Что такое вписанная и описанная окружность

Что такое вписанная и описанная окружность

Ключевые слова: окружность, описанная окружность, центр окружности, вписанная окружность, треугольник, четырехугольник, вневписанная окружность

Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон.

Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.

Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
Сам многоугольник в таком случае называется описанным около данной окружности.
Таким образом, в выпуклый многоугольник можно вписать не более одной окружности.

Для произвольного многоугольника невозможно вписать в него и описать около него окружность.
Для треуголь ника это всегда возможно.

Окружность называется вписанной в треугольник, если она касается всех трех его сторон, а её центр находится внутри окружности

Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.

Окружность называется описанной около треугольника, если она проходит через три его вершины.

Окружность, вписанная в прямоугольный треугольник

Окружность, описанная около прямоугольного треугольника

Четырехугольник, вписанный в окружность

Окружность, вписанная в ромб

Источник

Что такое вписанная и описанная окружность

Ключевые слова: окружность, описанная окружность, центр окружности, вписанная окружность, треугольник, четырехугольник, вневписанная окружность

Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон.

Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.

Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
Сам многоугольник в таком случае называется описанным около данной окружности.
Таким образом, в выпуклый многоугольник можно вписать не более одной окружности.

Для произвольного многоугольника невозможно вписать в него и описать около него окружность.
Для треуголь ника это всегда возможно.

Окружность называется вписанной в треугольник, если она касается всех трех его сторон, а её центр находится внутри окружности

Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.

Окружность называется описанной около треугольника, если она проходит через три его вершины.

Окружность, вписанная в прямоугольный треугольник

Окружность, описанная около прямоугольного треугольника

Четырехугольник, вписанный в окружность

Окружность, вписанная в ромб

Источник

Вписанная и описанная окружности

Вы будете перенаправлены на Автор24

Вписанная окружность

Если все стороны многоугольника являются касательными одной окружности, то такая окружность называется вписанной в многоугольник (рис 1).

Многоугольник, удовлетворяющий условию определения 1, называется описанным около окружности.

Что такое вписанная и описанная окружность. Смотреть фото Что такое вписанная и описанная окружность. Смотреть картинку Что такое вписанная и описанная окружность. Картинка про Что такое вписанная и описанная окружность. Фото Что такое вписанная и описанная окружность

Рисунок 1. Вписанная окружность

Теорема 1 (об окружности, вписанной в треугольник)

В любой треугольник можно вписать окружность и притом только одну.

Доказательство.

Что такое вписанная и описанная окружность. Смотреть фото Что такое вписанная и описанная окружность. Смотреть картинку Что такое вписанная и описанная окружность. Картинка про Что такое вписанная и описанная окружность. Фото Что такое вписанная и описанная окружность

Рисунок 2. Иллюстрация теоремы 1

Готовые работы на аналогичную тему

Теорема доказана.

Следствие 1: Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.

Приведем еще несколько фактов, связанных с понятием вписанной окружности:

Не во всякий четырехугольник можно вписать окружность.

В любом описанном четырехугольнике суммы противоположных сторон равны.

Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Описанная окружность

Если на окружности лежат все вершины многоугольника, то окружность называется описанной около многоугольника (Рис. 3).

Многоугольник, удовлетворяющий условию определения 2, называется вписанным в окружность.

Что такое вписанная и описанная окружность. Смотреть фото Что такое вписанная и описанная окружность. Смотреть картинку Что такое вписанная и описанная окружность. Картинка про Что такое вписанная и описанная окружность. Фото Что такое вписанная и описанная окружность

Рисунок 3. Описанная окружность

Теорема 2 (об окружности, описанной около треугольника)

Около любого треугольника можно описать окружность и притом только одну.

Доказательство.

Что такое вписанная и описанная окружность. Смотреть фото Что такое вписанная и описанная окружность. Смотреть картинку Что такое вписанная и описанная окружность. Картинка про Что такое вписанная и описанная окружность. Фото Что такое вписанная и описанная окружность

Рисунок 4. Иллюстрация теоремы 2

Теорема доказана.

Следствие 1: Центр описанной около треугольника окружности совпадает с точкой пересечения его серединных перпендикуляров.

Приведем еще несколько фактов, связанных с понятием описанной окружности:

Около четырехугольника не всегда можно описать окружность.

Пример задачи на понятия вписанной и описанной окружности

В равнобедренном треугольнике основание равно 8 см, боковая сторона равна 5 см. Найти радиус вписанной окружности.

Решение.

Что такое вписанная и описанная окружность. Смотреть фото Что такое вписанная и описанная окружность. Смотреть картинку Что такое вписанная и описанная окружность. Картинка про Что такое вписанная и описанная окружность. Фото Что такое вписанная и описанная окружность

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 29 03 2021

Источник

Описанная и вписанная окружность

теория по математике 📈 планиметрия

Описанная окружность

Окружность называется описанной вокруг многоугольника, если все вершины многоугольника принадлежат этой окружности. Многоугольник в этом случае называется вписанным в окружность.

Любой правильный многоугольник можно вписать в окружность. На рисунке описанная окружность проходит через каждую вершину правильного шестиугольника.

Что такое вписанная и описанная окружность. Смотреть фото Что такое вписанная и описанная окружность. Смотреть картинку Что такое вписанная и описанная окружность. Картинка про Что такое вписанная и описанная окружность. Фото Что такое вписанная и описанная окружность

Вписанная окружность

Окружность называется вписанной в многоугольник, если она касается всех его сторон. Многоугольник в этом случае называется описанным около окружности.

В любой правильный многоугольник можно вписать окружность. На рисунке окружность вписана в правильный шестиугольник, она касается всех его сторон.

Что такое вписанная и описанная окружность. Смотреть фото Что такое вписанная и описанная окружность. Смотреть картинку Что такое вписанная и описанная окружность. Картинка про Что такое вписанная и описанная окружность. Фото Что такое вписанная и описанная окружность

Вписанный и описанный треугольники

Центр описанной около треугольника окружности лежит на пересечении серединных перпендикуляров, проведенных к сторонам треугольника.

В любой треугольник можно вписать окружность: Что такое вписанная и описанная окружность. Смотреть фото Что такое вписанная и описанная окружность. Смотреть картинку Что такое вписанная и описанная окружность. Картинка про Что такое вписанная и описанная окружность. Фото Что такое вписанная и описанная окружностьЦентр вписанной окружности

Центр окружности, вписанной в треугольник, лежит на пересечении его биссектрис.

Вписанный и описанный четырехугольники

Не во всякий четырехугольник можно вписать окружность. Например, в прямоугольник нельзя вписать окружность. По рисунку видно, что окружность касается только трех его сторон, что не соответствует определению.

Что такое вписанная и описанная окружность. Смотреть фото Что такое вписанная и описанная окружность. Смотреть картинку Что такое вписанная и описанная окружность. Картинка про Что такое вписанная и описанная окружность. Фото Что такое вписанная и описанная окружностьУсловие вписанной в 4-х угольник окружности

Окружность является вписанной в четырехугольник, если суммы длин противоположных сторон равны.

Что такое вписанная и описанная окружность. Смотреть фото Что такое вписанная и описанная окружность. Смотреть картинку Что такое вписанная и описанная окружность. Картинка про Что такое вписанная и описанная окружность. Фото Что такое вписанная и описанная окружность

На рисунке выполняется данное условие, то есть AD + BC=DC + AB

Окружность является описанной около четырехугольника, если суммы противоположных углов равны 180 градусов.

Что такое вписанная и описанная окружность. Смотреть фото Что такое вписанная и описанная окружность. Смотреть картинку Что такое вписанная и описанная окружность. Картинка про Что такое вписанная и описанная окружность. Фото Что такое вписанная и описанная окружность

На рисунке окружности описана около четырехугольника, следовательно выполнено условие, что сумма углов А и С равна сумме углов B и D и равна 180 градусов.

Источник

Что такое вписанная и описанная окружность

Ключевые слова: окружность, описанная окружность, центр окружности, вписанная окружность, треугольник, четырехугольник, вневписанная окружность

Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон.

Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.

Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
Сам многоугольник в таком случае называется описанным около данной окружности.
Таким образом, в выпуклый многоугольник можно вписать не более одной окружности.

Для произвольного многоугольника невозможно вписать в него и описать около него окружность.
Для треуголь ника это всегда возможно.

Окружность называется вписанной в треугольник, если она касается всех трех его сторон, а её центр находится внутри окружности

Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.

Окружность называется описанной около треугольника, если она проходит через три его вершины.

Окружность, вписанная в прямоугольный треугольник

Окружность, описанная около прямоугольного треугольника

Четырехугольник, вписанный в окружность

Окружность, вписанная в ромб

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *