После проведения данного эксперимента Вы сможете измерять при помощи мультиметра и осциллографа напряжения синусоидальных сигналов и осуществлять преобразование эффективных значении в значения размаха и наоборот.
* Мультиметр (цифровой мультиметр)
* Источник постоянного напряжения
Имеется два основных метода измерения напряжений синусоидальных сигналов — при помощи мультиметра и при помощи осциллографа. Если используется мультиметр, показания прибора осуществляются непосредственно в вольтах, которые отмечаются на шкале указателем аналогового прибора или в виде десятичного числа на жидкокристаллическом или светодиодном индикаторе цифрового прибора. При этом представляемое на индикации значение является эффективным значением или среднеквадратическим значением. Оно является также более точным показанием.
Осциллограф визуализирует на экране синусоидальный сигнал. Это наиболее легкий и более точный метод для измерения размаха сигнала. Из двух этих устройств значение мультиметра является более точным, как уже упоминалось. Тем не менее, осциллограф позволяет Вам видеть сигнал, а также любой шум, искажение или помехи, которые могут сопровождать сигнал.
Мультиметр имеет ограничение по высокой частоте. Это предельное значение частоты варьирует от прибора к прибору, однако оно не превышает обычно нескольких тысяч герц. Осциллограф же может выполнять измерения напряжений сигналов с частотой до нескольких мегагерц.
Мультиметр позволяет Вам также измерять ток, тогда как осциллограф нет. При включении мультиметра последовательно с цепью или с компонентом Вы можете получить индикацию эффективной величины тока. Единственным способом измерить ток при помощи осциллографа является косвенный способ, а именно, надо измерить напряжение на резисторе, преобразовать значение размаха в эффективное значение, а затем разделить его на сопротивление резистора.
При выполнении тестов и измерений в электронике обычно является необходимым преобразование
эффективных значении в значения размаха и наоборот. Для преобразования эффективных значении в значения размаха используйте следующие формулы:
Vpp = 2,828 Vrms Ipp = 2,828 Irms
(где: РР — размах, rms — эффективное значение) Для преобразования значений размаха, в эффективные значения используйте следующие формулы:
Пример: Пусть требуется преобразовать показание 6,3 Vpp в эффективное значение:
Vrms= 0,3535 Vpp = 0,3535 (6,3) = 2,23 В
Пример: Пусть требуется преобразовать эффективное значение тока 7 мА в значение размаха:
Ipp = 2,828 Irms = 2,828 (7) = 19,8 мА
Осциллограф может выполнять также измерения по постоянному току. Смещение горизонтальной линии по вертикали относительно нулевой линии на экране осциллографа представляет собой входной уровень по постоянному току. Для измерения постоянного тока горизонтальную линию развертки совместите с линией координатной сетки, соответствующей нулю. Подайте входной сигнал постоянного тока, затем измерьте смещение по вертикали в делениях и преобразуйте в напряжение.
Вы познакомитесь с измерением токов и напряжений синусоидальных сигналов и выполните преобразования единиц в следующей процедуре.
1. Включите осциллограф и визуализируйте горизонтальную линию.
2. Включите генератор функций, выберите формирование синусоидального сигнала и установите поворотный селектор на 1 кГц. Подключите выход генератора ко входу осциллографа. Визуализируйте сигнал. Отрегулируйте осциллограф для получения стабильной индикации. Отрегулируйте выход генератора до получения значения сигнала 4 V
3. Вычислите эффективное значение (rms) этого синусоидального сигнала. Измерьте эффективное значение при помощи цифрового мультиметра. Сравните Ваши расчетное и измеренное значения.
Vэфф(расчетное) = ______ В
Vэфф (измеренное) = ______ В
4. Измерьте период синусоидального сигнала при помощи осциллографа. Т = _______ секунд
5. Рассчитайте частоту синусоидального сигнала при помощи измеренного Вами периода. Сравните Ваши расчетное и измеренное значения и установку регулятора на генераторе функций.
6. Повторите шаги 2—5 с синусоидальным сигналом 500 мВ на частоте 60 Гц и прямоугольным сигналом 15кГц, 3В Какое значение имеет эффективное напряжение в связи с синусоидальным сигналом?
7. Подключите выход генератора функции к резистору 2, 7 кОм. Отрегулируйте генератор для формирования 9 V с частотой 120 Гц. Проконтролируйте напряжение при помощи осциллографа.
8. Рассчитайте ток через резистор, используя закон Ома.
9. Измерьте ток через резистор, используя цифровой мультиметр. Сравните Ваши расчетное и измеренное значения. I = ______ мА
10. Отключите резистор от генератора. Включите один из лабораторных источников постоянного напряжения. Отрегулируйте его на формирование выходного напряжения+ 6 В. Измерьте это выходное напряжение при помощи цифрового мультиметра и осциллографа. Повторите действия для выходного постоянного напряжения-12 В.
11. Подключите выход генератора функций последовательно с источником постоянного напряжения и визуализируйте результирующий сигнал. Установите выходное напряжение источника питания на + 5 В и отрегулируйте генератор функций на 400 Гц и 2 Vpp. Начертите диаграмму комбинированного сигнала.
12. Приведите список источников возможных погрешностей, которые могут быть причиной раз
личий между расчетными и измеренными значениями в предыдущих шагах.
1. Чему равно напряжение размаха 85 мВ в переводе на эффективное значение?
2. Чему равно эффективное значение 16 мкА в пересчете на значение размаха?
Работа с осциллографом. Основные понятия о колебаниях сигнала
Определения колебаний.
Основной термин для определения процесса, который повторяется со временем, является волна. По своей природе волны бывают разными, но если мы говорим об осциллографах, то этот прибор работает с волнами (временными колебаниями) напряжения. Один период волны – наименьший промежуток времени, за который система совершает одно полное колебание. Дисплей осциллографа предназначен для графического отображения формы сигнала, а именно, для отображения напряжения по вертикальной оси и, соответственно, времени по горизонтальной оси.
Форма колебаний напряжения может нести много полезной информации о сигнале в целом. В любой момент времени пользователь с помощью горизонтальной и вертикальной осей может сделать выводы о временных изменениях напряжения. Наиболее распространенными видами колебаний можно назвать: синусоидальные, квадратные или прямоугольные, треугольные или зубчатые, ступенчатые или импульсные.
Синусоидальная форма сигнала – владеет всеми гармоническими математическими свойствами, большинство источников питания переменного тока продуцируют колебания этой формы. Одним из вариантов синусоидальных колебаний есть затухающие синусоидальные колебания, которые можно наблюдать в контурах, где происходит колебания напряжения, но амплитуда которых уменьшается со временем.
Квадратная и прямоугольная формы сигнала – такая графическая зависимость колебаний является достаточно распространенной, и актуальна в тех случаях, когда изменения напряжения (рост или спад) происходит через равные интервалы. Эта форма сигнала используется для тестирования усилителей, у хорошего усилителя изменения амплитуды имеют квадратную форму с минимальным искажением. Такая форма сигналов также широко используется в теле-, радио- и компьютерных схемах. По поводу прямоугольной формы сигнала следует отметить, что в целом она идентична к квадратной, за исключением того, что временные интервалы высоких и низких значений амплитуды есть разными.
Треугольная и зубчатая формы сигнала – продуцируют схемы, что служат для контроля линейности напряжения, такие как горизонтальная развертка аналоговых осциллографов или же растровое телевизионное сканирование. Переходы между уровнями напряжения в этих волнах меняются в постоянном диапазоне и называются пилообразными изменениями.
Ступенчатая и импульсная формы сигнала – такие формы сигналов являются или одноразовыми, или кратковременными и указывают на внезапные изменения напряжения. Набор движущихся импульсов определяется как импульсная последовательность. Цифровые компоненты в компьютере «общаются» друг с другом с помощью импульсов, также такие импульсные группы распространены в рентгеновском и коммуникационном оборудовании.
Исследование формы колебаний сигнала.
Частота и период.
Любой повторяющийся сигнал имеет частоту колебаний, которая измеряется в Герцах и равна числу полных циклов, совершённых за единицу времени, например, за одну секунду. Еще одной характеристикой колебательного процесса есть период — наименьший промежуток времени, за который система возвращается в то же состояние, в котором она находилась в первоначальный момент, выбранный произвольно. Эти две характеристики обратно пропорциональны друг к другу, то есть, если частота колебаний 5Гц, то период колебаний равный 0,2 с. Как правило, для определения этих параметров служит горизонтальная временная шкала осциллографа, и, соответственно меню интерфейса для временных характеристик. Современные цифровые осциллографы имеют ряд дополнительных возможностей по определению временных характеристик. Для примера, осциллографы RIGOL серии DS 1000, предоставляют возможность автоматического измерения следующих параметров времени (см. рис.1.): частота (Freq); период (Period); длительность нарастающего и спадающего фронтов импульса (Rise Time и Fall Time); длительность положительного и отрицательного импульсов (+Width и -Width); относительная длительность отрицательного или положительного импульсов; задержка спадающего или нарастающего фронтов канала 2 относительно канала 1.
Рис. 1. Определение некоторых параметров времени осциллографом RIGOL серии DS 1000 на примере импульса.
Напряжение.
Напряжение является электрическим потенциалом между двумя выбранными точками в схеме. Обычно одной из этих точек есть земля (0 В). Также пользователь может измерить напряжение между максимальным и минимальным значениями напряжения, что называется размахом напряжения сигнала. Опять-таки, как показано выше для временных характеристик, цифровые осциллографы вместе с основным значением напряжения дают возможность пользователям параллельно определять дополнительные значения напряжения. Как показано на рис.2 осциллографы RIGOL серии DS1000 предоставляют возможность автоматического измерения следующих параметров напряжения: Vpp — размах напряжения сигнала; Vmax и Vmin — максимальное и минимальное значения напряжений сигнала, полученных при регистрации всей осциллограммы сигнала; Vamp — амплитуда напряжения сигнала между уровнями Vtop и Vbase; Vtop и Vbase — напряжения вершины и основания импульса, которые используются для прямоугольных импульсных сигналов; Overshoot и Preshoot— положительный выброс на вершине и отрицательный выброс у основания, которые используются для прямоугольных импульсных сигналов; Vavgи Vrms — среднее арифметическое и среднеквадратическое значения напряжения для всей осциллограммы сигнала.
Рис. 2. Определение параметров напряжения осциллографом RIGOL серии DS 1000 на примере импульса.
Фаза.
Эта характеристика, как правило, служит для описания гармонических (синусоидальных) колебаний. Один цикл таких колебаний имеет 360 градусов. Используя это, пользователь может определить угол сдвига фазы гармонического колебания, когда нужно описать величину пройденного сигналом периода. Сдвиг по фазе используют при определении временной разницы (задержки) между двумя похожими сигналами. Например, осциллографы RIGOL серии DS 1000 имеют, так называемую, функцию режима X-Y, формат которого служит для изучения соотношения фаз двух сигналов. На рис. 3 показано вид окна названого осциллографа при использовании данной функции прибора.
Рис. 3.Вид дисплеяосциллографа RIGOL серииDS1000при использовании режима X-Y
Измерения в цифровых осциллографах и обработка результатов измерения
Измерения в цифровых осциллографах и обработка результатов измерения
А.А. Дедюхин, АО «ПриСТ»
Современные цифровые запоминающие осциллографы (ЦЗО), построенные на базе открытой платформы дают возможность пользователю визуально наблюдать исследуемый сигнал, зачастую достаточно сложной формы. Использование длинной памяти, расширенных режимов синхронизации и сегментированной развертки позволяют инженеру фиксировать различные артефакты во входном сигнале или же наоборот «отлавливать» полезные сигналы, имеющие определенные параметры. Эти возможности в том или ином виде присутствуют практически в любом современном цифровом осциллографе.
Но исключительная полезность цифрового осциллографа определяется не только его способностью визуально отображать форму входного сигнала, но и производить различного рода измерения, что, в общем, и классифицирует осциллограф как «средство измерения».
Большинство ЦЗО способно производить измерения достаточно большого типа параметров, так например, осциллографы серии WaveRunner производства компании LeCroy способен производить измерения до 40 параметров сигнала, с одновременной индикацией 8 результатов измерений в штатном режиме, а при инсталляции дополнительных опций осциллографы LeCroy старших серий способны приводить измерения до 170 различных параметров. Это широкий набор различных амплитудно-временных измерений вполне достаточных для удовлетворения потребностей широкого круга пользователей. Список измерений доступных для осциллографов LeCroy приведен в Приложении 1.
В основе всех видов измерений современного осциллографа лежат два вида измерений – это амплитудные и временные. Так же цифровые осциллографы способны осуществлять безразмерные виды измерений, например подсчет числа целых периодов сигнала, числа точек дискретизации, числа пиков гистограммы и пр. Амплитудные измерения предназначены для измерений параметров амплитуды входного сигнала (или же результатов математической обработки) – это такие как, непосредственно, амплитуда, нижнее значение, верхнее значение, пиков значение, выбросы, среднеквадратическое значение и многие другие. Временные измерения предназначены для измерений параметров сигнала нормированных по времени – это частота, период, длительность, фазовые сдвиги, время нарастания и спада, параметры джиттера и многие другие. Так же современные ЦЗО имеют некоторые производные виды измерений от амплитуды и времени, например измерение площади сигнала, что применительно к импульсному сигналу определяет его энергию, измерение числа периодов сигнала на заданном участке или измерение числа точек дискретизации образующих форму сигнала на всем экране или на заданном участке. В ЦЗО так же присутствуют специализированные виды измерений, предназначенные для измерения параметров специфических устройств или режимов, например измерение параметров мощности электрического сигнала, измерение параметров систем последовательной передачи данных, измерение параметров дисковых или оптических приводов, измерения джиттера и многие другие. Но и даже эти специализированные виды измерений базируются на основных результатах измерения амплитудно-временных параметров сигнала.
Измерения амплитудных параметров
Погрешность измерения амплитудных параметров определяется тем, что в большинстве современных ЦЗО используются 8-и битные АЦП, что дает теоретическую относительную погрешность измерения
,
Так на рисунке 1 приведена осциллограмма синусоидального сигнала частотой 350 МГц и уровнем 1 Вольт полученная с экрана осциллографа LeCroy WaveRunner WR-6051A с полосой пропускания 500 МГц. Измерения СКО (окно измерения Р1) индицирует значение 970 мВ. Погрешность измерения амплитуды в данном случае составляет 3%.
Для того, что бы пользователь не воспринимал осциллограф, в режиме измерения как вещь саму в себе или же наоборот четко представлял какие параметры и какой алгоритм измерения используется в данный момент, компания LeCroy в своих осциллографах при включении измерений сопровождает осциллограмму, на которой производятся измерения, автоматическими маркерами помощи. Так на рисунке 1 при измерении циклического СКЗ, виды маркеры, выделяющие полный цикл (полное число периодов) измеряемого сигнала. Но сигнал представленный на рисунке 1 достаточно простой. На рисунке 2 приведена осциллограмма одиночного радиоимпульса в режиме измерения циклического СКЗ, видны области измерения СКЗ и результат измерения – 355 мВ.
Если же для данного сигнал применить алгоритм полного измерения СКЗ, то результат измерения будет абсолютно другой. Так на рисунке 3 изображена осциллограмма измерения полного СКЗ, результат измерения составляет 182 мВ.
Напомним, что среднеквадратическое значение сигнала переменного тока эквивалентно значению постоянного напряжения, способного выделять такое же значение тепла на нагрузке, как и исходный сигнал переменного тока. Очевидно, что для режима измерения циклического СКЗ, расчет значения напряжения производится только на полезной части сигнал, обладающей энергией и способной производить работу (в том числе выделять тепло). Для полного СКЗ в расчет принимаются и участки сигнала, имеющие нулевое значение амплитуды, и не способные совершать работу, что уменьшает значение СКЗ с 355 мВ до 182 мВ. Это становится наиболее очевидным и наглядным именно при использовании осциллографов способных дать инженеру подсказку в виде маркеров, которые кроме всего прочего индицируют в виде горизонтальной зоны значение СКЗ, именно в виде эквивалентного постоянного напряжения.
Ранее уже отмечалось, что любой средний вольтметр способен производить измерения амплитуды гораздо более точно, чем цифровой осциллограф. Но это справедливо только для измерения постоянного напряжения или НЧ напряжения переменного тока синусоидальной формы. При измерении СКЗ сигналов сложной формы погрешность измерения вольтметра увеличивается исходя их коэффициента формы сигнала. Для стандартных сигналов, коэффициент формы можно учесть при определении дополнительной погрешности измерения напряжения и погрешность может возрастать в десятки раз, так, например, для вольтметра Agilent Technologies 34401 при измерении импульсных сигналов погрешность измерения напряжения может составлять 46%. Для сигналов непредсказуемой формы коэффициент формы учесть невозможно, поэтому и погрешность измерения напряжения становится неопределенной. Цифровой осциллограф производит математическое вычисление среднеквадратического значения формы сигнала из массива данных, полученных в процессе сбора информации, по формуле:
,
где X1 ;X2 ; X3 ….. Xn отсчеты амплитуды полученные в результате дискретизации входного сигнала, а n – число отсчетов, и такой алгоритм измерения СКЗ не требует никаких дополнительных поправочных коэффициентов. Для однократных и редких сигналов цифровой осциллограф остается единственным средством измерения СКЗ, да и других амплитудных параметров сигнала тоже. А принимая во внимание тот факт, что осциллограф при измерении СКЗ производит «полное» измерение сигнала, имея ввиду одновременное измерение как постоянной составляющей DC, так и переменной составляющей AC, а большинство вольтметров производит измерения отдельно DC и AC, и лишь за редким исключением некоторые типы вольтметров способны производить измерения DC +AC, то становится очевидным, что возможности амплитудных измерений ЦЗО дают пользователю значительные преимущества по отношению к универсальным вольтметрам.
Важной особенность обеспечения измерений является возможность проведения измерения в выделенной области. В этом случае измерения параметров производятся не по всему массиву данных осциллограммы, а только в пределах указанной области. Большинство же пользователей привыкло, что измерения с использованием ЦЗО нужно производить для простого периодического сигнала по всей осциллограмме, что присутствует на экране ЦЗО и только в этом случае результат измерения будет достоверным. На рисунке 5 проведен наглядный пример сложного сигнала, представляющего собой прямоугольный сигнал с модулированными базой и верхом. На первый взгляд автоматические измерения амплитудных параметров такого сигнала должно вызвать сложности у пользователя, но только не у пользователей осциллографов LeCroy.
Таким образом, обеспечивая возможность одновременного измерения до 8 параметров сигнала, осциллографы LeCroy так же обеспечивают возможность измерения в 8 различных областях этого сигнала. Справедливости ради отметим, что и другие осциллографы, например Tektronix DPO-7000 или DPO-4000, так же дают возможность измерения параметров в выделенной области, но для всех измерения (DPO-7000 это 8 измерения, а для DPO-4000 это 4 измерения) существует всего одна выделенная область, что существенного ограничивает возможности измерения сложных сигналов.
Измерения временных параметров
Измерения временных параметров – это набор наиболее расширенных и точных видов измерений цифрового осциллографа. Так уже сложилось, что при анализе сигнала по временной оси существует наибольший набор параметров, в штатной комплектации осциллографы LeCroy способны обеспечить до 69 видов измерения, а при инсталляции дополнительных опций общее число всех видов измерений может достигать 180. Основными отличиями цифровых осциллографов по отношению к традиционным аналоговым осциллографам при измерении временных интервалов являются:
Погрешность измерения временных параметров (ΔT) цифрового осциллографа определяется погрешностью опорного генератора, частотой дискретизации и собственным джиттером, что может быть выражено формулой:
Tоп – погрешность установки частоты опорного генератора; Fд – частота дискретизации; Tдж – собственный джиттер осциллографа.
Современные технологии электронных элементов дают возможность применения в осциллографах опорных генераторов с погрешностью установки до 10-6 в год (или 1 ppm), частота дискретизации для наиболее массовых моделей ЦЗО составляет 5 ГГц или 10 ГГц, собственный джиттер современного осциллографа удается снизить до значений 3 пс (хотя есть «уникальные» модели ЦЗО, например DPO-4000 серии, имеющие джиттер 400 пс). Из этих выкладок следует, что наиболее существенным при определении погрешности измерения временных интервалов как раз и является погрешность установки частоты опорного генератора.
Но на этом и заканчивается идентичность подходов при измерения временных интервалов различных производителей цифровых осциллографов. Разные производители при измерении временных интервалов накладывают дополнительные требования для достижения декларируемой погрешности измерения. Так, например, компания Tektronix для своих осциллографов серии TDS-5000B для обеспечения погрешности указанной в формуле (1), дополнительно требует:
Но и это еще не все, различные производители ЦЗО использую различные алгоритмы измерения временных интервалов. Большинство производителей, например Tektronix или Agilent Technologies, используют алгоритм измерения частоты по одному периоду сигнала, находящегося сразу после точки запуска развертки или по первому целому периоду сигнала в левой части экрана. При таком алгоритме измерения, первое, что приносится в жертву время измерения – оно бесспорно увеличивается. Так, практические измерения показывают, что для упомянутого выше осциллографа Tektronix серии TDS-5000B (при длине памяти 2000 точек для минимизации временных затрат на вычислительный процесс), измерение частоты 10 МГц, полученной от рубидиевого стандарта частоты с погрешностью воспроизведения 10-10, время измерения, при выполнении всех требований производителя, составляет 1 минута 23 секунды. Компания LeCroy в своих осциллографах использует алгоритм измерения временного интервала не по одному периоду, а по всем периодам сигнала присутствующим в массиве данных.
Кроме того, компания LeCroy для обеспечения погрешности указанной в формуле (1), дополнительно требует выполнения двух условий:
Очевидно, что такой алгоритм измерения обеспечивает следующие преимущества:
Практическое измерение, показывает, что для накопления статистики и получения достоверного результата при измерении частоты 10 МГц, при частоте дискретизации 5 ГГц, необходимо время 100 мс, что в 930 раз меньше, чем требовалось осциллографу Tektronix. Тем более, что за время измерения 1,23 минуты осциллограф Tektronix обеспечил погрешность измерения 27,64 ppm (при допустимой погрешности измерения 15 ppm) смотри рисунок 6
А осциллограф LeCroy WR-6051А, за время измерения 100 мс обеспечил погрешность измерения 1 ppm (при допустимой погрешности измерения 10 ppm) смотри рисунок 7.
Практическая ценность измерения временных интервалов по всему числу периодов существующих во входном сигнале, обусловлена не только увеличением скорости измерений, но и увеличением достоверности измерения – очевидно, что если сигнал имеет вандер (медленная флуктуация во времени), то при достаточно большом времени измерения и тем более при использовании функции усреднения, достоверность измерения будет уменьшаться.
Так же совместно совмещение особенности измерения временных интервалов по всей осциллограмме и режима измерения в выделенной области, дает новые возможности в измерениях сигналов. Так например, на рисунке 8 праведен пример частотно-модулированного сигнала (осциллограмма С1) и модулирующего сигнала (осциллограмма С2). Очевидно, что поскольку модулирующий сигнал имеет вид «ступенька», то и частоты в модулируемом сигнале так же изменяются дискретно.
Включив режим измерения частоты осциллограммы С1 для всех восьми измерений Р1…Р8, с той лишь разницей, что для каждого измерения Р1…Р8 измерения частоты производятся в пределах выделенного окна равного времени одной ступеньки, возможно измерить частоту модулируемого сигнала, соответствующей каждому уровню модулирующего сигнала.
В заключение обзора «простых» режимов измерения хочется особо отметить, что для получения результатов измерения сложных сигналов, иногда не достаточно просто включить тот или иной режим измерения. Комбинирование различных режимов работы цифрового осциллографа, включая математическое операции над сигналом, может оказать существенную пользу при измерении параметров сигнала. Так, например, существует задача измерения временных параметров радиоимпульса – частоты заполнения и периода повторения и длительности импульсов. Если для измерения частоты заполнения, можно использовать методы, описанные выше, то автоматическое измерение периода повторения и длительности радиоимпульсов может вызвать затруднение. Для решения этой задачи необходимо выделить огибающую радиоимпульса и измерить период повторения и длительность. Огибающую радиоимпульса можно выделить используя математическую функцию «прореживание».
Так на рисунке 9 приведен пример радиоимпульса представляющего собой пакет синусоидальных колебаний частотой 1 МГц и периодом повторения 1,543 мс, каждый пакте содержит 428 колебаний частоты 1 МГц.
Из исходной осциллограммы С1 можно получить следующие результаты:
Из осциллограммы математики F1 можно получить следующие результаты:
Пост-обработка результатов измерения
В отличие от цифровых осциллографов других производителей, осциллографы LeCroy способны хранить результаты измерения всего массива данных, а это в зависимости от установленных, опций до 6 миллионов результатов измерений. Это массив данных можно представлять в графическом виде, обрабатывать методами математической статистики и выводить результаты статистической обработки, сохранять в виде файлов данных для экспорта в другие программные приложения операционной среды Windows. Все это дает пользователю осциллографов LeCroy широкие дополнительные возможности по анализу сигнала.
График слежения. Например, существует широтно-импульсно модулированный сигнал (ШИМ), в котором по некоторому закону изменяется длительность импульса и необходимо оценить партеры этого сигнала. Несколько периодов исходного сигнала захвачены осциллографом о отображаются на осциллограмме С1 на рисунке 10.
Очевидно, что «широта» импульса в ШИМ сигнале это длительность импульса, измерение Р1, как раз, и обеспечивает измерение длительности импульса сигнала С1. Для наглядности возможностей режима измерения осциллограмма получена в режиме однократного пуска. Из статистического окна измерения Р1 видно, что на всем сигнале произведено 249 измерений длительностей импульса, а поскольку сигнал является динамическим (его параметр «длительность импульса» изменяется во времени), то окошко измерения Р1 дает только общие представления о длительности импульса, как последнее измерение, минимальное значение, максимальное значение и т.д., но не отражает динамики изменения самого параметра «длительность импульса». Осциллографы LeCroy имеют возможность формирования из массива данных измерения так называемого «графика слежения». Этот график представляет собой функцию в которой горизонтальная ось (ось X) представляет собой временную ось, полностью совпадающую с временною осью развертки, а по оси Y (вертикальной оси) располагаются значения результата измерения заданного параметра. В результате чего получается временной график измерений выбранного параметра в пределах одной развертки осциллографа. Из рисунка 10 четко видно, что ШИМ сигнал модулируется по закону близкому к логарифмическому. Используя режим курсорных измерений, достаточно просто подвести курсор к нужному значению длительности на графике слежения (само значение будет отображаться в дескрипторе графика слежения, в данном случае это F4, а положение курсора по временной оси индицируется во временном поле курсора) и на осциллограмме входного сигнала этим же маркером будет отмечена точка сигнала соответствующая выбранной длительности. Используя растяжку сигнала можно получить изображение сигнала в удобном для визуального наблюдения масштабе – курсор также будет присутствовать на сигнале растяжки.
Для режима измерений возможно задать регистрацию только значений находящихся в пределах указанного допуска. Так, если для сигнала приведенного на рисунке 10 ограничить значения измеренной длительности пределом 440..505 нс, то осциллограф регистрирует только значения длительности находящиеся в этом пределе и тренд F4 приобретает вид, отличный от рисунка 10.
Такой вид графика слежения позволяет более наглядно обнаружить на исходном сигнале С1 участки соответствующие заданным пределам длительности.
Если же вернуться к частотно модулированному сигналу, приведенному на рисунке 8, и применить график слежения к результатам измерения частоты в пределах всей осциллограммы (см. рисунок 12), то полученный график даст более наглядный результат изменения частоты в модулированном сигнале, с учетом динамики изменения сигнала в пределах одной модулирующей ступеньки.
На осциллограмме графика слежения так же представляется возможным произвести различные автоматические измерения, характеризующие изменение выбранного параметра. Например, на рисунке 13 осциллограмма С1 представляет собой частотно-модулированный сигнал с несущей 1 МГц, девиацией 200 кГц и частотой модулирующего синусоидального сигнала 1,234 кГц.
Осциллограмма F4 представляет собой график слежения изменения частоты в сигнале С1, форма осциллограммы F1 отображает форму модулирующего сигнала. Используя автоматические измерения для данного графика можно определить – минимальное значение частоты (Р4=800 кГц), максимальное значение частоты (Р3= 1,1999 МГц)и частоту модулирующего сигнала (Р2=1,233 кГц). Что совпадает с заданными параметрами ЧМ сигнала.
График слежения образуется из массива измерения амплитудных или временных измерений, он позволяет визуально отследить изменения выбранного параметра в пределах одной развертки, он позволяет, используя курсоры, получить результаты измерения выбранного параметра в точке нахождения курсора, но все же он не является реальным массивом результатов измерения. Так же учитывая алгоритм амплитудных измерений (одни полученный результат из одного прохода развертки осциллографа), график слежения обеспечивает наглядное отображение только временных измерений, при индикации амплитудных измерений график слежения сводится в одну точку, как раз и являющуюся результатом измерений. Реальный массив измерений в графическом виде в осциллографах LeCroy может быть представлен так называемым «трендом».
Тренд. Этот график представляет собой функцию, в которой горизонтальная ось (ось X) представляет ось номера измерения – 1,2,3,4,…n, (эта ось не связана с временною осью развертки осциллографа), а по оси Y (вертикальной оси) располагаются значения результата измерения выбранного параметра. В результате получается график.
Отличиями тренда от графика слежения являются:
Практическая ценность тренда заключается в возможности не только в кратковременной, но и длительной регистрации и индикации результатов измерений выбранного параметра. В этом случае тренд будет выглядеть как регистрация данных на бумажном самописце, но без меток реального времени. При необходимости, изменение интервала регистрации производится изменением настроек схемы синхронизации, например установкой задержки синхронизации по числу событий. Это позволяет регистрировать, отображать и анализировать медленные измерения тех или иных параметров входного сигнала. Так, на рисунке 15 осциллограмма F1 представляет тренд изменения частоты входного сигнала С1, полученный из массива измерения частоты Р1.
На рисунке 16 осциллограмма F1 представляет тренд изменения амплитуды входного сигнала С1, полученный из массива измерения среднеквадратического значения Р1.
Способом аналогичным для графика слежения, на осциллограмме тренда так же можно осуществить различные автоматические измерения, далее строить тренды 2-го уровня для этих измерений, 3-го уровня и так далее.
Осциллографы LeCroy обеспечивают построение тренда в трех режимах:
Сочетание различных функциональных особенностей осциллографов LeCroy дает самые широкие возможности при исследовании различных сигналов, процессов и устройств.
Так, например, режим построения тренда возможно использовать для измерения амплитудно-частотной характеристики устройств. Для этого достаточно синхронизировать процесс изменения частоты на генераторе тестового сигнала с разверткой осциллографа, произвести измерения амплитуды и частоты на выходе устройства. И по полученным результатам построить тренд изменения амплитуды, что и будет являться АЧХ устройства. Синхронный тренд изменения частоты предназначен для формирования частотных меток АЧХ. Так на рисунке 18 осциллограмма F1 представляет собой АЧХ устройства в диапазоне частот от 100 кГц до 100 МГц. Осциллограмма F2, являющаяся трендом частоты идентифицирует частотный диапазон АЧХ. Используя курсорные измерения, возможно считать с АЧХ устройства информацию об амплитуде и частоте.
Поскольку сигнал является стабильным и изменения частоты не происходит, то разброс значений частоты вызван естественными причинами хаотического рода. Такая гистограмма является классической и называется нормальной или Гауссовой. Непрерывная случайная величина X имеет нормальный закон распределения с параметрами α (среднее значение) и σ (сигма или стандартное отклонение), если её плотность вероятности f(x) имеет вид:
Основными параметрами гистограммы являются:
Поскольку гистограмма строится из массива измерения, то основные параметры гистограммы связанны со статистическими данными результатов измерений, так:
α (среднее значение гистограммы) – представляет собой центральную, наиболее вероятную часть гистограммы и измеренное среднее значение гистограммы 10,0002 МГц (см. рисунок 19) маркер «mean» и измерение Р2, равно среднему измеренному значению частоты в измерении Р1 10,0002 МГц (значение «mean»).
Плотность заполнения – это общее число измерений, из результатов которых строится гистограмма. Так измеренное значение плотности гистограммы Р5 совпадает с числом измерений индицируемым в поле измерений Р1 и составляет в обоих случаях 1,749931 миллиона измерений.
Следующим примером использования гистограмм для наблюдения и анализа формы сигнала может служить гистограмма измерения частоты 1 МГц частотно-модулированного сигнала с девиацией 200 кГц (см. рисунок 20 осциллограмма F2).
Измерение таких параметров как верхнее значение и нижнее значение гистограммы дает значение нижней и верхней частоты в ЧМ сигнале (измерения Р4 и Р5).А амплитудное значении гистограммы деленное на два дает значение девиации ЧМ сигнала – измерение Р6 и значение 198 кГц. Так же возможно для этой гистограммы использовать курсорные измерения для определения других параметров гистограммы, как диапазон гистограммы, нижнее и верхнее значения. А применение режимов измерения вспомогательных параметров гистограммы, как число пиков гистограммы даёт информацию о количестве стабильных состояний сигнала. Так возвращаясь к рисунку 10, гистограмма F3, индицирует, что частота сигнала входного сигнала имеет 9 стабильных состояний, а измерение параметров гистограммы даст информацию о распределении частоты во входном сигнале.
Итак, как видно, гистограмма способна преобразовать большой объем информации в очень компактный формат, который может быть легко измерен и проанализирован методами математической статистики.
Приложение 1
Список измеряемых параметров в базовой комплектации и при инсталляции основных опций в осциллографах LeCroy.
Автор: Дедюхин А.А. Дата публикации: 22.11.2006
У нас представлены товары лучших производителей
ПРИСТ предлагает оптимальные решения измерительных задач.
У нас вы можете купить осциллограф, источник питания, генератор сигналов, анализатор спектра, калибратор, мультиметр, токовые клещи, поверить средства измерения или откалибровать их. Также мы поставляем паяльно-ремонтное оборудование, антистатический инструмент, промышленную мебель. Мы имеем прямые контракты с крупнейшими мировыми производителями измерительного оборудования, благодаря этому можем подобрать то оборудование, которое решит Ваши задачи. Имея большой опыт, мы можем рекомендовать продукцию следующих торговых марок: