Что такое втек на хонде аккорд
Nav view search
Навигация
Искать
Про Хондовские двигатели серии «К» в интернете написано довольно много статей, а обсуждений на различных форумах ещё больше. Казалось бы: нет необходимости возвращаться к этой теме и писать что то ещё. Но вот читая всё э то, в том числе в «родном» CRV-клубе, я регулярно обнаруживаю, что в сети культивируются некие стереотипы, которые по моему мнению не всегда соответствуют действительности. Как правило они базируются на выводах, сделанных кем то и когда то, и не всегда эти выводы обоснованы. Дело доходит до смешного: статьи из разных источников, написанные в разное время, содержат абсолютно совпадающие абзацы, что чётко говорит о заимствовании авторами друг у друга. А потом всё это разносится по форумам и таким образом зарождаются мифы, которые живут и множатся, навсегда оторвавшись от первоисточника. Точно так же в народе рождались сказки, и со временем трудно разобраться: где правда, а где вымысел.
Вот об этом я и хочу порассуждать, попробовать обосновать или опровергнуть некоторые мифы про двигатели серии «К», а кого то познакомить с этими двигателями.
Часть первая:
«i-VTEC»
Шильдик » i-VTEC» красуется на всех Хондах с этими моторами. Считается, что это круто, что двигатели с этой системой сочетают повышенную мощность и экономичность. Давайте разбираться.
С одной стороны, чем выше скорость вращения двигателя тем больше рабочих тактов совершает он за единицу времени и тем больше создаваемая им мощность. Но с другой стороны, чем выше обороты, тем меньше времени отводится на заполнение цилиндра топливо-воздушной смесью, тем меньше её попадёт в цилиндр и сгорит там, а значит меньше будет работа выполненная цилиндром за один такт. Поэтому у стандартного современного бензинового шестнадцатиклапанного двигателя до скорости примерно 5000-6000 об/мин. мощность растёт, но с дальнейшим увеличением скорости начинается падение мощности, обусловленное ухудшением наполняемости цилиндров. Вот где ограничивается максимальная мощность!
Для улучшения наполняемости цилиндров смесью применяются разные способы, например популярный сейчас турбонаддув. Система VTEC позволяет разрешить конфликт иным путём: газораспределительные валы имеют два набора кулачков разной формы – одни для низких оборотов, другие для высоких.
За счёт переключения кулачков обеспечивается оптимальные высота и время подъёма клапанов для экономичной езды на малых оборотах, и оптимальные параметры для получения максимальной мощности на высоких оборотах.
Правда и тут есть нюанс: параметры кулачков оптимизированы под крайние режимы. А что делать в промежуточных, ведь переключение параметров происходит скачкообразно? В интернете можно найти видео, где на двадцатилетних «заряженных» Цивиках демонстрируется резкий «подхват» с рывком. Но двигатели серии «K» работают гораздо эластичнее, т.к. систему VTEC разработчики дополнили системой изменения угла поворота одного распредвала относительно другого – VTC.
С таким арсеналом инженеры Хонды смогли без применения наддува отодвинуть «планку» падения мощности на 1500-2000 об. выше и из «атмосферного» двигателя выжать бОльшую максимальную мощность так, что бы не страдала эффективность двигателя на малых и средних нагрузках. И это действительно сделало семейство этих двигателей неординарным: «табун в две сотни лошадей» из двухлитрового атмосферника – согласитесь, впечатляет!
А теперь от триумфа переходим к реальности. Двигателей, у которых полностью реализованы возможности i-VTEC, в линейке «K» меньшинство. Такими моторами могут похвастаться например владельцы Honda Accord с седьмого поколения (после 2002 г.в.) с двигателем K24A3:
У этого двигателя двойной набор кулачков и на впуске и на выпуске, переключение VTEC на 6000 об/мин., степень сжатия 10,5 : 1, и выдаёт он 190 л.с. на 7000 об/м. с крутящим моментом 223 Нм на 4500 об/м.
Другой вариант реализации i-VTEC у двигателя K20A (без цифры после буквы A) тоже с выдающимися характеристиками. У этого мотора переключение кулачков только на впуске, а выпускной распредвал имеет по одному кулачку на каждый цилиндр, и через сдвоенный рычаг он открывает два клапана сразу.
Эти двигатели выдают 220 л.с. на 8000 об/м. и крутящий момент 206 Нм на 7000 об/м. Японцы ставили их на машины «для себя»: праворульные Civic Type-R, Integra, Stream…
Что имеют остальные моторы этого знаменитого семейства? Большинство «гражданских» Хонд, которые катаются на просторах Американских континентов, Европы, в т.ч. России и СНГ, имеют незаурядные дефорсированные версии этого замечательного двигателя: K20A1 (европейский Stream 01-06 г.), K20A3 (американский Civic 02-05 г.), K20A4 (европейская CR-V 02-06 г.), K24A1 (американская CR-V 02-06 г.), K24A4 (Element 03-06 г.), K24Z1 (американская CR-V 07-11 г.), K24Z4 (европейская CR-V 07-12 г.) и т.д. Список довольно длинный.
Выпускные распредвалы этих двигателей имеют по одному кулачку на цилиндр. А впускные распредвалы формально по два кулачка, но фактически тоже по одному:
Смотрим ещё внимательнее на впускной вал:
Коромысло двойное (а не тройное), один (на фото справа) кулачок нормальный, а второй (левый) слегка выпуклый почти круглый! Когда VTEC выключен, работает только один клапан, а второму клапану круглый кулачок делает «лёгкий массаж». И только когда включается VTEC (тут это происходит на 3000 об.мин.), рокеры объединяются и оба клапана работают по одному стандартному кулачку.
Не верится? Вот в подтверждение сказанного, диаграмма из оригинального сервис-мануала без всяких купюр и редактирования:
Маленький бугорок на левой диаграмме – это работа второго клапана на низких оборотах.
Получается, что до 3000 об/мин. мотор придушен, а после трёх тысяч – это обычный «шестнадцатиклапанник».
Ну и какой толк от такого VTECа? Официально считается, что такое решение придаёт экономичности двигателю на малых нагрузках. Ерунда это! На малых оборотах в двигатель поступает небольшое количество смеси и совершенно неважно, через одну «дырку» она туда будет засасываться или через две. Тот же самый «экономический» эффект легко можно получить просто уменьшив угол открытия дроссельной заслонки и ECM (блок управления двигателем) автоматически уменьшит количество подаваемого в двигатель топлива.
Могу взять на себя смелость заявить, что малофорсированные двигатели из линейки «К» по своим базовым характеристикам несильно отличаются от своих предшественников того же объёма. Предлагаю сравнить основные параметры двухлитровых двигателей, которыми оснащались CR-V первых трёх поколений для европейского рынка (несмотря на множество различий, все они вписаны в одинаковые габариты и примерно одинаковы по массе):
CR-V 1 (с 1999 г.в.) | CR-V 2 | CR-V 3 | |
Двигатель | B20Z | K20A4 | R20A |
Рабочий объём | 1973 | 1998 | 1997 |
Степень сжатия | 9,6 | 9,8 | 10,5 |
Макс. мощность | 147 л.с. (110кВт) при 6200 об/м | 150 л.с. (112 кВт) при 6500 об/м | 150 л.с. (112 кВт) при 6200 об/м |
Крутящий момент | 180 Нм при 5500 об/м | 192 Нм при 4000 об/м | 189 Нм при 4200 об/м |
Макс. обороты | 6800 об/мин. | 6800 об/мин. | 7100 об/мин. |
Как видим K20 немного лучше своего предшественника B20 и даже своего последователя R20, прежде всего это касается крутящего момента, в чём лично я вижу заслугу системы VTC, в остальном различия незначительны или их нет.
Благодаря опять же VTC, двигатели «К» вписываются в более строгие экологические нормы «Евро 4» даже без применения дополнительной системы рециркуляции выпускных газов EGR (частичная рециркуляция видимо обеспечивается за счёт перекрытия фаз).
А что с расходом топлива? Тут конечно надо понимать, что расход зависит не только от двигателя, но и от других характеристик автомобиля, условий его эксплуатации, стиля вождения и даже времени года… Но анализируя информацию из интернета, общаясь с владельцами CR-V на работе, да и из личного опыта, могу сказать, что тут «революции» не произошло – у CR-V всех поколений средний расход примерно одинаковый: 9-11 л./100км. по трассе, и до 15 л. в городе.
Принцип работы VTEC
SkyNet
Заблокирован
Двигатель внутреннего сгорания преобразует химическую энергию, накопленную в топливе, в тепловую. Такое преобразование происходит во время сгорания горючей смеси. При этом возрастает температура и давление в цилиндре. Под давлением поршни двигателя опускаются вниз и, толкая коленчатый вал, приводят его в движение. Так химическая энергия преобразуется в механическое движение. Механическая сила определяется величиной крутящего момента. Способность двигателя поддерживать некоторую величину крутящего момента при некотором числе оборотов в минуту определяется как мощность. Мощность определяет, какую работу может производить двигатель. Весь процесс, осуществляемый двигателем внутреннего сгорания, не эффективен на 100%. На самом деле всего около 30% энергии, содержащейся в топливе, преобразуются в механическую энергию.
Теоретическая физика говорит о том, что при данном КПД для достижения высокой отдачи от мотора необходимо использовать больше топлива: в результате существенно возрастет мощность. Очевидно, что в этом случае нужно использовать двигатель с огромным рабочим объемом и поступиться принципами экономичности. Другой метод диктует необходимость предварительно сжимать топливную смесь посредством турбины и затем сжигать ее в цилиндрах небольшого размера. Однако и в этом случае расход топлива будет пугающим. В свое время концерн Honda пошел по иному пути, начав исследования с целью оптимизации работы двигателя внутреннего сгорания. В результате появилась технология VTEC, наделяющая мотор отменной экономичностью на низких оборотах и высокой мощностью при его «раскручивании».
Два алгоритма
Если сравнить скоростные характеристики различных двигателей, то нетрудно заметить, что у одних максимум крутящего момента достигается на низких оборотах (в диапазоне 1800-3000 об/мин), у других — на более высоких (в диапазоне 3000-4500 об/мин). Оказывается, есть зависимость между тем, каким образом на распределительном валу установлены кулачки, открывающие клапаны, и тем, какую мощность развивает мотор на различных оборотах коленчатого вала. Чтобы понять, чем это вызвано, представьте себе двигатель, работающий крайне медленно. Например, при 10-20 оборотах в минуту рабочий цикл в одном цилиндре занимает 1 секунду. При опускании поршня впускной клапан открывается, позволяя горючей смеси наполнить цилиндр, и закрывается, когда поршень достигает нижней мертвой точки. После завершения цикла сгорания поршень начнет движение вверх. При этом откроется выпускной клапан, позволив отработавшим газам покинуть рабочий объем цилиндра и закроется, когда поршень достигнет верхней мертвой точки. Такой алгоритм был бы идеален, если бы мотор работал на минимуме оборотов. Однако в реальной жизни двигатель куда энергичней.
С ростом ритма работы мотора описанный алгоритм просто не выдерживает критики. Если число оборотов коленвала достигает 4000 в минуту, клапаны открываются и закрываются 2000 раз ежеминутно, или 30-40 раз каждую секунду. На такой скорости поршню чрезвычайно сложно всосать в цилиндр необходимый объем горючей смеси. То есть в результате впускного сопротивления возникают насосные потери, и это главная причина, по которой уменьшается эффективность работы двигателя. Для облегчения участи мотора при работе на больших оборотах приходится, например, шире открывать впускной клапан. Разумеется, это упрощенное описание работы, но оно дает общее представление. Однако на малых оборотах такой алгоритм не годится: настройка распредвала «на скорость» лишь увеличит расход топлива. Следовательно, для лучшей эффективности нужно сочетать оба алгоритма работы, которые воплощены в механизме VTEC.
Появившись в 1989 году, система VTEC дважды модернизировалась, и сегодня мы имеем дело с ее третьей серией. Система VTEC использует возможности электроники и механики и позволяет двигателю эффективно распоряжаться возможностями сразу двух распредвалов, или, в упрощенных версиях, одного. Контролируя число оборотов и диапазоны работы силового агрегата, его компьютер может активизировать дополнительные кулачки с тем, чтобы подобрать наилучший режим работы.
DOHC VTEC
В 1989 году на внутренний японский рынок поступили две модификации Honda Integra — RSi и XSi, использовавшие первый двигатель с системой DOHC VTEC. Ее силовой агрегат модели B16A при объеме 1,6 литра достигал мощности в 160 л. с., но при этом отличался хорошей тягой на низах, топливной экономичностью и экологической чистотой. Поклонники марки Honda до сих пор помнят и ценят этот великолепный мотор, тем более что его многократно усовершенствованный вариант и по сей день используется на моделях Civic.
Двигатель с системой DOHC VTEC имеет два pаспpедвала (один для впускных, другой для выпускных клапанов) и 4 клапана на цилиндр. Для каждой пары клапанов предусмотрена особая конструкция — группа из трех кулачков. Следовательно, если мы имеем дело с 4-цилиндровым 16-клапанным мотором с двумя распредвалами, то таких групп будет 8. Каждая группа занимается отдельной парой клапанов. Два кулачка расположены на внешних сторонах группы и отвечают за действие клапанов на низких оборотах, а средний подключается на высоких оборотах. Внешние кулачки непосредственно контактируют с клапанами: опускают их при помощи коромысел (рокеров). Отдельный средний кулачок до поры до времени вращается и вхолостую нажимает на свое коромысло, которое активируется при достижении определенного высокого числа оборотов коленвала. В дальнейшем эта центральная часть отвечает за открытие и закрытие клапанов, хотя и действует как специальный промежуточный механизм.
Когда двигатель работает на малом ходу, пары впускных и выпускных клапанов открываются соответствующими кулачками. Их форма, как и у большинства аналогичных моторов, выполнена в виде эллипса. Однако эти кулачки способны обеспечивать лишь экономичный режим работы двигателя и только на малых оборотах. При достижении высокой скорости вращения распредвала задействуется специальный механизм. «Незанятый» до этого работой средний кулачок вращался и без какого-либо эффекта нажимал на среднее коромысло, никак не связанное с клапанами. Однако во всех трех коромыслах предусмотрены отверстия, в которые под высоким давлением масла загоняется металлический пруток. Таким образом, группа жестко фиксируется и в дальнейшем работает как одно целое. Тут в работу вступает отдыхавший до этого средний кулачок. Он имеет более продолговатую форму и поэтому при его нажатии все три коромысла, а значит и клапана, опускаются гораздо ниже и на больший промежуток времени остаются открытыми. В этом случае двигатель может «дышать» свободнее, развивать и поддерживать высокий крутящий момент и хорошую мощность.
SOHC VTEC
После успеха системы DOHC VTEC компания Honda с еще большим рвением подошла к развитию и использованию своей новации. Моторы с VTEC проявили себя как надежные и экономичные, стали реальной альтернативой увеличению рабочего объема или использованию турбин. Поэтому несколько позднее была представлена система SOHC VTEC. Подобно своему «коллеге» DOHC новинка также предназначалась для оптимизации работы двигателя в разных режимах. Но из-за простоты своей конструкции и более скромных показателей мощности двигатели с SOHC VTEC выпускались меньшими объемами. Одним из первых двигателей, использующих упрощенную систему, стал обновленный агрегат D15B, выдававший 130 л. с. при объеме в 1,5 л. Этот мотор с 1991 устанавливался года на Honda Civic.
В моторе SOHC предусмотрен один-единственный распредвал на весь блок цилиндров. Поэтому кулачки впускных и выпускных клапанов располагаются на одной оси. Однако здесь также предусмотрены группы-тройки, в каждой из которых есть один специальный центральный кулачок. Простота конструкции заключается в том, что в двух режимах — для низких и для высоких оборотов — могут работать только впускные клапана. Промежуточный механизм с дополнительным кулачком и коромыслом также как и в случае с DOHC VTEC перехватывает на себя открытие и закрытие впускных клапанов, в то время как выпускные всегда работают в постоянном режиме.
Может создаться впечатление, что SOHC VTEC в чем-то хуже, чем DOHC VTEC. Однако это не так: эта система имеет ряд преимуществ, среди которых простота конструкции, компактность двигателя за счет его незначительной ширины, меньший вес. Кроме того SOHC VTEC возможно вполне легко использовать на двигателях пpедыдущего поколения, тем самым модернизируя их. В итоге силовые агрегаты с SOHC VTEC достигают тех же результатов, пусть и не столь ярких и удивительных.
SOHC VTEC-E
Если назначение описанных выше систем VTEC состоит в сочетании максимальной мощности на предельных оборотах и довольно уверенной, но экономичной работе на «низах», то VTEC-E призвана помочь двигателю в достижении предельной экономии.
Но прежде чем рассмотреть очередное изобретение Honda необходимо разобраться с теорией. Известно, что топливо предварительно смешивается с воздухом и затем воспламеняется в цилиндрах (есть еще иной вариант — непосредственный впрыск, при котором воздух и топливо поступают в цилиндры отдельно). На мощность двигателя также влияет и то, насколько однородна такая смесь. Дело в том, что на малых оборотах невысокая скорость потока при всасывании препятствует смешению топлива и воздуха. В результате на холостом ходу двигатель может работать неуверенно. Чтобы предотвратить это, в цилиндры поступает обогащенная топливом смесь, что сказывается на экономичности. Система VTEC-E способна обеспечить уверенную работу двигателя на малых оборотах на обедненной топливом горючей смеси. При этом также достигается существенная экономия. В отличие от других механизмов, в системе VTEC-E нет никаких дополнительных кулачков. Так как эта технология нацелена на снижение потребления топлива на малых оборотах, то и затрагивает она действие впускных клапанов. VTEC-E применяется только в SOHC-двигателях (с одним распредвалом) с четырьмя клапанами на цилиндp из-за его «склонности» к низкому расходу топлива.
В отличие от других VTEC-моторов, где кулачки имеют приблизительно одинаковый профиль, в силовых агрегатах с VTEC-E используются две конфигурации. Таким образом, впускные клапана приводятся в движение кулачками различной формы. Профиль одного из них имеет традиционную форму, а другой практически круглый — слегка овальный. Поэтому один из клапанов опускается в нормальном режиме, а другой едва приоткрывается. Горючая смесь проходит через нормальный клапан легко, а через приоткрытый — весьма скудно. Из-за несимметричности потоков поступающей смеси в цилиндре возникают причудливые завихpения, в которых воздух и топливо смешиваются должным образом. В результате двигатель может pаботать на бедной смеси. С увеличением оборотов концентрация топлива растет, но режим, при котором реально работает лишь один клапан, становится помехой. Поэтому, приблизительно при достижении 2500 об/мин коромысла замыкаются и приводятся в движение нормальным кулачком. Замыкание происходит точно так же как и в других системах VTEC.
Систему VTEC-E часто незаслуженно считают изобретением, нацеленным исключительно на экономию. Тем не менее, по сравнению с простыми моторами, агрегаты с таким механизмом не только экономичнее, но и мощнее. За экономию отвечает первый режим, в котором работает один клапан, а за показатели мощности — «чистокровный» VTEC, подразумевающий широкое открытие впускных клапанов. Если сравнить два аналогичных мотора, один из которых оборудован механизмом VTEC-E, то простой агрегат окажется на 6-9% слабее и прожорливей.
Трехрежимный SOHC VTEC
Этот механизм представляет собой объединение системы SOHC VTEC и SOHC VTEC-E. В отличие от всех описанных выше систем эта имеет не два режима работы, а три. В зоне низких оборотов система обеспечивает экономичный режим работы двигателя на обедненной топливовоздушной смеси (как VTEC-E). В этом случае используется только один из впускных клапанов. На средних оборотах в работу включается второй клапан, но фазы газораспределения и высота подъема клапанов не изменяются. Двигатель в этом случае реализует высокий крутящий момент. На режиме высоких оборотов оба клапана управляются одним центральным кулачком, отвечающим за снятие с двигателя максимальной мощности. Эта система достаточно универсальна. Так, например, двигатель объемом 1,5 литра с таким газораспределительным механизмом проявляет неплохую удельную мощность: 86 л. с. на 1 л. рабочего объема. Одновременно с этим, если двигатель работает в первом, экономичном 12-клапанном режиме, расход при движении с постоянной скоростью 60 км/ч на автомобиле Honda Civic составляет около 3,5 л на 100 км.
i-VTEC
Буква «i» в названии означает intelligent, то есть «умный». Прежние версии VTEC способны регулировать степень открытия клапанов лишь в 2-3 режимах. Конструкция нового газораспределительного механизма i-VTEC предполагает использование помимо основной системы VTEC дополнительную систему VTC (Variable Timing Control), непрерывно регулирующую момент начала открытия впускных клапанов. Открытие впускных клапанов задается в зависимости от нагрузки двигателя и регулируется посредством изменения угла установки впускного распределительного вала относительно выпускного. В двигателях с i-VTEC распредвал крепится к приводному шкиву через специальную гайку-шестерню, которая способная «доворачивать» его на угол до 600.
Применение системы VTC на ряду с VTEC позволяет эффективнее наполнять цилиндры двигателя топливо-воздушной смесью, а также улучшить полноту ее сгорания. Использование механизма i-VTEC позволяет достичь приемистости эквивалентной двигателям с рабочим объемом 2 литра, при этом топливная экономичность даже лучше чем у 1,6 литрового двигателя.
Семейство газораспределительных механизмов VTEC не представляет собой ничего волшебного, но дает просто поразительный эффект. Моторы Honda прямо-таки умеют подстраиваться под нагрузку, предоставляя удивительную мощность при скромном рабочем объеме. И в то же время на холостом и малом ходах японские моторы поражают выдающейся экономичностью. Вполне возможно, что следующим этапом в развитии систем VTEC станет механизм с отдельными соленоидами на каждый клапан, что позволит с хирургической точностью регулировать открытие клапанов.
Двигатели Хонда ВТЕК (Honda VTEC): особенности, характеристики, плюсы и минусы
Практически каждый автолюбитель хоть бы раз в жизни встречал символы под капотом той или иной машины в виде аббревиатур — VTEC или I-VTEC. Но что означает данная маркировка, знает не каждый любитель автомобилей. Сокращенное понятие VTEC расшифровывается, как «Variable Valve Timing and Lift Electronic Control», что переводится, как электронная система изменения фаз газораспределения и высоты подъема клапанов в силовой установке. Основным предназначением электронной системы регулировки фаз газораспределения является оптимизация прохождения топливно-воздушной смеси в камеры сгорания двигателя.
Впервые электронная система изменения фаз газораспределения появилась в 1989 году и дойдя до нашего времени успела уже 2 раза серьезно усовершенствоваться. Поэтому сегодня мы можем видеть на некоторых новых машинах 3-е поколение системы. Сама по себе технология VTEC использует в своей работе возможности электроники и механики, что дает силовой установке очень эффективно управлять возможностями одновременно 2-ух распределительных валов, а в упрощенных двигателях формата SOHC — одним распредвалом. Система осуществляет контроль числа оборотов с диапазонами мотора таким образом, что компьютер автомобиля может активировать и подключить к работе дополнительные кулачки. Делается это для того, чтобы подобрать наиболее оптимальный режим работы.
1. ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО МОТОРОВ С СИСТЕМОЙ VTEC
Главной особенностью двигателей с системой VTEC в сравнение с традиционными силовыми установками является достижение максимального крутящего момента на более низких оборотах. Если брать характеристики разных моторов, то хорошо видно, что у одних максимум крутящего момента достигается на пониженных оборотах в диапазоне от 1800 до 3000, а у других на более повышенных, например в диапазоне от 3500 до 4500 оборотов в минуту.
Вышеописанные моменты в разнице достижения максимальных оборотов двигателями объясняется тем, что в случае более эффективного наполнения топливом камер сгорания цилиндров, дает возможность получения высокого крутящего момента на низких оборотах. Кроме того, получение высокого крутящего момента при определенных оборотах также зависит от конструкции выпускного тракта и тех или иных настроек газораспределительного механизма автомобиля. Другими словами говоря, эффективность силовой установки напрямую определяется фазами газораспределения. Справочно заметим, что данные фазы образуются благодаря особому профилю кулачков распределительного вала.
Чтобы более детально представлять принцип работы двигателя с системой VTEC, возьмем для примера двс, который работает при 20 оборотах в минуту, то есть впускные и выпускные клапана установки задействованы 10 раз в минуту, то есть достаточно редко. Для снятия же максимального крутящего момента при таких оборотах, впускной клапан обязан открываться почти в начале такта всасывания, то есть, когда поршень начинает свое движение от верхней мертвой точки, а затем закрывается в момент возврата поршня в нижнюю мертвую точку. По точно такой же схеме функционирует выпускной клапан, то есть никаких задержек с опережениями в работе клапанного механизма быть не должно, в противном случае крутящий момент снизится.
Вот именно при всем вышеописанном алгоритме работы происходит оптимальное наполнение камер сгорания цилиндров топливно-воздушной смесью и эффект от работы мотора получается наивысшим. По такому сценарию и функционирует двигатель с системой VTEC.
Цифры, которые мы привели выше для примера являются бутафорией, в реальности же частота вращения двигателя может увеличиваться до 3500-4000 оборотов в минуту и впускной с выпускным клапана в таком варианте открываются, а затем закрываются уже при показателях в 1800-2000 раз в минуту или примерно 30-35 раз за 1 секунду, что считается довольно часто. При таком режиме работы мотора на всасывание поршнем новой порции заряда, времени остается очень мало.
Вот поэтому только к моменту, когда поршень силовой установки достигает нижней мертвой точки, скорость подачи топлива, а следовательно и ее расход через проходное сечение выпускных клапанов достигают максимальных значений. В этот момент впускной клапан закрывается и основная доля порции свежего топлива, больше не может проникнуть в камеры сгорания, так как она просто на просто натыкается на закрытый клапан, который преждевременно захлопывается. В этом случае мотор начинает, как бы глохнуть, в результате чего мощность временно незначительно снижается, а максимальные обороты уменьшаются. Вся эта схема работы — заслуга фаз газораспределения системы VTEC.
Справочно заметим, что последнее 3-е поколение двигателей работающих в паре с системой VTEC имеют усредненные регулировки фаз газораспределения, которые рассчитаны на разные случаи жизни. Усредненные настройки фаз газораспределения получаются благодаря специальному профилю кулачков распределительного вала. Кроме того, конструкторы и инженеры доработали систему до такой степени, что для того, чтобы двигатель функционировал в оптимальных условиях на разных оборотах был сконструирован особый газораспределительный механизм.
В такой системе распредвал снабжается разными кулачками, как для низких, так и для высоких оборотов коленвала мотора. Благодаря чему достигается различный момент для открытия и закрытия кулачков, а также образуется высокая мощность на повышенных оборотах силовой установки.
2. КАКИЕ ДВИГАТЕЛИ ОСНАЩАЮТСЯ VTEC? ОСОБЕННОСТИ И ПОКОЛЕНИЯ СИСТЕМ ВТЕК
Первым двигателем, который стал работать с технологией VTEC стал мотор с системой SOHC, которая обладает одним распредвалом в механизме газораспределения и применяется только для впускных клапанов. Эффективность данного двигателя и системы VTEC незначительно ниже, чем у DOHC VTEC. Однако конструкция и ремонтопригодность намного проще, что также сказалось на компактных габаритах с массой силовой установки.
С течением времени двигатель SOHC стал снабжаться усовершенствованной системой VTEC-E, которая способна максимально снижать расход потребляемого топлива, что в свою очередь вызывает улучшение экологических показателей. Такой двигатель на низких оборотах функционирует на обедненной смеси, которая проникает в камеры цилиндров только через один единственный впускной клапан. Когда топливно-воздушная смесь попадает в камеры, то она завихряется и обеспечивается ее устойчивое сгорание. В том случае, если происходит увеличение оборотов двигателя, то автоматически срабатывает система VTEC-E, которая блокирует сразу впускной и выпускной клапана. После чего начинается совместная работа мотора и экономичной системы.
Затем через определенное количество времени японские инженеры с компании Honda, на автомобили которой в основном и устанавливается система VTEC, разработали газораспределительный механизм SOHC 3-stage. В паре с этим двигателем и начала действовать технология VTEC. Силовая установка SOHC 3-stage имеет 3 режима работы, в отличие от обычного «СОХСа», который имеет только 2 режима. Заметим, что в зоне низких оборотов, система VTEC в тандеме с таким мотором обеспечивает экономичный режим функционирования двигателя на обедненной смеси и в этом случае применяется только одни единственных впускной клапан.
На средних же оборотах к работе подключается 2-ой клапан, однако фазы газораспределения и высота подъема клапанов не меняется. Кроме того, в таком алгоритме работы, силовая установка достигает высокого крутящего момента. Что касается режима высоких оборотов, то тут два клапана управляются 1-им центральным кулачком, который отвечает за снятие с мотора максимальной мощности.
После чего на свет появилась силовая установка с 2-мя распредвалами и известной почти каждому автолюбителю своей маркировкой DOHC. Данный двигатель также стал активно использоваться компанией Honda для своих автомобилей совместно с технологией VTEC. Фундаментом для конструирования такого мотора стал широко используемый в автомобилестроении 4-х клапанный механизм газораспределения. В двигателях DOHC VTEC предусмотрено для каждого ряда клапанов, как впускных, так и выпускных специальное устройство в виде отдельного распредвала.
Следующей особенностью мотора является то, что на каждые 2 клапана приходиться по 3 кулачка, расположенных на распредвале. Два боковых кулачка нужны для функционирования силовой установки в случае возникновения низких и средних оборотов, а центральный необходим для высоких оборотов. Воздействие кулачков на клапана осуществляется при помощи рокера, которых также 3 единицы на 2 клапана.
Кроме того, рокеры снабжены гидравлически управляемыми небольшими поршнями, в задачу которых входит сдвигание и соединение механизма в одно целое при появлении определенного воздействия на них. Что касается среднего рокера, то он скомпонован специальной пружиной. Данная пружина обеспечивает систематический контакт кулачка с рокером на низких, а также средних оборотах.
Справочно заметим, что когда силовая установка DOHC VTEC функционирует на низких оборотах, то рокеры находятся в не заблокированном состоянии и каждый из них производит независимое движение, которое соответствует траектории кулачка. Что касается среднего кулачка, то он вращается с остальными компонентами, но участия в процессе работы газораспределительного механизма участия не принимает.
После того, как мотор переходит в режим повышенных оборотов, то автомобильный компьютер электронного типа отдает команду своему исполняющему узлу на повышение давления масла, с целью приведения в движение небольших поршней системы, которые расположены в рокерах для передвижения последних. Это в свою очередь приводит к полной блокировке рокеров. Для чего все это нужно? Дело в том, что после таких незамысловатых действий, все элементы вышеописанной группы, станут полностью подконтрольными центральному кулачку. Благодаря этому центральный кулачок теперь будет самостоятельно управлять функционированием сразу 2-ух клапанов системы.
Следующей технологией, которой стали снабжаться двигатели с механизмом изменения фаз газораспределения и высоты подъема клапанов, стала система VTC, которая непрерывно стала регулировать момент начала открытия впускных клапанов. Такая конструкция устройств получила название i-VTEC и стала базироваться на проверенном временем двигателе DOHS (DOHS i-VTEC). В силовых установках снабженных такой системой, фазы открытия впускных клапанов устанавливаются в зависимости от нагрузки мотора и настраиваются при помощи изменения угла впускного распредвала относительно выпускного.
Исходя из мнений специалистов, использование системы VTEC дает возможность более эффективно наполнять камеры сгорания цилиндров топливно-воздушной смесью. Это в свою очередь отражается в увеличении конечной мощности мотора, которая повышается в среднем на 20-25 процентов, а крутящий момент примерно на 10-15 процентов. Кроме того, благодаря такой системе происходит оптимизация расхода топлива и его дальнейшее снижение, в среднем на 15-20 процентов, что является довольно существенной экономией.
В заключении отметим, что вышеописанные двигатели в сочетании с технологией VTEC в принципе не представляют из себя вечных или сверхъестественных моторов, но эффект, который они дают в процессе функционирования просто удивляет. Силовые установки VTEC являются основными для японских автомобилей Honda и они прекрасно умеют подстраиваться под различную нагрузку, выдавая оптимальную мощность при небольшом рабочем объеме. Кроме того, как мы сказали ранее, такие двигатели не перестают удивлять своей экономичностью, особенно на холостом и малом ходах.
ИСТОЧНИК МАТЕРИАЛА — НАШ КАНАЛ ЯНДЕКС ДЗЕН