пример числового выражения.
Число 14 — значение выражения 3+11.
В случае, если в выражении встречается деление на нуль, то это выражение не имеет числового значения. На нуль делить нельзя. Такие выражения не имеют смысла.
Виды числовых выражений в математике и их преобразование
Преобразование числовых выражений заключается в выполнении действий, которые даны в выражении.
Действия выполняют согласно правилам, применимым в математической науке.
Правила или свойства преобразования выражений:
Порядок действий, сравнение и решение
Чтобы упростить числовое выражение, нужно:
Действуем по алгоритму и получаем:
1 действие — 3456-235 — считаем разность чисел 3456 и 235, записываем, сколько получится в скобках.
3 действие — находим частное двух чисел 45 и 9: 45:9.
4 действие — считаем разность двух чисел 547 и 345 — 547-345.
5 действие — к результату 4 действия прибавляем результат 2 действия.
6 действие — из числа, которое получили в пятом действии, вычитаем результат 3 действия.
7 действие — записываем ответ.
Найдите значение выражения: 4,37+15,4.
Значением данного выражения будет результат суммы чисел 4,37 и 15,4.
Чтобы сложить десятичные дроби, нужно уравнять количество знаков после запятой. В числе 4,37 — два знака после запятой, в 15,4 — один знак. Тогда дописываем нуль в 15,4. Получим дробь 15,40.
Считаем в столбик: записываем числа друг под другом — разряд под разрядом, запятая под запятой.
Числовые выражения можно сравнивать между собой.
Чтобы сравнить числовые выражения между собой:
Сравните выражения: 45+36 и 45-56.
Примеры для 7 класса, таблица
Упростите выражение: 21,97-17,88.
Чтобы найти разность десятичных дробей, нужно:
Уравниваем количество знаков после запятой в двух дробях. Записываем пример в столбик разряд под разрядом, запятая под запятой.
Чтобы умножить десятичную дробь на число, нужно:
При делении двух отрицательных чисел, получаем положительное число.
Чтобы разделить десятичную дробь на число:
Расставляем порядок действий. Первым действием будет произведение чисел 2,7 и 2. Вторым действием — сумма результата и 1,53.
Выполните действия: 3,73:3-0,75.
Первое действие — частное чисел 3,73 и 3. Находим значение данного выражения — 1,25.
Второе действие — от результата первого действия (1,25) отнимаем 0,75. Получаем 0,5.
Чтобы разделить два смешанных числа, нужно сначала их перевести в неправильные дроби.
Чтобы перевести смешанное число в неправильную дробь:
6 2 3 = 6 * 3 + 2 3 = 20 3
2 4 7 = 2 * 7 + 4 7 = 18 7
Записываем деление: 20 3 : 18 7
Чтобы разделить две обыкновенные дроби: первую дробь переписываем и умножаем на обратную второй дроби (перевернутую вторую).
20 3 : 18 7 = 20 * 7 3 * 18 = 10 * 7 3 * 9 = 70 27
Вся цепочка решения: 6 2 3 : 2 4 7 = 6 * 3 + 2 3 : 2 * 7 + 4 7 = 20 3 : 18 7 = 20 * 7 3 * 18 = 10 * 7 3 * 9 = 70 27 = 2 16 27
Запишите в виде выражения: