Что такое волновой дуализм электрона

Конец корпускулярно-волновому дуализму

Нельзя запрячь в одну телегу вола и трепетную лань…
(вольный пересказ известной фразы)

Причина возникновения корпускулярно-волнового дуализма – методологическая ошибка. Сторонники волновой природы света предпочли «не замечать» важнейшие факты, противоречащие их теории, но «не замечать» не получилось и они просто вынуждены были ввести новую сущность – «эфир», что само по себе противоречит важному методологическому принципу – «бритве Оккама» (Ockham, Occam) или принципу Ньютона: «Гипотез не измышляю!».

Исправить эту ошибку можно следующим образом. Надо, всего лишь, прислушаться к Рене Декарту (Rene Descartes): «Точно определяйте значения слов, и вы избавите мир от половины недоразумений».

Смотрим, какое определение даётся термину «волна» (или «Волны») в современной физике [1]:

В. – изменения нек-рой совокупности физ. величин (полей), способные перемещаться (распространяться), удаляясь от места их возникновения, или колебаться внутри огранич. областей пространства

В совр. понимании понятие В. настолько широко и многозначно, что фактически невозможно указать ни одного признака, общего для всех видов движений или процессов, к-рые наша интуиция или традиция относит к волновым.

Вот где «собака зарыта»! Такое откровение даёт понять – почему родился этот монстр – «корпускулярно-волновой дуализм»!

Следует заметить, что этот «отказ» содержит противоречие. С одной стороны, утверждается, что

невозможно указать ни одного признака, общего для всех видов

т.е. это и есть общий признак!

Итак, под словом «волны» надо понимать различные «виды движений или процессов». Но, разумеется, различных «движений» в Природе очень много, значит, нужен ещё признак (или признаки), выделяющий именно те виды движений, которые и есть «волны». Думаю, будет удобным оставить термин «волны» только для механических (классических!) волн, а для других

придумать другой термин. Предлагаю в пределах этой статьи, называть их «волноподобными движениями» (или «явлениями» или «процессами»)…

Хотя, в принципе, я знаю общий признак, по которому

наша интуиция или традиция относит к волновым

те или иные виды движений…

Этим признаком является необходимость «среды» для существования волн. Правда, под «средой» надо понимать не известную «сплошную среду», являющуюся математической абстракцией, а «физическую среду», имеющую структуру, т.е. состоящую из большого количества элементов.

С помощью этого общего признака можно будет объединить классические (механические) волны и явления, которые я предложил назвать «волноподобными».

Итак, определение термина «волна» в самом широком смысле может звучать следующим образом.

Определение. Волна – процесс (или «движение» в широком смысле), возможный и, при соответствующих условиях, происходящий в системе из большого количества элементов.

Введя термин «система» вместо «среда» мы охватим большее количество физических явлений, которые

наша интуиция или традиция относит к волновым.

Следует также отметить, что в этом определении не налагается никаких ограничений на наличие или отсутствие разного рода связей между элементами системы или каких-либо взаимодействий между ними.

Но, самое главное, благодаря такому определению, нам не надо выдумывать монстра – корпускулярно-волновой дуализм, потому что волна – свойство большого количества корпускул (элементов) и оно не может быть свойством одной корпускулы. Корпускула только может «участвовать в волне«, но не «иметь волновые свойства«!

Опираясь на это определение, посмотрим по-новому на, так называемые, «интерференционные» и «дифракционные картины», создаваемые световыми потоками. Разумеется, все эти известные опыты, якобы, «подтверждающие» волновую природу света (и других элементарных частиц!), сразу же, нужно отнести к «волноподобным» явлениям!

Эти картины, лишь на первый взгляд, похожи на обычные (классические) волны.

Сравним известные «кольца Ньютона» с «кругами на воде», образующимися при падении камня на спокойную водную поверхность (см. Рис.1 и 2).

На рис.1 приведены кольца Ньютона в трёх вариантах: 1 — в отражённом белом свете; 2 – в зелёном; 3 – в красном [2]. А на рис.2 приведено «распространение волн от, упавшего в воду, камня» из книги [3].

——- Что такое волновой дуализм электрона. Смотреть фото Что такое волновой дуализм электрона. Смотреть картинку Что такое волновой дуализм электрона. Картинка про Что такое волновой дуализм электрона. Фото Что такое волновой дуализм электрона
Рис 1. Кольца Ньютона.
——- Что такое волновой дуализм электрона. Смотреть фото Что такое волновой дуализм электрона. Смотреть картинку Что такое волновой дуализм электрона. Картинка про Что такое волновой дуализм электрона. Фото Что такое волновой дуализм электрона
Рис 2. Распространение волн от упавшего в воду камня.

Сразу же бросается в глаза статичность колец Ньютона и динамичность волн на воде, которые, действительно, распространяются, движутся. Это первое отличие.

Второе отличие можно увидеть, сравнивая кольца Ньютона со стоячей волной. В стоячей волне также присутствует динамика – неподвижны только узлы, а гребни и впадины непрерывно движутся, как бы, меняются местами.

Третье отличие состоит в том, что кольца Ньютона существуют, пока есть освещение, а для «кругов на воде» камень является лишь первоначальным толчком, после которого они пускаются в «свободное плавание».

Все эти отличия наводят на мысль, что кольца Ньютона не являются результатом интерференции каких-то «волн», а лишь перераспределением светового потока из-за взаимодействия фотонов с атомами стекла. При этом, определяющим фактором является геометрия поверхности стекла, что легко проверяется изменением радиуса кривизны линзы или другими искажениями геометрии поверхностей. Т.е. свойства света, можно даже сказать, «второстепенны», поскольку, качественно картина колец Ньютона не зависит от цвета света или его интенсивности, а зависит от свойств среды – стекла.

С другой стороны, кольца Ньютона подпадают под наше определение, потому что здесь есть, даже не одна, а, по крайней мере, две системы: система – поток большого количества фотонов и система – большое количество атомов, составляющих стёкла. И неудивительно, что взаимодействие этих систем порождает «волноподобное» явление, которое показалось некоторым физикам одним из доказательств волновой природы света.

В книге «Понятная физика»[4] приводится такое «подтверждение» волновой природы света:

«Если свет это поток фотонов», – подумал Тейлор, – «Я смогу сделать его ничтожно редким». Он уменьшил накал лампочки до минимума и установил перед иглой несколько светофильтров. По расчетам Тейлора, в секунду на иголку попадало не больше одного фотона. Значит, ни о каком коллективном взаимодействии частиц не могло быть и речи. Он поместил установку в светонепроницаемый кожух, установил вместо экрана фотопластинку, повесил табличку «Не выключать!», взял отпуск и уехал кататься на яхте. Когда Тейлор вернулся через месяц, отдохнувший и загорелый, он проявил фотопластинку и увидел, что следы двух миллионов фотонов, поочередно попадавших в мишень в течение месяца, сложились на фотопластинке в классическую дифракционную картину. Для тех, кто успел поверить в теорию квантов, это был настоящий шок.

А теперь ещё раз глянем на наше определение волн, и, сразу же, приходим к выводу, что описанный эксперимент никоим образом не доказывает волновую природу света. А, как раз, наоборот, доказывает, что, так называемая, «дифракционная картина» не рисуется ни одним фотоном, ни двумя, ни десятью, ни сотней и, даже, ни тысячей фотонов, а только «двумя миллионами» фотонов, т.е. только «большим количеством элементов, составляющих систему«!

Обратите внимание также на то, что иголку, участвующую в этом эксперименте, никак не используют при интерпретации результатов эксперимента, хотя без иголки никакой дифракционной картины не будет и в помине!

Как видим, один и тот же эксперимент можно интерпретировать по-разному, смотря на каких основополагающих утверждениях стоим…

Источник

Естествознание. 10 класс

Конспект урока

Естествознание, 10 класс

Урок 14. Корпускулярно-волновой дуализм

Перечень вопросов, рассматриваемых в теме:

Квантовая теория – совокупность представлений, согласно которым электромагнитные волны излучаются, распространяются, поглощаются отдельными порциями, которые называются «квантами». Теория послужила основой для появления квантовой механики, объясняющей движение микрообъектов. Гипотеза была предложена М. Планком, развита А. Эйнштейном.

Интерференция – сложение двух волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства. Результат зависит от угла падения света на пленку, ее толщины и длины волны. Примером может служить окрашивание поверхности мыльного пузыря.

Фотоэффект – явление вырывания электронов из вещества под действием падающего на него света. Открыто в 1886 году Г. Герцем, подробно изучено А.С. Столетовым. Квантовая теория света дала возможность объяснить это явление. А. Эйнштейн был удостоен Нобелевской премии за работы по теории фотоэффекта.

Планетарная модель атома – предложена в 1906 году Э. Резерфордом. Согласно предложенной модели ядро атома имеет положительный заряд и располагается в центре, вокруг него по своим орбитам вращаются отрицательно заряженные частицы – электроны. Оказалась несостоятельной.

Энергетические уровни – определенная энергия, которой характеризуется данный электрон в атоме, соответствующая его расстоянию от ядра. Термин предложен Н.Бором.

Основная и дополнительная литература по теме урока:

Естествознание. 10 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., испр. – М.: Просвещение, 2017 : с 64-71.

Открытые электронные ресурсы по теме урока:

Кеттерле В. Когда атомы ведут себя как волны. Бозе-эйнштейновская конденсация и атомный лазер. Нобелевская лекция. 2001 г. Электронный доступ : https://ufn.ru/ru/articles/2003/12/e/

Как объяснить корпускулярно-волновой дуализм. д.ф-м.н., профессор, профессор ВолГУ А. Морозов / Электронный ресурс: https://www.youtube.com/watch?v=FWWlclQ0ozs

Корпускулярно-волновой дуализм — Эмиль Ахмедов Открытый образовательный ресурс: ассоциация специалистов в сфере образования, науки и просвещения «Издательский дом “ПостНаука”» адрес доступа: https://postnauka.ru/video/81299

Теоретический материал для самостоятельного изучения

В классической физике частицы и волны резко противопоставлялись как олицетворение дискретности (прерывности) и непрерывности соответственно. В качестве существенных различий считалось, что частицы относительно строго локализованы в пространстве и движутся по определенным траекториям. Волны же наоборот не имеют строгой локализации и обладают следующими признаками: могут огибать препятствия, могут накладываться друг на друга, существовать в одной и той же точке пространства. При движении частиц происходит перенос вещества и энергии, а при распространении волн переноса вещества не происходит. Свойственное классической физике противопоставление вещества как дискретного образования и поля, как непрерывного, соответствует принципу «или – или». Однако исследование природы света сняла это противоречие.

Волновые свойства света

Ньютон в своем трактате «Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света», только выдвинул предположение, что свет обладает свойствами волны, однако не стал развивать эту идею. Ученый объяснял законы оптики с позиций корпускулярной теории. Считая свет потоком частиц

Однако, в 1801 году, Томас Юнг обнаружил явление интерференции у света, что характерно для всех волн. Суть явления заключается во взаимном усилении или ослаблении когерентных волн при наложении. Напомним, что «Когерентные» можно перевести как «синхронные», «согласованные»; у когерентных волн одинаковая частота (одинаковая длина волны). Если амплитуды волн света совпадут при наложении, то мы будем наблюдать усиление яркости светового пятна. Если волны будут противоположны по значению максимумов и минимумов (гребней и впадин), то мы можем добиться такого состояния, когда световое пятно не будет видимо. Волновая характеристика света помогла Т.Юнгу объяснить явление дисперсии (разложения) света призмой.

Если свет – это волна, то наряду с интерференцией должна наблюдаться и дифракция света. Ведь дифракция – огибание волнами краев препятствий – присуща волновому движению. В результате этого в области геометрической тени могут возникать светлые зоны. Наоборот, в области, куда в соответствии с законом прямолинейного распространения светового луча должен падать свет, может возникать темная зона.

Лишь после проведения качественных опытов, демонстрирующих интерференцию и дифракцию, волновая природа света стала признанной.

Корпускулярные свойства света

При этом количество выбитых электронов связано с частотой световых волн, но не с их интенсивностью. Другими словами, электроны будут вылетать с поверхности независимо от яркости света, но при условии, что электрон получит достаточную порцию энергии (напомним, что энергия пропорциональна частоте E=hν). Поскольку энергия кванта может быть поглощена только полностью, то не удивительно, что если энергия кванта света мала (большая длина волны), то и электрон не сможет покинуть вещество, т.е. не совершится работа выхода (Вспомните, что понимается под «работой» в физике). Квант света Эйнштейном был назван фотоном. Стоит отметить, что фотон это не абстрактная модель, это реально существующая частица, хотя и не имеющая массы покоя. Другими словами, фотон существует только в движении.

Корпускулярно-волновой дуализм света

Тем самым, электромагнитное поле проявляет одновременно и волновые, и квантовые (корпускулярные) свойства, как свойства непрерывности, так и свойства прерывности (дискретности). В одних явлениях (интерференция, дифракция) проявляются резче волновые свойства, в других (фотоэффект, фотохимические реакции) – квантовые свойства излучения. Однако ряд свойств можно объяснить в согласованности, как с волновых, так и квантовых позиций. Так, например, давление света можно объяснить в согласии с опытом как передачей фотонами (квантами света) импульса поверхности, на которую они падают, так и на основе представлений об электромагнитной волне, где электрическая составляющая возбуждает движение зарядов в проводящей поверхности, а магнитная обеспечивает действие сила Лоренца. Такого рода двоякое объяснение одного и того же явления говорит о том, что свет одновременно проявляет и те, и другие свойства, а потому одновременно обладает ими, обнаруживая единство. Это единство проявляется в основных характеристиках фотона. Он обладает, как любая частица, энергией (hν), массой(Что такое волновой дуализм электрона. Смотреть фото Что такое волновой дуализм электрона. Смотреть картинку Что такое волновой дуализм электрона. Картинка про Что такое волновой дуализм электрона. Фото Что такое волновой дуализм электрона), и импульсом (Что такое волновой дуализм электрона. Смотреть фото Что такое волновой дуализм электрона. Смотреть картинку Что такое волновой дуализм электрона. Картинка про Что такое волновой дуализм электрона. Фото Что такое волновой дуализм электрона), но эти корпускулярные характеристики выражаются через сугубо волновую характеристику – частоту.

Одновременно обладая и теми и другими свойствами, свет не всегда одновременно их проявляет. В зависимости от условий резче проявляются одни или другие свойства. Такая двойственность света называется корпускулярно-волновым дуализмом.

Волновые свойства вещества

Итак, электромагнитное излучение обладает одновременно свойствами волн и свойствами частиц.

Но оказалось, что эта двойственность характерна не только для поля, что ей обладают и любые микрообъекты. Например, частица вещества – электрон.

Так, согласно современным представлениям, наряду с волнами электромагнитного поля имеются волны вещества. (Вспомним про тепловые излучения!). Эта идея, предложенная в 1924 году Луи де Бройлем, также была подтверждена опытным путем. Суть опыта состояла в том, что поток электронов определенной энергии направлялся на тонкую пластинку и после этого попадал на фотопластинку, на которой обнаруживалась типичная дифракционная картина. Электроны дифрагировали как волны.

С этих позиций изменились и современные представления о строении атома. На смену планетарной модели Эрнста Резерфорда, согласно которой электроны как планеты вращаются по своим траекториям пришла новая модель. Описанная по подобию движения планет Солнечной системы старая модель оказалась не состоятельной, поскольку не могла объяснить, почему электрон не падает на ядро, и почему спектры излучения и поглощения атомов линейчатые. Сегодня при описании атома учитывается дуальная природа электрона, существование которого связано с некоторым «стационарным» состоянием, в котором он свою энергию не теряет. Энергию электрон тоже может изменить дискретно при поглощении или испускании квантов. Таким образом существование электрона в атоме связано с энергетическими уровнями, которые, вследствие волновой природы электрона, можно представить, как области пространства вокруг ядра, где с наибольшей вероятностью мы можем его зафиксировать. Современные представления о микромире не могут быть описаны понятиями классической механики, поэтому на смену понятию орбита, приходит менее категоричное – орбиталь.

Из вероятностного характера описания следует крах концепции детерминизма (предполагает однозначность и предопределенность будущего, это вытекает из признания жесткой причинно-следственной связи между событиями и явлениями и отрицает объективность случайности). В соответствии с квантовой теорией будущее состояние любой системы может быть предсказано лишь с некоторой вероятностью. Идея вероятностного характера процессов в микромире постепенно была распространена и на процессы в нашем макромире. Наше будущее, таким образом, не является жестко определенным.

Единство волновых и корпускулярных свойств, дискретности и непрерывности, т.е. корпускулярно-волновой дуализм, есть общая черта материальных объектов, которой обладают и поля, и все микрочастицы. И это еще одно доказательство единства материального мира.

Свет (электромагнитные волны) осуществляет распространение энергии порциями – квантами, проявляя наравне с волновыми и квантовые свойства.

Электрон в определенных условиях ведет себя как волна.

Волна, соответствующая определенной частице, определяет вероятность нахождения частицы в данной точке пространства.

Всем микрочастицам присущи как корпускулярные, так и волновые свойства. В то же время любую из микрочастиц нельзя считать ни частицей, ни волной в классическом понимании. К корпускулярному и волновому описанию следует относиться как к дополняющим друг друга точкам зрения на один и тот же круг явлений.

Примеры и разбор решения заданий тренировочного модуля.

Задание1. Выберите один ответ

Интерференцией света объясняется физическое явление:

А: красный цвет абажура настольной лампы, светящейся белым светом

Б: красный цвет мыльной пленки, освещаемой белым светом

В: проявление цветного спектра настольной лампы, светящейся белым светом

Правильный ответ: Б

Пояснение: явления под А и В связаны с дисперсией

Задание2. Вставьте пропущенные элементы в тексте по смыслу:

«Единство ___________и корпускулярных свойств, дискретности и_____________, т.е. корпускулярно-волновой дуализм, есть ________черта материальных объектов, которой обладают и поля, и все________. И это еще одно доказательство единства материального мира»

Варианты элементов для подстановки: непрерывности; общая; тела; микрочастицы; волновых; частная

Ответ: «Единство волновых и корпускулярных свойств, дискретности и непрерывности, т.е. корпускулярно-волновой дуализм, есть общая черта материальных объектов, которой обладают и поля, и все микрочастицы. И это ещё одно доказательство единства материального мира»

Источник

Корпускулярно-волновой дуализм

Свет всегда оставался самой загадочной областью изучения физики. Около четырехсот лет ученые спорили, что же он собой представляет. В одних случаях он ведет себя как частица, в других — как волна. Необходим был новый подход, чтобы как-то объяснить создавшееся положение.

Первым, кто предположил, что свет — это частица, был гениальный английский ученый Исаак Ньютон. Он создал стройную для своего времени теорию света на корпускулах. Вместе с тем оставались загадочные на тот момент явления, такие как дифракция и интерференция, которые явно не в вписывались в корпускулярную теорию. Тогда англичанин Роберт Гук и нидерландский ученый Христиан Гюйгенс предположили, что свет — это все-таки волна. Но авторитет Ньютона был настолько силен, что весь научный мир продолжал считать свет частицами.

Опыт Юнга

Споры продолжались до начала XIX века, когда Томас Юнг поставил свой знаменитый опыт: свет проходит через две щели и падает на экран, где появляются темные и светлые интерференционные полосы. Это можно объяснить тем, что в некоторых местах световые волны взаимно усиливаются, а в других — гасятся. Напрашивался однозначный вывод: свет—это все-таки электромагнитная волна! Волновая теория электромагнитного излучения нашла свое теоретическое описание в работах Джеймса Максвелла. Использование представления о свете как волне позволяет объяснить явления, связанные с интерференцией и дифракцией, в том числе структуру светового поля, а именно объяснить построение изображений и метод голографии.

Прошло еще почти сто лет, и Макс Планк, чтобы решить проблему ультрафиолетовой катастрофы, ввел понятие фотона. Научный мир снова обратился к проблеме света, и вот тут опять возник вопрос. Что же он такое: частица или все же волна? И как все это описать? Свет в одних случаях ведет себя как поток частиц, в других — обладает волновыми свойствами. То есть обладает корпускулярно-волновым дуализмом.

Корпускулярно-волновой дуализм — свойство любой микрочастицы обнаруживать признаки частицы или корпускулы и волны.

Частицы как волны

Свет — это волна. Но свет также считали состоящим из частиц, или «корпускулов». Не так давно материя, точнее, атомы, была сведена к набору более мелких частиц. Но оставался вопрос: не могут ли и они вести себя как волны?

Именно об этом размышлял Луи Де Бройль в 1923 году. Он предполагал, что корпускулярно-волновой дуализм характерен не только для видимого света, но также для других форм излучаемой энергии. Например, это явление можно было попытаться применить к имеющим массу частицам – электрону или протону.

Де Бройль стал рассматривать каждую частицу как некий цуг волн, впоследствии названный «волновым пакетом». Конечно, такие волновые формы не распространяются, как видимый свет, но имеют с ним много общего. Так, скорость частицы оказалась обратно пропорциональна длине волны ее волновой формы — более быстрые частицы имеют более короткую длину волны. Кинетическая энергия частицы получалась пропорциональной частоте ее волновой формы.

Что такое волновой дуализм электрона. Смотреть фото Что такое волновой дуализм электрона. Смотреть картинку Что такое волновой дуализм электрона. Картинка про Что такое волновой дуализм электрона. Фото Что такое волновой дуализм электрона

Для доказательства Де Бройль использовал чистую математику. В 1927 году Джордж Томсон — сын «Джи Джи» (дружеское прозвище Джозефа Джона Томсона), открывшего за 28 лет до этого существование электрона — сумел найти материальные свидетельства правоты Луи де Бройля. Томсон повторил опыт Юнга, который доказывал волновую природу света, но работал с пучком электронов. Он направил поток электронов на экран с двумя щелями, а детектор расположил за ним. Прибор отмечал каждый пролетающий электрон черной точкой. Если бы электроны не имели волновых свойств, они дали бы на экране две группы точек за каждой из щелей. Но Томсон обнаружил, что точки образовали те самые темные полоски интерференционной картины – как и волны. Так Томсон выяснил, что его отец открыл не только субатомную частицу, но и волну.

Эффект Штарка

Что такое волновой дуализм электрона. Смотреть фото Что такое волновой дуализм электрона. Смотреть картинку Что такое волновой дуализм электрона. Картинка про Что такое волновой дуализм электрона. Фото Что такое волновой дуализм электрона

В 1913 году Йоханнес Штарк обнаружил, что внешние электрические поля вызывают «расщепление» линий эмиссионного спектра, когда на месте одной линии возникает их несколько. Это связано с тем, что электромагнитные поля способны изменять волновые формы электронов поля. Эффект, или расщепление, Штарка стали использовать для исследования свойств электронов.

Наиболее ярко корпускулярно-волновой дуализм проявляется у элементарных частиц. Электрон, нейтрон, фотон в одних условиях ведут себя как локализованные в пространстве материальные объекты—частицы, обладающие определенными энергиями и импульсами, а в других — как волны, что проявляется в их способности к интерференции и дифракции.

И ни то, и ни другое

Явления интерференции и дифракции света убедительно свидетельствуют о волновой природе света. Закономерности теплового излучения, фотоэффекта можно успешно объяснить с классической точки зрения только на основе представлений о свете как о потоке отдельных фотонов. Однако волновой и корпускулярный способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми, и корпускулярными свойствами.

Волновые свойства света играют определяющую роль в закономерностях его интерференции, дифракции, поляризации, а корпускулярные — в процессах взаимодействия света с веществом.

Сейчас концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как, во-первых, некорректно сравнивать и противопоставлять материальный объект, например электромагнитное излучение, и способ его описания — корпускулярный или волновой; и, во-вторых, число способов описания материального объекта может быть больше двух—корпускулярный, волновой, термодинамический и так далее, так что сам термин «дуализм» становится по сути неверным. На момент своего возникновения концепция корпускулярно-волнового дуализма служила способом описания поведения квантовых объектов путем подбора аналогий из классической физики. На самом же деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении.

И тем не менее именно споры о теории света и привели в конце концов к созданию квантовой физики, о которой и пойдет речь дальше.

«Нет особой физической разницы между радиоволнами и видимым светом с точки зрения физики — Вы будете описывать их одними и теми же уравнениями и математикой. Только наше повседневное восприятие различает их» (Элефтериос Гулильмакис)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *