Что такое введение избыточности
14 Методы введения структурной избыточности
Тема: Методы введения структурной избыточности в программы
2. Модифицированное дуальное программирование.
3. Виртуальные машины в надежности.
4. Избыточность операционной системы ИС.
Рекомендуемые файлы
Методы введения структурной избыточности в программы
Надежность программ повышают путем резервирования. Для этого подготавливаются две или несколько версий программ для решения одной и той же задачи. Желательно, чтобы эти версии значительно отличались друг от друга, т.е. основывались, по возможности на различных алгоритмах или были выполнены различными программистами.
Ошибки в программах могут быть обнаружены в ходе отладки версии и программ сравнением результатов. Однако, даже в случае простых программ проверить в ходе отладки все возможные комбинации исходных данных или все возможные последовательности прохождения элементов программы невозможно.
Поэтому была предложена идея параллельного (одновременного) или последовательного во времени выполнения различных версий программ непосредственно в процессе эксплуатации. Версии программ могут быть две или больше. Если версий две – дуальное программирование. При дуальном программировании, если обнаруживается расхождение в результатах (результаты сравниваются соответствующими аппаратными средствами), то необходимо определить, по каким-либо дополнительным критериям, какой из результатов правильный и после этого отбрасывать другой результат.
Создание нескольких версий программ – трудоемкий и дорогостоящий процесс. Поэтому часто используют модифицированное дуальное программирование, где наряду с достаточно точной, но сложной программой используется менее точная, но простая резервная программа. Если при одинаковых исходных данных результаты работы программ отличаются на величину большую, чем допустимая погрешность, делается предположение о том, что отказала основная программа, как менее надежная, и в качестве правильного результата принимается результат, полученный при помощи резервной программы. В результате средняя погрешность работы двух программ несколько увеличивается, но вероятность отказа уменьшается.
При независимости этих программ возможны следующие несовместимые события:
1) обе программы работают безотказно, вероятность возникновения этого события , погрешность результата – δ1;
2) откажет основная программа, вероятность возникновения этого события , погрешность результата – δ2;
3) откажет резервная программа, вероятность возникновения этого события , погрешность результата – весьма значительная, допустим δ3 (погрешность отказавшей резервной программы);
4) откажут и основная, и резервная программы, вероятность возникновения этого события , погрешность δ3.
Средняя погрешность неотказавшей системы из двух программ равна:
,
при вероятности отказа системы:
.
В случае, когда имеется только основная программа, погрешность результата равна δ1, а вероятность отказа – .
Следовательно, при использовании системы, состоящей из точной и грубой программы с решающим органом, средняя погрешность работы системы по сравнению с точной программой возрастает в 1,5 раза, а вероятность отказа уменьшается в 50 раз.
Решающим органом при этом является простейшая программа, которая сравнивает результаты работы грубой и точной программы и реализует алгоритм:
у 1 – результат первой программы;
у 2 – результат второй программы.
Эта описанная система эффективна в случае, когда критерием ее эффективности является усредненная по времени погрешность. Если же эффективность системы определяется максимальным значением погрешности, описанный способ резервирования не эффективен.
Избыточность операционной системы
Повышение надежности программ обеспечит применение принципа виртуальной машины в случае мультипрограммной обработки.
Виртуальные машины образуются при помощи монитора – специальной программы или программно-аппаратной системы, которая создает для каждого пользователя иллюзию работы на отдельной вычислительной машине.
Виртуальная память (кажущаяся память компьютера), система ЗУ, организованы таким образом, что программист может рассматривать их как одну большую оперативную память, что существенно упрощает процедуру составления программ для мультипрограммных компьютеров.
При этом важна высокая степень изоляции каждой виртуальной машины. Тогда ошибка в программе одной виртуальной машины не влияет на другие.
Высокая степень изоляции может быть достигнута созданием отдельных операционных систем для каждого пользователя. Тогда ошибка в одной операционной системе не сказывается на работе операционных систем других виртуальных машин.
Метод контрольных функций.
Существует более экономический метод повышения надежности программ – метод контрольных функций. При этом методе, наряду с вычисляемой функцией, по иной программе определяется другая функция, находящаяся с основной вычисляемой функцией в соотношениях, называемых контрольными соотношениями. Эти соотношения позволяют не только обнаружить отказ одной из программ, но также и восстановить искаженный результат отказавшей программы на основании результата, полученного по безошибочно работающей программе (программам).
Простейшим примером применения метода контрольных соотношений является вычисление функций и
по отдельным программам. Контрольным соотношениям в данном случае будет соотношение
.
Пусть имеются две независимые программы, вычисляющие числовые функции ƒ1 и ƒ2 (аргументы функции для простоты записи опущены). Необходимо исправлять любую одиночную ошибку в программах. Опишем подход, требующий три дополнительные программы, вычисляющие значения вспомогательных контрольных функций ƒ3, ƒ4, ƒ5 [1]. Эти функции могут, например, удовлетворять уравнениям
(1)
,
где aij ≠ 0 – произвольные постоянные.
.
, (2)
где произвольные постоянные.
Таким образом, изложенный в подход является обобщением методов кодирования с обнаружением и исправлением ошибок и позволяет исправлять не элемент кода, а вычисляемую функцию, содержащую ошибку. Метод целесообразно использовать тогда, когда имеются независимые программы для вычисления различных функций.
.
Выбирая коэффициенты dij равными единице, непосредственно по матрице Н с учетом (2) записывается система уравнений:
,
,
,
где дополнительные контрольные функции ƒ5, ƒ6 и ƒ7 определяются по следующим очевидным соотношениям: ;
;
. Если, например, возникает ошибка е2 при вычислении функции ƒ2, то
,
. По виду синдрома (
) определяется, что ошибка соответствует второму столбцу матрицы Н, т.е. ошибка е2 относится к функции ƒ2 и последняя может быть скорректирована вычитанием этой ошибки.
Контрольные вопросы и задания.
1. Какие существуют методы повышения надежности ПО?
2. Определите разницу между дуальными и N-версионным программированием.
3. Что такое мультимпрограммный режим работы компьютера?
4. Дайте определение понятию монитор.
5. В каких случаях используется модифицированное дуальное программирование?
6. Почему при мультипрограммной обработке информации используют принцип виртуальных машин?
7. Оцените общее число ошибок в тексте программы, если программа проверена тремя специалистами и если первый из них нашел в программе 3 ошибки, второй – 5 ошибок, а третий – 6 ошибок, причем две ошибки из найденных были общими у всех специалистов.
Электронные средства сбора, обработки и отображения информации
Оглавление
Помехоустойчивое кодирование
Понятие корректирующего кода
Теория помехоустойчивого кодирования базируется на результатах исследований, проведенных Клодом Шенноном. Он сформулировал теорему для дискретного канала с шумом: при любой скорости передачи двоичных символов, меньшей, чем пропускная способность канала, существует такой код, при котором вероятность ошибочного декодирования будет сколь угодно мала.
Построение такого кода достигается ценой введения избыточности. То есть, применяя для передачи информации код, у которого используются не все возможные комбинации, а только некоторые из них, можно повысить помехоустойчивость приема. Такие коды называют избыточными или корректирующими. Корректирующие свойства избыточных кодов зависят от правил построения этих кодов и параметров кода (длительности символов, числа разрядов, избыточности и др.).
В настоящее время наибольшее внимание уделяется двоичным равномерным корректирующим кодам. Они обладают хорошими корректирующими свойствами и их реализация сравнительно проста.
Наиболее часто применяются блоковые коды. При использовании блоковых кодов цифровая информация передается в виде отдельных кодовых комбинаций (блоков) равной длины. Кодирование и декодирование каждого блока осуществляется независимо друг от друга, то есть каждой букве сообщения соответствует блок из п символов.
Блоковый код называется равномерным, если п (значность) остается одинаковой для всех букв сообщения.
Различают разделимые и неразделимые блоковые коды.
При кодировании разделимыми кодами кодовые операции состоят из двух разделяющихся частей: информационной и проверочной. Информационные и проверочные разряды во всех кодовых комбинациях разделимого кода занимают одни и те же позиции.
При кодировании неразделимыми кодами разделить символы выходной последовательности на информационные и проверочные невозможно.
Непрерывными называются такие коды, в которых введение избыточных символов в кодируемую последовательность информационных символов осуществляется непрерывно, без разделения ее на независимые блоки. Непрерывные коды также могут быть разделимыми и неразделимыми.
Общие принципы использования избыточности
Способность кода обнаруживать и исправлять ошибки обусловлена наличием избыточных символов. На ввод кодирующего устройства поступает последовательность из k информационных двоичных символов. На выходе ей соответствует последовательность из п двоичных символов, причем n>k. Всего может быть различных входных последовательностей и
различных выходных последовательностей. Из общего числа
выходных последовательностей только
последовательностей соответствуют входным. Будем называть их разрешенными кодовыми комбинациями. Остальные (
—
) возможных выходных последовательностей для передачи не используются. Их будем называть запрещенными кодовыми комбинациями.
— случаев безошибочной передачи;
— ·(
-1) случаев перевода в другие разрешенные комбинации, что соответствует необнаруживаемым ошибкам;
— ·(
—
) случаев перехода в неразрешенные комбинации, которые могут быть обнаружены.
Часть обнаруживаемых ошибочных кодовых комбинаций от общего числа возможных случаев передачи соответствует:
Кобн .
Рассмотрим, например, обнаруживающую способность кода, каждая комбинация которого содержит всего один избыточный символ (п=k+1). Общее число выходных последовательностей составит , то есть вдвое больше общего числа кодируемых входных последовательностей. За подмножество разрешенных кодовых комбинаций можно принять, например, подмножество
комбинаций, содержащих четное число единиц (или нулей). При кодировании к каждой последовательности из k информационных символов добавляется один символ (0 или 1), такой, чтобы число единиц в кодовой комбинации было четным. Искажение любого четного числа символов переводит разрешенную кодовую комбинацию в подмножество запрещенных комбинаций, что обнаруживается на приемной стороне по нечетности числа единиц. Часть обнаруженных ошибок составляет:
Кобн .
Пример кодирующего устройства с проверкой на четность показан на рис.
Основные параметры корректирующих кодов
Основными параметрами, характеризующими корректирующие свойства кодов являются избыточность кода, кодовое расстояние, число обнаруживаемых или исправленных ошибок.
Рассмотрим суть этих параметров.
Избыточность корректирующего кода может быть абсолютной и относительной. Под абсолютной избыточностью понимают число вводимых дополнительных разрядов
Относительной избыточностью корректирующего кода называют величину
отн
отн.
Эта величина показывает, какую часть общего числа символов кодовой комбинации составляют информационные символы. Ее еще называют относительной скоростью передачи информации.
Если производительность источника равна Н символов в секунду, то скорость передачи после кодирования этой информации будет равна
поскольку в последовательности из п символов только k информационных.
Если число ошибок, которое нужно обнаружить или исправить, значительно, необходимо иметь код с большим числом проверочных символов. Скорость передачи информации при этом будет уменьшена, так как появляется временная задержка информации. Она тем больше, чем сложнее кодирование.
Кодовое расстояние характеризует cтепень различия любых двух кодовых комбинаций. Оно выражается числом символов, которыми комбинации отличаются одна от другой.
Чтобы получить кодовое расстояние между двумя комбинациями двоичного кода, достаточно подсчитать число единиц в сумме этих комбинаций по модулю 2.
Кодовое расстояние может быть различным. Так, в первичном натуральном безызбыточном коде это расстояние для различных комбинаций может различаться от единицы до п, равной значности кода.
Число обнаруживаемых ошибок определяется минимальным расстоянием между кодовыми комбинациями. Это расстояние называется хэмминговым.
В безызбыточном коде все комбинации являются разрешенными, =1. Достаточно только исказиться одному символу, и будет ошибка в сообщении.
Теорема. Чтобы код обладал свойствами обнаруживать одиночные ошибки, необходимо ввести избыточность, которая обеспечивала бы минимальное расстояние между любыми двумя разрешенными комбинациями не менее двух.
Доказательство. Возьмем значность кода п=3. Возможные комбинации натурального кода образуют следующее множество: 000, 001, 010, 011, 100, 101, 110, 111. Любая одиночная ошибка трансформирует данную комбинацию в другую разрешенную комбинацию. Ошибки здесь не обнаруживаются и не исправляются, так как =1. Если
=2, то ни одна из разрешенных кодовых комбинаций при одиночной ошибке не переходит в другую разрешенную комбинацию.
Пусть подмножество разрешенных комбинаций образовано по принципу четности числа единиц. Тогда подмножества разрешенных и запрещенных комбинаций будут такие:
Очевидно, что искажение помехой одного разряда (одиночная ошибка) приводит к переходу комбинации в подмножество запрещенных комбинаций. То есть этот код обнаруживает все одиночные ошибки.
В общем случае при необходимости обнаруживать ошибки кратности — минимальное хэммингово расстояние должно быть, по крайней мере, на единицу больше
, то есть
+1.
В этом случае никакая ошибка кратности не в состоянии перевести одну разрешенную комбинацию в другую.
Ошибки можно не только обнаруживать, но и исправлять.
Теорема. Для исправления одиночной ошибки каждой разрешенной кодовой комбинации необходимо сопоставить подмножество запрещенных кодовых комбинаций. Чтобы эти подмножества не пересекались, хэммингово расстояние должно быть не менее трех.
Доказательство. Пусть, как и в предыдущем примере, п=3. Примем разрешенные комбинации 000 и 111 (кодовое расстояние между ними равно 3). Разрешенной комбинации 000 поставим в соответствие подмножество запрещенных комбинаций 001, 010, 100. Эти запрещенные комбинации образуются в результате возникновения единичной ошибки в комбинации 000.
Аналогично разрешенной комбинации 111 необходимо поставить в соответствие подмножество запрещенных комбинаций 110, 011, 101. Если сопоставить эти подмножества запрещенных комбинаций, то очевидно, что они не пересекаются:
В общем случае исправляемые ошибки кратности связаны с кодовым расстоянием соотношением
=2
+1. (2.1)
где — сочетание из п элементов по t (число возможных ошибок кратности t на длине п-разрядной комбинации).
Если, например, п=7, =1, то из (2.1)
Нужно отметить, что каждый конкретный корректирующий код не гарантирует исправления любой комбинации ошибок. Коды предназначены для исправления комбинаций ошибок, наиболее вероятных для заданного канала связи.
Групповой код с проверкой на четность
Недостатком кода с четным числом единиц является необнаружение четных групповых ошибок. Этого недостатка лишены коды с проверкой на четность, где комбинации разбиваются на части, из них формируется матрица, состоящая из некоторого числа строк и столбцов:
Строки образуются последовательно по мере поступления символов исходного кода. Затем после формирования т строк матрицы производится проверка на четность ее столбцов и образуются контрольные символы . Контрольные символы образуются путем суммирования по модулю 2 информационных символов, расположенных в столбце:
.
При таком кодировании четные групповые ошибки обнаруживаются. Не обнаруживаются лишь такие ошибки, при которых искажено четное число символов в столбце.
Можно повысить обнаруживающую способность кода путем одновременной проверки на четность по столбцам и строкам или столбцам и диагоналям (поперечная и диагональная проверка).
Если проверка проводится по строкам и столбцам, то код называется матричным.
Проверочные символы располагаются следующим образом:
;
.
В этом случае не обнаруживаются только ошибки четной кратности с кратностью 4, 8, 16 и т.д., при которых происходит искажение символов с попарно одинаковыми индексами строк столбцов. Наименьшая избыточность кода получается в том случае, когда образуемая матрица является квадратной.
Недостатком такого кода является необходимость внесения задержки в передачу информации на время, необходимое для формирования матрицы.
Матричный код позволяет исправлять одиночные ошибки. Ошибочный элемент находится на пересечении строки и столбца, в которых имеется нарушение четности.
Коды с постоянным весом
Весом называется число единиц, содержащихся в кодовых комбинациях.
В коде «3 из 7» возможных комбинаций сто двадцать восемь (=128), а разрешенных кода только тридцать пять. Относительная избыточность отн = 0,28.
Схема устройства определения веса комбинаций кода «3 из 7» приведена на рис. 2.6.
Циклические коды
Циклические коды характеризуются тем, что при циклической перестановке всех символов кодовой комбинации данного кода образуется другая кодовая комбинация этого же кода.
— комбинация циклического кода;
— также комбинация циклического кода.
Например, комбинация 1001111 (п=7) будет представлена многочленом
При таком представлении действия над кодовыми комбинациями сводятся к действиям над многочленами. Эти действия производятся в соответствии с обычной алгебры, за исключением того, что приведение подобных членов осуществляется по модулю 2.
Обнаружение ошибок при помощи циклического кода обеспечивается тем, что в качестве разрешенных комбинаций выбираются такие, которые делятся без остатка на некоторый заранее выбранный полином G(x). Если принятая комбинация содержит искаженные символы, то деление на полином G(x) осуществляется с остатком. При этом формируется сигнал, свидетельствующий об ошибке. Полином G(x) называется образующим.
Построение комбинаций циклического кода возможно путем умножения исходной комбинации А(х) на образующий полином G(x) с приведением подобных членов по модулю 2:
Таким образом, все полиномы, отображающие комбинации циклического кода, будут иметь степень ниже п.
Часто в качестве полинома, на который осуществляется деление, берется полином G(x)=+1. При таком формировании кодовых комбинаций позиции информационных и контрольных символов заранее определить нельзя.
Большим преимуществом циклических кодов является простота построения кодирующих и декодирующих устройств, которые по своей структуре представляют регистры сдвига с обратными связями.
Число разрядов регистра выбирается равным степени образующего полинома.
Обратная связь осуществляется с выхода регистра на некоторые разряды через сумматоры, число которых выбирается на единицу меньше количества ненулевых членов образующего полинома. Сумматоры устанавливаются на входах тех разрядов регистра, которым соответствуют ненулевые члены образующего полинома.
На рис. 2.7 приведена схема кодирующего регистра для преобразования четырехразрядной комбинации в семиразрядную.
В табл. 2.3 показано, как путем сдвигов исходной комбинации 0101 получается комбинация циклического кода 1010011. п=7, k=4. Комбинация 0101, ключ в положении 1. В течение первых четырех тактов регистр будет заполнен, затем ключ переводится в положение 2. Обратная связь замыкается. Под действием семи сдвигающих тактов проходит формирование семиразрядного циклического кода.
Свойства циклического кода:
1) циклический код обнаруживает все одиночные ошибки, если образующий полином содержит более одного члена. Если G(x)=x+1, то код обнаруживает одиночные ошибки и все нечетные;
2) циклический код с G(x)=(x+1)G(x) обнаруживает все одиночные, двойные и тройные ошибки;