Что такое вторичная природа
Экосистема и ее факторы
Продуценты, консументы и редуценты
Растения, преобразующие энергию солнечного света в энергию химических связей. Создают органические вещества, потребляемые животными.
Пищевые цепи
Взаимоотношения между организмами разных трофических уровней отражаются в пищевых цепочках (трофических цепях), в которых каждое предыдущее звено служит пищей для последующего звена. Поток энергии и веществ идет однонаправленно: продуценты → консументы → редуценты.
В естественных сообществах пищевые цепи часто переплетаются, в результате чего образуются пищевые сети. Это связано с тем, что один и тот же организм может быть пищей для нескольких разных видов. Например, филины охотятся на полевок, лесных мышей, летучих мышей, некоторых птиц, змей, зайцев.
Экологическая пирамида
Экологическая пирамида представляет собой графическую модель отражения числа особей (пирамида чисел), количества их биомассы (пирамида биомасс), заключенной в них энергии (пирамида энергии) для каждого уровня и указывающая на снижение всех показателей с повышением трофического уровня.
Существует правило 10%, которое вы можете встретить в задачах по экологии. Оно гласит, что на каждый последующий уровень экологической пирамиды переходит лишь 10% энергии (массы), остальное рассеивается в виде тепла.
Представим следующую пищевую цепочку: фитопланктон → зоопланктон → растительноядные рыбы → рыбы-хищники → дельфин. В соответствии с изученным правилом, чтобы дельфин набрал 1кг массы нужно 10 кг рыб хищников, 100 кг растительноядных рыб, 1000 кг зоопланктона и 10000 кг фитопланктона.
Агроценоз
Факторы экосистемы
К биотическим факторам относятся все живые существа и продукты их жизнедеятельности. Например: хищники регулируют численность своих жертв, животные-опылители влияют на цветковые растения и т.д. Это и самые разнообразные формы взаимоотношений между животными (нейтрализм, комменсализм, симбиоз).
В результате деятельности человека произошли глобальные изменения: над Антарктикой появились «озоновые дыры», ускорилось глобальное потепление, которое ведет к таянию ледников и повышению уровня мирового океана.
За миллионы лет эволюции растения и животные вырабатывают приспособления к тем условиям среды, где они обитают. Так у алоэ, растения живущего в засушливом климате, имеются толстые мясистые листья с большим запасом воды на случай засухи. У каждого организма вырабатывается своя адаптация.
Формируются привычные биологические ритмы (биоритмы): организм адаптируется к изменениям освещенности, температуры, магнитного поля и т.д. Эти факторы играют важную роль в таких событиях как сезонные перелеты птиц, осенний листопад.
Если адаптация не вырабатывается, или это происходит слишком медленно по сравнению с другими видами, то данный вид подвергается биологическому регрессу: количество особей и ареал их обитания уменьшаются и со временем вид исчезает. Иногда деятельность человека играет решающий фактор в исчезновении видов.
Закон оптимума
За пределами зоны оптимума начинается зона угнетения (пессимума). Если значение фактора лежит в зоне пессимума, то организм испытывает угнетение, однако процесс жизнедеятельности может продолжаться. Таким образом, зона пессимума лежит в пределах выносливости организма. За пределами выносливости организма происходит его гибель.
Фактор, по своему значению находящийся на пределе выносливости организма, или выходящий за такое значение, называется ограничивающим (лимитирующим). Существует закон ограничивающего фактора (закон минимума Либиха), гласящий, что для организма наиболее значим фактор, который более всего отклоняется от своего оптимального значения.
Метафорически представить этот закон можно с помощью «бочки Либиха». Смысл данной метафоры в том, что вода при заполнении бочки начинает переливаться через наименьшую доску, таким образом, длина остальных досок уже не играет роли. Так и наличие выраженного ограничивающего фактора сводит на нет благоприятность остальных факторов.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Что такое природа — живые и неживые объекты, природные явления, сообщества и экосистемы
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Употребляя слово природа, мы зачастую подразумеваем совершенно разные вещи, ибо понятие это очень широкое.
Сегодня мы попробуем взглянуть на это под разными углами зрения.
Определим, что такое природа, какой она бывает, почему образуются и как сосуществуют природные сообщества (экосистемы), какие существуют виды природных явлений и многое другое.
Природа — это.
Слово «природа» принадлежит древнерусскому языку и состоит из двух частей – приставки «при» и корня «род».
В древнерусской мифологии упоминается о божестве по имени Род, который олицетворял собой единство людей, принадлежащих к одному роду. Именно этот бог создал такие слова, как рождение, роды, роженица, новорожденный и т.д.
Также под природой в разговорном языке часто подразумевают естественную среду обитания. Например: птицы, обитающие в природных условиях, живут дольше своих сородичей, прирученных человеком.
Изучать природу (узнавать, что это такое) дети начинают в начальных классах школы на уроке «Окружающий мир». Синонимом термина «природа» является слово «естество».
Отсюда следует, что природа – это все то, что существует само по себе, естественным образом, чего не касалась рука человека. Это внешний, материальный мир, перед которым человек бессилен, но все же может на него влиять.
Например, люди не в состоянии контролировать осадки, землетрясения, ветер и т.д. Но с легкостью могут насажать деревья, разбивая целые парки, или, наоборот, уничтожить целый лес.
Если совсем упростить определение, то природа – это естественная оболочка земли (то, что еще называют биосфера), включающая в себя:
Кстати, сам человек также является частью природы. А вот то, что он придумал и создал – уже нет.
Например, построенный из дерева дом не является природным объектом, хотя и состоит из природного материала.
Изучением природного мира занимается множество наук, которые называются естественными: физика, химия, астрономия, биология и другие.
Живая и неживая природа
Материальный мир Вселенной можно разделить на две группы:
Объекты неживой природы могут пребывать в трех состояниях:
Такие объекты могут менять форму или размер, но не самостоятельно, а под влиянием внешних факторов. Например, вода из-за низких температур превратится в лед, при сильной жаре – станет испарением. Ветра и осадки переносят камни, стирают их в песок, наметают возвышенности.
Живая и неживая природа тесно взаимосвязаны: одно не может существовать без другого. Без живых существ наша планета выглядела бы серой и безжизненной. В то же время живые существа нуждаются в солнце, воздухе, воде.
Что такое природное сообщество
Взаимодействуя, объекты живой и неживой природы формируют природные сообщества.
Каждый его участник влияет на других и испытывает их влияние на себя одновременно. Их сосуществование взаимосвязано и полезно для всех.
Участники сообщества адаптированы под его условия и не смогут жить в другом биоценозе (что это?). В своей среде они имеют все возможности для полноценного существования. Например, морские обитатели не выживут в пресном водоеме, а лесные животные не смогут жить в пустыне.
Каждая такая система существует самостоятельно и не нуждается в помощи человека. Наоборот, вмешательство людей только разрушает эти природные миры.
Что такое экосистема
Совокупность природного сообщества и среды обитания называют экосистемой – в переводе с греческого дом+объединение (биогеоценоз).
Пример: в болоте живут разные обитатели: животные, насекомые, микроорганизмы, растения. Змеи едят лягушек, лягушки питаются насекомыми, которые размножаются в зарослях растений в этом месте.
Им всем нужна вода с определённым химическим составом, температурой, физическими показателями и т.д. Убери хоть один элемент из этой цепочки, остальные обязательно это почувствуют.
Сумма экосистем представляет собой живую оболочку земли – биосферу.
Живая и неживая природа в экосистеме находятся в процессе постоянного обмена веществами и энергией. Чем прочнее эти связи, тем устойчивей система, и тем дольше она существует. Последний фактор предполагает богатое разнообразие видов обитателей.
И даже если один из них исчезнет по каким-либо причинам, то его место сможет занять другой, близкий по происхождению, что обеспечит сохранность всего биогеоценоза.
Если в системе происходят масштабные изменения условий, то природные сообщества заменяются другими. Например, если перестать обрабатывать поля, возделывать их, собирать урожай, то через некоторое время в этом месте начнут расти деревья.
Природные явления
Все это и многое другое и есть природные явления, совокупность которых делится на классы:
Необычные природные явления
Мы все привыкли к дождю или приливу на море. Но существуют необычные явления, которые вызывают удивление, страх и трепет:
Вода вдруг становилась ярко-красной, что позднее было объяснено с разных точек зрения:
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (2)
В природе все взаимосвязано, виды сосуществуют дополняя друг друга. В эту гармоничную концепцию не вписываются только люди, которые склонны пытаться подчинить или уничтожить все, что находится вокруг.
Задумался вдруг, почему так? Допустим, под словом «Природа» понимают только лишь то, что находится в пределах Земли, но отделяют от этого такое понятие, как «Космос».
Хотя строго говоря, космос ведь — этот тоже природа. Разве что объекты этой природы зачастую нельзя потрогать или приблизиться к ним, так как находятся они невообразимо дальше от человека. Но ведь например — падение метеорита, его можно назвать именно природным явлением!
Научная электронная библиотека
1.Природные ресурсы. Общие положения
Процесс воспроизводства по существу представляет собой непрерывный процесс взаимодействия общества и природы, в котором общество подчиняет себе силы природы и природные ресурсы для удовлетворения потребностей. Природные ресурсы во многом предопределяют не только социально-экономический потенциал любой страны и региона и эффективность общественного производства, но и здоровье, и продолжительность жизни населения.
Природные ресурсы могут рассматриваться в двух аспектах: как важнейшая часть социально-экономического потенциала, реализуемого в процессе создания валового внутреннего продукта, часть национального богатства страны; как основа природной окружающей среды, подлежащей охране, восстановлению и воспроизводству.
Главными видами природных ресурсов являются солнечная энергия, внутриземное тепло, водные ресурсы, земельные, минеральные, лесные, рыбные, растительные, ресурсы животного мира и др.
Основными компонентами природных ресурсов являются:
Классификации природных ресурсов. Классификация природных ресурсов зависит от разных подходов к этой категории терминов.
— Классификация природных ресурсов по происхождению. Природные ресурсы (тела или явления природы) возникают в природных средах (водах, атмосфере, растительном или почвенном покрове и т.д.) и в пространстве образуют определенные сочетания, меняющиеся в границах природно-территориальных комплексов. Они подразделяются на две группы: ресурсы природных компонентов и ресурсы природно-территориальных комплексов.
2. Ресурсы природно-территориальных комплексов. На данном уровне подразделения учитывается комплексность природно-ресурсного потенциала территории, вытекающая из соответствующей комплексной структуры самой ландшафтной оболочки. Каждый ландшафт (или природно-территориальный комплекс) обладает определенным набором разнообразных видов природных ресурсов. В зависимости от свойств ландшафта, его места в общей структуре ландшафтной оболочки, сочетания видов ресурсов их количественные и качественные характеристики меняются очень существенно, определяя возможности освоения и организации материального производства. Обычно выделяются природно-ресурсные территориальные комплексы по наиболее предпочтительному (или предпочтительным) виду хозяйственного освоения. Они делятся на: 1) горнопромышленные, 2) сельскохозяйственные, 3) водохозяйственные, 4) лесохозяйственные, 5) селитебные, 6) рекреационные и др. Однако чаще применяется классификация по направлению и формам хозяйственного использования ресурсов.
1. Ресурсы промышленного производства. Эта подгруппа включает все виды природного сырья, используемые промышленностью. Виды природных ресурсов, дифференцируются следующим образом:
2) неэнергетические, включающие подгруппу природных ресурсов, которые поставляют сырье для различных отраслей промышленности или же участвуют в производстве по технологической необходимости: а) полезные ископаемые, часть из них; б) воды, используемые для промышленного водоснабжения; в) земли, занятые промышленными объектами и объектами инфраструктуры; г) лесные ресурсы, поставляющие сырье для лесохимии и строительной индустрии; д) рыбные ресурсы, относящиеся к данной подгруппе условно, так как в настоящее время добыча рыбы и обработка улова приобрели промышленный характер.
— Классификация по признаку исчерпаемости. При учете запасов природных ресурсов и объемов их возможного хозяйственного изъятия пользуются представлениями об исчерпаемости запасов. Все природные ресурсы по исчерпаемости делятся на две группы: исчерпаемые и неисчерпаемые.
1. Исчерпаемые ресурсы. Они образуются в земной коре или ландшафтной сфере, но объемы и скорости их формирования измеряются по геологической шкале времени. В то же время потребности в таких ресурсах со стороны производства или для организации благоприятных условий обитания человеческого общества значительно превышают объемы и скорости естественного восполнения. В результате неизбежно наступает истощение запасов природного ресурса. В группу исчерпаемых включены ресурсы с неодинаковыми скоростями и объемами формирования. Это позволяет провести их дополнительную дифференциацию. На основе интенсивности и скорости естественного образования ресурсы делят на подгруппы:
— Не возобновляемые, к которым относят:
а) все виды минеральных ресурсов или полезные ископаемые. Они, как известно, постоянно образуются в недрах земной коры в результате непрерывно протекающего процесса рудообразования, но масштабы их накопления столь незначительны, а скорости образования измеряются многими десятками и сотнями миллионов лет (например, возраст каменных углей насчитывает более 350 млн. лет), что практически их учитывать в хозяйственных расчетах нельзя. Освоение минерального сырья происходит по исторической шкале времени и характеризуется всевозрастающими объемами изъятия. В этой связи все минеральные ресурсы рассматриваются в качестве не только исчерпаемых, но и невозобновляемых.
— Возобновляемые ресурсы, к которым принадлежат:
а) ресурсы растительного и б) животного мира. И те и другие восстанавливаются довольно быстро, и объемы естественного возобновления хорошо и точно рассчитываются. Поэтому при организации хозяйственного использования накопленных запасов древесины в лесах, травостоя на лугах или пастбищах, промысла диких животных в пределах, не превышающих ежегодное возобновление, можно полностью избежать истощения ресурсов.
— Относительно (не полностью) возобновляемые. Некоторые ресурсы хотя и восстанавливаются в исторические отрезки времени, но возобновляемые объемы их значительно меньше объемов хозяйственного потребления. Именно поэтому такие виды ресурсов оказываются весьма уязвимыми и требуют особенно тщательного контроля со стороны человека. К относительно возобновляемым ресурсам относятся и очень дефицитные природные богатства: а) продуктивные пахотно-пригодные почвы; б) леса с древостоями спелого возраста; в) водные ресурсы в региональном аспекте.
Данные вопросы будут подробно рассмотрены в соответствующих главах настоящей монографии.
Примечание: в литературных источниках и специализированной литературе используются классификационные характеристики, несколько отличающиеся друг от друга. Например, возобновляемые и возобновимые источники и др. Автор будет придерживаться наиболее часто используемых наименований.
Рис.1.1 Упрощённый вариант классификации природных ресурсов.
В зависимости от того, какой основной принцип кладётся в основу классификации, она может приобретать тот или иной вид. Например, генетико-, хозяйственная, экологическая классификация [1.3].
Рис.1.2.Классификация по эколого- генетическим признакам.
Природная среда включает не только природные ресурсы, распространенные по территории Земли, и саму территорию, но и природные условия их местонахождения. Это климатические условия, условия расположения (на поверхности, под землей, объемы и глубина залегания, эксплуатационные характеристики, удаленность от потребителей и т.п.); свойства (жидкое, газообразное, твердое состояние вещества); вещественная структура и компонентный состав; потребительские свойства и т.п. В этой связи дальнейшая детализация природной среды связана с определением географической природной среды, включающей характерное для конкретной территории понятие ландшафта. К компонентам ландшафта относятся: земельные территории, атмосфера и климат, вода, растительность, животный мир, недра (табл. 1.1).
В глобальном значении к главным компонентам земной природы относят землю, недра, почвы, поверхностные и подземные воды, атмосферный воздух, растительный, животный мир и иные организмы, а также озоновый слой атмосферы, которые в совокупности обеспечивают благоприятные условия для существования жизни на Земле. Ресурсами природы являются также природные силы и явления, в том числе гравитация, излучения, колебания, ветер, течения, а также природные условия.
Таблица 1.1. Классификация природных ресурсов по основным компонентам
Космос, земля и недра, вода, атмосфера, биоресурсы
Эволюция природы
Совместно с Игорем Сунчелеем
В работе сделана попытка расширить теорию эволюции Дарвина на неживую природу, показать, что биологическая эволюция является одним из этапов развития природы, и предсказать направление эволюционного развития после него. Кроме того, авторы дают свою версию определения жизни и ее эволюционного смысла.
1 Первый и второй уровни эволюции
Термином «эволюция» обычно называют переход материи от простого состояния к более сложному и одновременно к более совершенному состоянию. Эволюция считается процессом развития материи «вперед», а противоположный процесс развития материи «назад» от сложного состояния к более простому состоянию принято называть разложением или деградацией. Направление движения «вперед» мы пока оставим на интуитивном уровне понимания, однако ниже будет сформулировано более точное определение эволюции.
Эволюционирует ли неживая природа? Рассмотрим общеизвестные состояния неживой материи:
Каждое следующее из перечисленных состояний можно считать совершенней и сложней предыдущего. На интуитивном уровне понимания направление движения «вперед» присутствует, значит, эволюция неживой природы, по крайней мере, была. Вспомним основные движущие факторы биологической эволюции Дарвина:
Из допущения возможности эволюции неживой природы вытекает следующий вопрос. Какие у нее могут быть основные движущие факторы? Выдвинем следующую, кажущуюся невероятной, гипотезу: движущие факторы эволюции живой и неживой природы одинаковые, их отличие только в механизмах действия. Для ее проверки переформулируем три основных движущих фактора биологической эволюции в более общий вид для произвольного материального объекта и добавим четвертый фактор, который, вероятно, Дарвин подразумевал по умолчанию:
На рисунке 1 показана условная последовательность действия факторов эволюции. На самом деле все они, конечно, действуют одновременно.
Рис. 1.
Очевидно, что наши модифицированные формулировки движущих факторов эволюции остались эквивалентными движущим факторам Дарвинизма при их применении к живым формам существования. Введем два определения.
Эволюция первого уровня – это способ эволюции неживой природы.
Эволюция второго уровня – это способ эволюции природы, основанный на факторах биологической эволюции Дарвина.
Общую сущность факторов эволюции на обоих уровнях можно сформулировать так: текущую форму существования сохраняют только наиболее приспособленные к изменившимся внешним условиям материальные объекты. В этом смысле факторы эволюции первого и второго уровней эквивалентны. Рассмотрим механизмы действия переформулированных в более общем виде факторов эволюции на ее первом уровне.
Сопротивление объекта неизбежным изменениям с целью сохранения его текущей формы существования
Смысл первого фактора в том, что материя стремится сохранить свое достигнутое состояние, сопротивляясь его изменению. Изменения неизбежны, потому что противное означало бы остановку времени, но сопротивление изменениям влияет на то, какими именно будут изменения.
Механизм сопротивления неживого материального объекта неизбежным изменениям основан на третьем законе Ньютона – сила действия равна силе противодействия. Привносящая изменения сила наталкивается на противоположную силу сопротивления изменениям, например, твердые материальные тела стремятся сохранить свою форму, противодействуя внешним силам.
В отличие от неживых объектов живые могут сопротивляться неизбежным изменениям еще одним качественно новым энергетически затратным способом. Они сами изменяют окружающую среду таким образом, чтобы продлить свое существование в живом виде. Поскольку живая природа находится под воздействием одновременно двух уровней эволюции, то появление у нее дополнительной возможности самой вносить изменения в окружающую среду с целью борьбы за существование фактически означает усиление сопротивления изменениям.
Пример. Чтобы не замерзнуть зимой, человек построил деревянный дом. Изменения в природе: раньше деревья росли, а теперь из них построены стены дома.
Мы изменяем поверхность планеты Земля благодаря действию фактора эволюции второго уровня – борьбы за существование, или, что эквивалентно, – сопротивления неизбежным изменениям.
Итак, в сравнении с эволюцией первого уровня на втором уровне сопротивление живой природы неизбежным изменениям возрастает, однако достигается это ценой ускорения изменений в окружающей ее неживой и живой природе. У эволюции второго уровня рост сопротивления изменениям приводит не к замедлению, а к ускорению изменений и эволюции.
Количественное или качественное изменение формы существования объекта
На первом уровне эволюции фактор естественного отбора действует по-другому механизму, ведь материя неуничтожима. В случае недостаточно сильного сопротивления изменениям второй фактор эволюции принуждает неживой материальный объект менять форму существования. Однако суть действия от этого не меняется – в своем прежнем виде материальный объект уже более не существует.
Пример. Метеорит падает на Луну. В момент удара и Луна, и метеорит сопротивляются изменившимся внешним условиям в стремлении сохранить свои формы. Масса Луны многократно больше, поэтому второй фактор эволюции вносит в ее форму существования лишь количественные изменения – на ее поверхности появляется еще один кратер. Но материи метеорита приходится качественно менять форму своего существования – часть его переходит в газообразное состояние и медленно оседает на поверхность Луны в виде пыли, а оставшаяся рассыпается на мелкие куски.
Отметим, что после качественной смены формы существования материя бывшего объекта всегда оказывается приспособленной к существованию в изменившихся условиях.
Модификация способов сопротивления объекта неизбежным изменениям
В разных условиях внешней среды способы сопротивления неживой материи изменениям являются разными. Мы знаем, что одни и те же материальные объекты ведут себя по-разному в условиях сверхнизких и сверхвысоких температур, давлений, гравитационных и электромагнитных полей, в разной по химическому составу окружающей среде и так далее. При действии в совокупности эти и многие другие свойства окружающей среды порождают огромное количество разных способов сопротивления неживой материи неизбежным изменениям.
Таким образом, в эволюции первого уровня источником модификации способов сопротивления объекта неизбежным изменениям является окружающая среда. Ниже это утверждение будет подробнее пояснено.
Что такое эволюция природы?
Мы предполагаем, что эволюция обязательно должна нести в себе элемент новизны. Поведение неживой природы подчиняется жестко определенным законам физики. У неживой материи нет никакого выбора – например, строение атомов и молекул однозначно следует из современной Стандартной модели элементарных частиц. Если при атмосферном давлении нагреть воду до 100°C, то она всегда начнет закипать, а при охлаждении до 0°C всегда начнет превращаться в лед. Здесь нет никакого элемента новизны, и все полностью предопределено. Действительно, эволюции неживой природы не хватает чего-то еще, что позволило бы ей проявлять новые свойства материи в условиях действующих законов физики. Где здесь эволюция?
Для ответа на этот ключевой вопрос нам придется прибегнуть к аксиоматике и сформулировать аксиому необратимости эволюционных процессов, которая расширяет гипотезу Луи Долло [i] на неживую природу.
Текущее состояние материи вселенной неповторимо в будущем.
Обратное означало бы, что время вселенной может течь по замкнутому контуру. Смысл аксиомы в том, что каждое текущее состояние вселенной уникально. Это означает, что в каждый момент времени в состоянии материи вселенной появляется элемент новизны относительно всех ее прошлых состояний, который и дает возможность эволюции неживой природы.
Пока внешние условия существования меняются незначительно, мы можем не замечать эволюции неживого объекта. Однако, в конце концов условия существования изменятся настолько, что проявят его ранее нам неизвестные, «дремавшие» его свойства.
При изменении температуры вода может оставаться водой или превращаться в лед или в пар, однако внешние условия ее существования всегда будут уже новыми. Эти новые внешние условия создают новые уникальные внутренние состояния и свойства молекул воды, и если мы этого не замечаем, то это значит, что мы пока недостаточно внимательны.
В подтверждение этого утверждения приведем еще один пример с водой. Как известно, в белковых телах преобладают углеродосодержащие молекулы и вода. Синтез белков в организме представляет собой сложный процесс, напоминающий процесс производства молекулярного завода, работающего по заданной программе. Причем молекулы воды тоже являются частью этого завода и управляющего им молекулярного компьютера, о принципах работы которого мы пока имеем лишь самое смутное представление. В белковой среде молекулы воды проявляют новые пока неизвестные нам свойства, участвуя в обработке и передаче информации.
Следствием нашей аксиомы является то, что эволюция неживой природы продолжается и в настоящее время, причем мы обнаруживаем, что она ускоряется благодаря параллельно идущей биологической эволюции. Все искусственные химические материалы производятся людьми благодаря помещению сырья и полуфабрикатов в новые внешние условия, самопроизвольное возникновение которых в условиях неживой природы крайне маловероятно.
А теперь все предыдущие умозаключения уже позволяют нам дать более точное определение понятия эволюции природы, формализующее наше интуитивное представление о движении «вперед».
Эволюция природы – это процесс создания природой новых, ранее не существовавших, форм и условий существования материи.
2 Определение жизни
Во второй части работы мы попробуем найти ключевые признаки, отличающие живую природу от неживой, и на их основе сформулировать определение, формализующее понятие жизни. Свои версии определения феномена жизни дали многие исследователи, однако, общепринятого определения у нас нет до сих пор.
Поставим задачу более строго. Предположим, что у нас есть возможность наблюдать не только за поведением знакомого или не знакомого нам объекта, но и за внутренним состоянием его материи. Тогда будем искать такое определение, которое по результатам этого наблюдения однозначно позволило бы отнести объект к живой или к неживой природе.
Поведение объекта определяет первый фактор эволюции. Поэтому ключевые отличия живой и неживой природы будем искать в отличиях их способов сопротивления неизбежным изменениям. Живой объект сам является источником изменений, причем он имеет возможность выбора из набора доступных ему видов реакций на внешние и внутренние условия. Технически живой объект можно представить как систему управления, блок-схема которой приведена на рисунке 2.
Рис. 2
Обратим внимание, что для алгоритма управления F внутреннее состояние материального тела живого объекта, в сущности, является только одним из видов внешних условий. Внутренние изменения могут быть следствием внешних изменений, а могут и не быть. Приведем по одному примеру обоих случаев.
Понижение температуры окружающего воздуха может грозить живой особи переохлаждением. Здесь изменение внутреннего состояния особи является следствием изменения внешних условий.
Напротив, главная причина старения организма особи заключается не в изменении внешних условий, а в том, что механизм старения клеток закодирован в полученной особью от родителей наследственной информации.
Алгоритм управления F работает с учетом прошлого опыта. Прошлый опыт может возникать двумя способами:
Память для хранения прошлого опыта, переданного с наследственной информацией, является частью алгоритма управления. Обратим внимание, что для живого объекта наличие накопленного в процессе жизнедеятельности опыта не является обязательным, в противном случае новорожденных детей нельзя было бы признать живыми. Поэтому для живого существа не является обязательным и наличие у него показанного пунктиром блока памяти для хранения накопленного в процессе жизнедеятельности опыта.
Любой алгоритм управления основан на попытке приближения наблюдаемых параметров к набору неких целевых значений. Целями алгоритма управления F могут быть: противостояние вредоносным бактериям и вирусам, утоление голода, отдых, воспитание детей, победа на соревнованиях, зарабатывание денег и так далее. Очевидно, что главной целью живого существа должна быть борьба за жизнь. Эта цель всегда должна иметь наивысший приоритет, все остальные цели возникают только в такие моменты времени, когда алгоритму управления удалось создать условия, при которых угроза жизни временно устранена.
А теперь, после всех предыдущих умозаключений, мы, наконец, дадим свою версию определения жизни.
Материальный объект является живым, если в целях борьбы за свое существование он может использовать хотя бы один управляемый им энергетически затратный способ влияния на свое внутреннее состояние и/или окружающую среду.
Приведем два важных следствия из определения жизни.
Следствие 1. Все живые материальные объекты ведут энергетически затратный способ существования.
Датчики, процессор, память и исполнительные механизмы не являются вечными двигателями, для их работы требуется источник энергии.
Следствие 2. Все материальные объекты, ведущие энергетически не затратный способ существования, являются неживыми.
Следствие 2 логически следует из следствия 1.
Теперь проверим наше определение на примерах. Отметим, что следствие 2 сразу позволяет отнести к неживой природе все объекты с энергетически не затратным способом существования, такие как: камни, озера, карандаши, ложки и многие другие. Этот вывод совпадает с нашим жизненным опытом.
Теперь проверим определение на объектах с энергетически затратной формой существования.
Костер. Когда дров в костре много, огонь разгорается, когда дров остается меньше, огонь постепенно затухает. Может быть, огонь становится меньше потому, что костер хочет дольше гореть? Нет, интенсивность реакции горения определяется только количеством и качеством дров и состоянием внешней среды. Это не костер управляет интенсивностью горения, а человек, подкладывая в костер дрова. Вывод: неживой.
Ребенок в чреве матери. Для своего роста он использует энергетически затратный способ синтеза белка, который ему нужен для последующего рождения. Вывод: живой.
Выводы из приведенных примеров показывают, что у них нет противоречий со здравым смыслом. Предлагаем читателям самим проверить определение на Солнце, летящей пуле, растениях, на семенах растений, на яйцах птиц и земноводных, на сперматозоиде, молекуле белка и на любых других объектах.
Мы же проверим наше определение на самом сложном и одновременно самом интересном примере с, казалось бы, заранее известным ответом.
Представим себе созданного людьми несложного робота, который запрограммирован на выполнение правила стропальщика: «Не стой под грузом!» Робот может ездить на четырех колесах по огороженной со всех сторон забором площадке. Подъемный кран держит над площадкой груз, а крановщик старается расположить его над роботом. Робот следит за положением груза и, стараясь не оказаться под ним, все время отъезжает в сторону.
По нашему определению такой робот оказывается живым. В тоже время, наш здравый смысл отказывается считать такой ответ истиной.
Борется ли робот за свое существование, когда он отъезжает из-под груза? Он ведь не понимает, зачем он это делает. Значит, он отъезжает не в целях борьбы за существование, и, может быть, поэтому перестает соответствовать нашему определению жизни? Однако определение не случайно не требует, чтобы живой объект что-то осознавал. Наши безусловные рефлексы действуют аналогично программе робота из примера. Если мы случайно дотронемся до горячего предмета, то отдернем руку еще до того, как осознаем, зачем мы это сделали. Объекты растительного мира, который мы причисляем к живой природе, тоже вряд ли что-то осознают в процессе своей жизнедеятельности.
Зададимся следующим вопросом. Основывается ли вывод нашего здравого смысла, что робот не живой, на его поведении? Оказывается, нет. Наш здравый смысл причисляет робота к неживой природе только на основе нашего прошлого опыта о том, что роботы живыми не бывают. В доказательство этого утверждения представим, что вместо робота на нашей огороженной забором площадке будет живое существо – собака. Собака может бегать, лаять, бросаться на забор, но меньше всего ее будет беспокоить тот факт, что груз окажется над ней. Она тоже не осознает опасности от нависшего над ней груза, а ее условные и безусловные рефлексы не заставляют ее отбежать в сторону. В нашем примере робот борется за свое существование более адекватно сложившимся внешним условиям, чем собака, и, тем не менее, наш здравый смысл продолжает считать собаку живой, а робота нет. Полное игнорирование поведения робота при отнесении его к неживой природе порождает первые сомнения в истинности выводов нашего здравого смысла.
И все-таки что это – ошибка в формулировке определения или определение предсказывает возможность существования новой, отличной от биологической формы жизни? Может быть, наш здравый смысл относит робота из примера к неживой природе, исходя из стереотипа мышления, что жизнь может существовать только в биологической форме? Поиску ответов на эти вопросы посвящена третья часть работы.
3 Третий уровень эволюции
Наш последний пример показывает, что возможность существования созданных людьми роботов, которые в той или иной форме способны бороться за свое существование, не вызывает сомнений. Остался открытым вопрос: живые они или нет?
Предположим, что они живые, тогда, поскольку они созданы представителями биологической жизни, их форму жизни далее будем называть вторичной, а биологическую первичной. Термин «вторичная форма жизни» подчеркивает то, что она не может возникнуть из неживой природы, а может быть создана только «первичной формой жизни», то есть биологической.
Доказать возможность существования вторичной формы жизни можно теоретическим способом. Если мы сумеем найти движущие факторы эволюции вторичной формы жизни и доказать, что в сравнении с движущими факторами биологической эволюции Дарвина они приводят к дальнейшему усилению борьбы за существование и к ускорению эволюции, то тогда будем считать доказанной и саму возможность существования вторичной формы жизни.
Вспомним, что эволюция Дарвина объясняет появление новых биологических видов, а не эволюцию отдельно взятой живой особи. Более того, Дарвинизм даже исключает эволюцию отдельно взятой живой особи, потому что механизм приспособления биологической жизни к изменяющимся внешним условиям заключен в наследственной изменчивости. Следствием этого является то, что приспособиться к новым внешним условиям имеет шанс не сама живая особь, а только ее потомки.
Поэтому по аналогии с первичной формой жизни движущие факторы эволюции вторичной формы жизни мы будем искать, рассматривая не отдельно взятого ее представителя, а на воображаемом примере некоторого социума представителей вторичной жизни по аналогии с биологическим видом. То есть в своем допущении о возможности существования вторичной формы жизни нам придется пойти еще дальше и предположить, что сначала с помощью людей, а позже и самостоятельно представители вторичной формы жизни смогут создавать себе подобных.
Мы не имеем в виду завод, с конвейера которого сходят неотличимые друг от друга роботы. Внешне они действительно могут быть неотличимыми, но мы исходим из того, что по аналогии с биологической жизнью каждая особь вторичной жизни должна быть уникальной и для сохранения единства вида обладать изменчивой наследственной информацией не менее чем от двух родителей. Опишем один из многих теоретически возможных способов создания себе подобных представителями вторичной формы жизни в процессе спаривания двух бесполых особей.
Наследственной информацией существа вторичной формы жизни будем считать только управляющий алгоритм , рис.2. Принципиальным отличием такого подхода к наследственной информации от биологической жизни является то, что в ней наследственной информацией является еще и строение всего организма живого существа, то есть еще и датчиков, процессора, исполнительных механизмов. Новый подход к наследственной информации позволяет сделать алгоритм работы
и накопленный в процессе жизнедеятельности опыт
отделяемыми от остального тела существа вторичной формы жизни. Появляется возможность их переноса в новое, например, построенное на усовершенствованной элементной базе тело. Это делает представителей вторичной формы жизни защищенными от старения их тел.
Здесь мы находим первое необходимое условие для нашего доказательства возможности существования вторичной формы жизни – это ее усиление борьбы за существование по сравнению особями биологической жизни. Возможность избежать смерти от старости, конечно, означает усиление борьбы за существование, то есть за жизнь.
Вернемся к процессу спаривания особей вторичной формы жизни. Подобно тому, как кодируется ДНК в дискретных генах, управляющий алгоритм F может быть закодирован частями. Допустим, что у нас есть два бесполых представителя вторичной формы жизни с управляющими алгоритмами и
и накопленным в процессе жизнедеятельности опытом
и
. В процессе их спаривания будут образованы два новых управляющих алгоритма
и
. Каждый из них составлен из частей родительских алгоритмов, которые случайным образом выбираются или из
, или из
. Далее новые алгоритмы управления обратно загружаются в прежние тела двух представителей вторичной формы жизни –
загружается в тело первого, а
в тело второго, на места
, и
соответственно. Обратим внимание, что в результате спаривания данные в памяти о накопленном в процессе жизнедеятельности опыте каждого из двух представителей вторичной формы жизни не изменились.
В результате такой процедуры как было два живых существа, так и осталось, причем, благодаря сохраненной памяти о своем прошлом, каждое из них продолжает считать себя прежней личностью, то есть осталось живым. Изменился только образ мышления каждого из них. Теперь он имеет некоторые черты их партнера. Сами партнеры могут выбираться случайным образом из представителей социума, проживших больше наперед заданного количества лет. Таким образом, в процессе жизни представитель вторичной формы жизни может пройти через через эту процедуру многократно.
В целях воспроизводства по этой процедуре могут создаваться в новых телах и новые особи. Они будут иметь новый алгоритм управления вместе с переданными с наследственной информацией безусловными рефлексами родителей, аналогичными тем, которые передаются детям в биологической жизни. У только что созданных новых особей память
для хранения накопленного в процессе жизнедеятельности опыта будет совершенно пустой. В этом случае первое время их придется воспитывать как малых детей.
Имеет ли описанная процедура спаривания какие-то преимущества относительно полового размножения в биологической жизни? Преимуществ много, но мы рассмотрим только два главных из них.
Во-первых – это возможность искусственного отбора. У социума вторичной формы жизни имеется возможность оценки того, насколько полезно для социума провел отрезок жизни его представитель между прошлым спариванием и предстоящим. Сравнивая оценки двух выбранных для спаривания особей, социум может увеличить вероятность выбора наследственных частей из управляющего алгоритма той особи, оценка которой выше. Допустим, оценка была выше у первой особи, тогда в и в
частей из
, окажется больше, чем из
. Негативная наследственность может искусственно подавляться социумом. Искусственный отбор тоже не лишен недостатков, однако известно, что в сравнении с биологическим естественным отбором он в тысячи раз ускоряет закрепление в наследственной информации желаемых признаков.
Во-вторых, в биологической жизни элементы новизны в изменчивости наследственной информации несут ее случайные мутации. Они вносят в наследственную информацию признаки, которых не было ни у одного из родителей. Природу к этому вынуждает то, что внешние условия жизни постепенно тоже начинают нести в себе принципиальные отличия от прошлых условий, в которых жили прежние поколения. Поэтому одним только прошлым опытом родителей решить задачу приспособления потомства к новым условиям жизни нельзя. Случайными мутациями природа вслепую пытается угадать в каком направлении следует направить адаптацию к внешним условиям. Лишь очень малая часть случайных мутаций оказывается полезной и закрепляется в наследственной информации через многие поколения. Особей с вредными для жизни мутациями из дальнейшей эволюции устраняет естественный отбор.
В описанном механизме спаривания особей вторичной формы жизни источник новизны в наследственной информации не упомянут потому, что в механизме спаривания его нет. Источником новизны для управляющего алгоритма F станут научно-исследовательские работы самих членов социума. Чтобы понять, насколько это эффективней случайных мутаций, достаточно представить, что новые модели наших электронных гаджетов разрабатывались бы методом внесения случайных изменений в их конструкции. Например, путем замены мест на принципиальной электрической схеме конденсатора и резистора. А потом, чтобы понять насколько полезными оказались изменения, разработчики ждали бы реакцию на них рынка.
Мы нашли и второе необходимое условие для доказательства возможности существования вторичной формы жизни – это ускорение ее эволюции по сравнению особями биологической эволюции Дарвина. Дадим очередное определение.
Эволюция третьего уровня – это способ эволюции природы, основанный на факторах эволюции вторичной формы жизни.
Движущие факторы эволюции третьего уровня остаются теми же, что и на двух предыдущих уровнях, рис.1, но отличаются от них только особенностями механизмов действия. Вот они:
Обратим внимание, что в сравнении с движущими факторами эволюции второго уровня, то есть эволюции Дарвина, изменениям подвергся только третий фактор эволюции, а именно фактор, определяющий способ модификации сопротивления неизбежным изменениям.
Механизм действия третьего фактора уже описан выше. Отметим, что искусственный отбор и самосовершенствование внутреннего состояния объекта означают, что на третьем уровне эволюции природа предоставляет представителям вторичной формы жизни самим решать, как им самим себя видоизменять. Это большой шаг вперед и первое качественное отличие эволюции третьего уровня от эволюции первых двух уровней.
Видно, что первый и третий факторы относятся к ведущему борьбу за свое существование материальному объекту. Четвертый фактор относится к внешним и внутренним условиям существования объекта, на которые сам объект начинает оказывать влияние уже на втором биологическом уровне эволюции. Вспомним пример о том, как чтобы не замерзнуть зимой, человек построил дом.
Вторым качественным отличием эволюции третьего уровня от первых двух уровней является то, что под частичный контроль объекта попадает даже и естественный отбор. Дело в том, что в случае уничтожения существа вторичной формы жизни естественным отбором его алгоритм управления и накопленный в процессе жизнедеятельности опыт, то есть память о его прошлом, в основном, хотя и не полностью, могут быть восстановлены с их резервной копии.
В заключение сформулируем теперь уже очевидную предопределенную эволюцией природы историческую миссию живой материи или искомый многими поколениями исследователей смысл жизни.
Эволюционная миссия живой материи заключается в совершенствовании ее способов борьбы за существование.