Что такое все возможные обозначения этой прямой
Прямая линия
Прямая линия — это линия, не имеющая неровностей, скруглений и углов. Прямая линия бесконечна, она не имеет ни начала, ни конца. В геометрии прямая линия называется просто прямой.
Для изображения прямой на бумаге используется линейка. Чтобы начертить прямую, надо провести черту вдоль края линейки:
Так как прямая бесконечна, то какой бы длины не была проведена черта, она будет изображать только часть прямой.
Обозначение прямой
Прямая обозначается одной маленькой латинской буквой, например прямая a, или двумя большими латинскими буквами, поставленными при любых двух точках, лежащих на этой прямой, например прямая AB:
Обратите внимание, что точки на прямой можно обозначать короткими чёрточками.
Свойства прямой
1. Через любые две точки можно провести только одну прямую линию.
Это основное свойство прямой. Оно часто используется на практике, для прокладывания прямых линий с помощью двух каких-либо объектов.
2. Если две любые точки прямой лежат на плоскости, то все точки этой прямой лежат на той же плоскости.
3. Через одну точку можно провести бесконечно много прямых.
4. Есть точки лежащие на прямой и не лежащие на ней.
Точки N и M лежат на прямой a. Точка L не лежит на прямой a.
5. Из трёх разных точек, лежащих на одной прямой, только одна может лежать между двумя другими точками.
На рисунке изображена прямая с тремя точками A, B и C, лежащими на ней. Про эти точки можно сказать:
точка B лежит между точками A и C, точка B разделяет точки A и C
Также можно сказать:
точки B и C лежат по одну сторону от точки A, они не разделяются точкой A
6. Две прямые, лежащие на одной плоскости, или пересекаются друг с другом в одной точке, или являются параллельными.
Прямая и ее части – что такое в математике, правило
В геометрии любой объект состоит из базовых элементов: точек, прямых и плоскостей. Любая фигура, не важно, плоская она или объемная, будет состоять из этих элементов. Определение точки понятно, но вот как понять, что такое прямая и как она может быть бесконечной – в 5 классе не так просто разобраться.
Определение прямой
Определение прямой начинается с определения линии. Что такое линия? Это множество точек, соединенных между собой. Линия может быть прямой, кривой, ломанной, непрерывной и даже разомкнутой. И именно из-за этого разнообразия линии очень трудно определить в пространстве. Непонятно, как пройдет та или иная кривая, когда выйдет за пределы листа. Поэтому был выделен отдельный вид линий – прямые.
Когда в разговоре вы слышите прямая – люди имеют в виду прямую линию, но последнее слово в словосочетании принято опускать.
Что такое прямая в математике? Прямые это бесконечные непрерывные линии, которые не имеют искривлений. Первое правило линий: через любые две точки можно провести линию. А вот через три точки уже не всегда. Чаще всего через три точки можно провести три прямых.
Если прямая проходит через три точки, то про эти точки говорят, что они лежат на одной прямой. Прямые, как правило, обозначают малой латинской буквой или по названию двух точек на прямой.
Почему двух, а не трех? Очень просто: через две точки может пройти только одна прямая. Тогда как через одну: бесконечное множество. А три точки не имеет смысла использовать: ни к чему усложнять обозначение.
Взаимное расположение прямых
Две прямые в пространстве могут располагаться по-разному. Самый простой и частый случай это пересечение. Если две прямые имеют одну общую точку, про такие прямые говорят, что они пересекаются.
Рис. 2. Взаимное расположение прямых.
А как прямые назвать, если они не пересекаются? Тогда – параллельные, то есть прямые, которые не имеют общих точек.
А что будет, если у двух прямых две и больше общих точек? Тогда прямые совпадут.
При пересечении двух прямых образуется две пар вертикальных углов. Вертикальные углы в каждой паре равны между собой.
Если угол пересечения равен 90 градусов, то прямые перпендикулярны друг другу.
Рис. 3. Пересечение прямых.
Точка на прямой
Точка на прямой это почти магия. Сама по себе прямая это множество точек, но стоит отметить одну из них и геометрическую фигуру можно назвать как прямой, так и двумя лучами с началом в одной точке. Если поставить две точки на прямой, то они будут отделять часть прямой, которую называют отрезком.
Любой отрезок является частью прямой.
Что мы узнали?
Мы дали определении линиям, выделили виды линий, а так же рассмотрели, какая из линий может называться прямой. Поговорили о том, как обозначаются прямые и как они могут располагаться в пространстве относительно друг друга. Выяснили, что точка на прямой может сделать из прямой отрезок или луч.
Плоскость, прямая линия, луч
Плоскость в математике можно сравнить с другими плоскостями, которые окружают нас в повседневной жизни: школьная доска, лист бумаги, экран планшета или смартфона и т.д. На них мы можем легко обозначить точки и линии, которые мы изучали на предыдущем уроке. На школьной доске мы это делаем мелом или фломастером, на листе бумаги можем нарисовать их ручкой, карандашом, фломастером; когда мы прокручиваем окно сайта или приложения на смартфоне, мы проводим на экране пальцем линию, когда переходим по ссылкам – ставим на его плоскости точку.
Но эти примеры плоскостей из жизни имеют свои размеры и границы, они конечные, их можно измерять.
Плоскость – это воображаемая абсолютно ровная и неизменяемая поверхность, которая не имеет толщины, но обладает бесконечными длиной и шириной.
Плоскость нельзя измерять, потому что она бесконечная.
Плоскость нельзя согнуть, в каком бы положении она ни находилась.
Все объекты и фигуры, которые изучаются в курсе математики 5 класса, находятся на плоскости.
Прямая линия
Прямая линия – абсолютно ровная линия, которая длится бесконечно в обе стороны, и на всем ее протяжении не изгибается и не преломляется.
Обозначение прямой
Например, на рисунке 1 обозначены такие прямые:
Рис. 1 Обозначение прямой линии
Рис. 2 Обозначение прямой с несколькими точками
Некоторые свойства прямой
Две точки, лежащие на одной прямой, создают отрезок этой прямой.
Через две любые точки на плоскости можно провести единственную прямую.
Рис. 3 Отрезок на прямой
Две разные прямые могут пересекаться или не пересекаться.
Две прямые пересекаются в том случае, если у них есть общая точка.
Рис. 5 Пересечение прямых
Более подробно об этих и других свойствах прямой написано в уроке геометрии 7 класса.
Луч – это часть прямой, которая начинается в определенной точке и длится бесконечно в одну сторону.
Рис. 6 Деление прямой линии точкой
У луча есть начало, но нет конца. От прямой луч отличается тем, что луч бесконечно продолжается только в одну сторону.
Свое название этот математический объект получил по аналогии с лучом света, который имеет начало (источник света), но определенного конца у него нет.
Обозначение луча
Луч, как и прямую, обозначают двумя способами.
Рис. 7 Обозначение луча
На рисунке 2 приведены примеры обозначения луча:
Луч имеет второе название – полупрямая.
Рис. 8 Дополнительные друг другу и совпадающие лучи
На рисунке 8 видно, что:
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.6 / 5. Количество оценок: 22
Геометрия 7 класс.
Точка, прямая и отрезок
Казалось бы, что таким простым понятиям, как «точка» или «прямая», которые мы повседневно используем в жизни, крайне просто дать определения. Но на практике оказалось, что это не так.
Существует множество определений, которые давали знаменитые математики терминам «точка» и «прямая». За многие века ученые так и не пришли к единому определению.
Мы не будем приводить все определения точки и прямой. Остановимся на объяснениях, которые, на наш взгляд, наиболее простым образом их описывают.
Точка — элементарная фигура, не имеющая частей.
Прямая состоит из множества точек и простирается бесконечно в обе стороны.
То есть выражаясь геометрическими обозначениями, информацию о расположении прямой и точек на рисунке выше можно записать так:
Как обозначить прямую
Прямую обычно обозначают одной маленькой латинской буквой.
Прямую, на которой отмечены две точки, иногда обозначают по названиям этих точек большими латинскими точками.
Задача № 1 из учебника Атанасян 7-9 класс
Решение задачи
Опишем взаимное расположение точек и прямой.
Как обозначается пересечение прямых
Хотя на чертеже не видно, но прямые a и c тоже пересекаются (это становится ясно, если мысленно продолжить вниз прямые a и с ).
Прямые e и f не имеют общей точки — т.е. они не пересекаются.
Взаимное расположение прямой и точек
Через одну точку (·)A можно провести сколько угодно прямых.
Через две точки (·)A и (·)B можно провести только одну прямую.
Сколько общих точек имеют две прямые
Две прямые либо имеют только одну общую точку, либо не имеют общих точек.
Докажем утверждение выше. Для этого рассмотрим все возможные случаи расположения двух прямых.
Первый случай расположения прямых
На рисунке выше мы видим, что у прямых f и e нет общих точек, т.к. эти прямые не пересекаются.
Второй случай расположения прямых
Третий случай расположения прямых
Вывод: две прямые либо имеют только одну общую точку, либо не имеют общих точек.
Задача № 3 из учебника Атанасян 7-9 класс
Проведите три прямые так, чтобы каждые две из них пересекались. Обозначьте все точки пересечения этих прямых. Сколько получилось точек? Рассмотрите все возможные случаи.
Решение задачи
Проведём две прямые a и b так, чтобы эти две прямые пересекались, и обозначим точку пересечения.
Как мы видим, точка пересечения только одна. Мы можем провести третью прямую так, чтобы она тоже проходила через эту точку пересечения.
Мы убедились, что возможны оба варианта. Поэтому в ответе запишем их оба.
Ответ: точек пересечения получается одна или три.
Что такое отрезок
Отрезок — часть прямой, ограниченная двумя точками.
В отличии от прямой любой отрезок можно измерить. Т.е. каждый отрезок имеет длину.
ВОПРОСЫ
1. Является ли плоскость бесконечной?
2. Имеет ли прямая концы?
Прямая не имеет концов.
3. Сколько прямых проходит через две точки?
Через две точки проходит только одна прямая.
4. Как обозначают прямую?
Обозначать прямую принято двумя способами:
1) называя две ее любые точки;
2) одной строчной латинской буквой.
5. Как называют части прямой, на которые её делит любая точка этой прямой? Как при этом называют эту точку?
6. Как обозначают луч?
7. С какими геометрическими фигурами вы познакомились в этом параграфе?
РЕШАЕМ УСТНО
1. Вычислите:
2. Удвойте число 26. Найдите половину числа 26. Утройте число 27. Найдите треть числа 27.
3. Около школы растут берёзы и тополя, причём берёз восемь, а тополей — на 16 больше. Сколько всего деревьев растёт около школы? Во сколько раз берёз меньше, чем тополей?
4. В 10 ч утра со станции отправился поезд со скоростью 60 км/ч. На каком расстоянии от станции будет поезд в 15 ч того же дня, если будет двигаться с этой же скоростью и без остановок?
5. Таня и Миша учатся в одной школе. Таня живёт в доме около одной конечной остановки автобуса, а Миша — в доме около другой конечной остановки этого же маршрута. Когда они едут в школу, то Таня выходит на пятой остановке, а Миша — на седьмой. Сколько всего остановок на этом маршруте?
6. Верёвку разрезали на три куска так, что первый кусок оказался на 3 м короче второго и на 3 м длиннее третьего куска. На сколько метров третий кусок короче второго?
УПРАЖНЕНИЯ
85. Отметьте в тетради точки М и К и проведите через них прямую. Отметьте на отрезке МК точку N. Принадлежит ли точка N прямой МК? Отметьте на прямой МК точку Р, лежащую вне отрезка МК. Запишите все возможные обозначения этой прямой.
86. Проведите произвольную прямую и отметьте на ней точки А, В и С. Запишите все возможные обозначения этой прямой.
87. Рассмотрите рисунок 38. Верно ли утверждение: 1) точка Q принадлежит отрезку ME; 2) точка Q принадлежит лучу EF; 3) точка Q принадлежит лучу FE; 4) точка Е принадлежит лучу MF и лучу FM; 5) точка М принадлежит отрезку QE; 6) точка М принадлежит прямой QE?
88. Пересекаются ли изображённые на рисунке 39: 1) прямая СЕ и отрезок АВ; 2) луч ОК и прямая СЕ; 3) луч ОК и отрезок АВ?
89. Пересекаются ли изображённые на рисунке 40: 1) прямая MP и отрезок EF; 2) луч ST и прямая MP; 3) отрезок EF и луч ST?
90. Отметьте в тетради: 1) четыре точки, из которых никакие три не лежат на одной прямой; 2) пять точек, из которых никакие три не лежат на одной прямой.
91. На прямой АВ отмечены две точки М и N. Назовите фигуры, которые при этом образовались.
92. Запишите все отрезки, прямые и лучи, изображённые на рисунке 41.
93. Запишите все отрезки, прямые и лучи, изображённые на рисунке 42.
94. Начертите два луча так, чтобы их общая часть была: 1) точкой; 2) отрезком; 3) лучом.
95. Отметьте на плоскости точки М, К, T и F так, чтобы луч МК пересекал прямую TF, а луч TF не пересекал прямую МК.
96. Начертите прямую АС, отрезки КЕ и BD, луч ST так, чтобы отрезок КЕ пересекал прямую АС и не пересекал луч ST, отрезок BD не пересекал прямую АС и отрезок КЕ и пересекал луч ST, а прямая АС и луч ST пересекались.
97. Начертите луч CD, прямую АВ и отрезки МК и ОР так, чтобы отрезок МК лежал на прямой АВ, отрезок ОР — на луче CD и чтобы прямая АВ пересекала отрезок ОР, а луч CD — отрезок МК.
98. Сколько лучей образуется, если на прямой отметить: 1) четыре точки; 2) 100 точек?
99. Точки А, В и С лежат на одной прямой. Найдите длину отрезка ВС, если АВ = 24 см, АС = 32 см. Сколько решений имеет задача?
100. Точки М, К и N лежат на одной прямой. Найдите длину отрезка KN, если МК =15 см, MN = 6 см.
101. На плоскости проведено пять попарно пересекающихся прямых. Каким может оказаться наименьшее количество точек пересечения этих прямых? Наибольшее количество?
103. Проведите шесть прямых и отметьте на них 11 точек так, чтобы на каждой прямой было отмечено ровно четыре точки.
104. На плоскости проведены три прямые. На одной прямой отмечено пять точек, на второй — семь точек, а на третьей — три точки. Какое наименьшее количество различных точек может оказаться отмеченным?
УПРАЖНЕНИЯ ДЛЯ ПОВТОРЕНИЯ
105. В парке растёт 168 дубов, берёз — в 4 раза меньше, чем дубов, а клёнов — на 37 деревьев больше, чем берёз. Сколько всего дубов, берёз и клёнов растёт в парке?
106. Группа туристов прошла пешком 72 км, проехала на поезде расстояние в 5 раз большее, чем прошла пешком, а на автобусе проехала на 128 км меньше, чем на поезде. Сколько всего километров прошли и проехали туристы?
107. Отправившись в гости к Змею Горынычу, Баба-яга пролетела в своей ступе 276 км за 4 ч, а остальные 156 км прошла за 6 ч в сапогах-скороходах. На сколько скорость движения ступы больше, чем скорость движения сапог-скороходов?
109. На прямой отметили 20 точек так, что расстояние между любыми двумя соседними точками равно 4 см. Найдите расстояние между крайними точками.
ЗАДАЧА ОТ МУДРОЙ СОВЫ
111. Как расставить 16 учеников в три ряда, чтобы в каждом ряду их было поровну?