Что такое водородное топливо определение
Перспективы и недостатки водородной энергетики
Для хранения и выработки энергии от водорода используются топливные элементы. Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах 19 века. Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.
В 1959 году Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовались правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.
В отличие от кислорода водород практически не встречается на земле в чистом виде и поэтому извлекается из других соединений с помощью различных химических методов.
По этим способам его разделяют на цветовые градации.
Зеленый — производится из возобновляемых источников энергии методом электролиза воды. Все, что необходимо для этого: вода, электролизер и большое снабжение электроэнергией.
Голубой — производится из природного газа, а вредные отходы улавливаются для вторичного использования. Тем не менее идеально чистым этот метод не назовешь.
Розовый или красный — произведенный при помощи атомной энергии.
Серый — водород получают путем конверсии метана. При его производстве вредные отходы выбрасываются в атмосферу.
Коричневый — водород получают в результате газификации угля. Этот метод также после себя оставляет парниковые газы.
Еще существуют технологии получения биоводорода из мусора и этанола, но их доля чрезвычайно мала.
Себестоимость производства по видам водорода, доллар за килограмм
Водородная энергетика
На переработку угля приходится 18% производства водорода, 4% обеспечивается за счет зеленого водорода и 78% — переработкой природного газа и нефти. Методы производства, основанные на ископаемом топливе, приводят к образованию 830 млн тонн выбросов CO2 каждый год, что равно выбросам Великобритании и Индонезии, вместе взятым. И тем не менее водород — это более чистая альтернатива традиционному топливу.
В мире три основных источника выбросов, способствующих потеплению климата: транспорт, производство электроэнергии и промышленность. Водород может использоваться во всех трех областях. При использовании в топливных элементах водородная энергия оставляет минимальные потери, а после использования в качестве побочного продукта остается только вода, из которой снова можно добывать водород.
Перспективы отрасли
Согласно докладу МЭА, к 2050 году мировой спрос на водород должен достичь 528 млн тонн — против 87 млн в 2020, — а его доля в мировом потреблении составит 18%, из них 10% будет приходиться на зеленый водород.
В июне 2020 года Германия объявила о реализации национальной водородной стратегии с инвестициями в 7 млрд евро, чтобы стать лидером в этой области.
Япония, Франция, Южная Корея, Австралия, Нидерланды и Норвегия начали свой курс на водород раньше Германии, а Япония сделала это раньше всех — в декабре 2017 года.
В июле 2020 года Минэнерго подготовило план развития в РФ водородной энергетики на период 2020—2024 годов. Производить водород собираются «Росатом», «Газпром» и «Новатэк». В дорожной карте предусмотрены следующие меры:
В 2021 году HydrogenOne Capital — первый в мире инвестиционный фонд, ориентированный на зеленый водород, заявил о листинге на Лондонской бирже. Фонд инвестирует в проекты мощностью 20—100 МВт с возможностью их расширения до 500 МВт.
Как сделать ремонт и не сойти с ума
Преимущества водородной энергетики
Высокая применимость. Электрификация транспорта поможет снизить выбросы в атмосферу, но авиацию, морские и грузовые перевозки на дальние расстояния трудно перевести на использование электроэнергии, потому что для этих секторов требуется топливо с высокой плотностью энергии. Зеленый водород может удовлетворить эти потребности. Например, Airbus представил концепции самолетов с водородным двигателем и надеется ввести его в эксплуатацию к 2035 году.
Nikola строит полуприцепы, работающие как на аккумуляторных батареях, так и на водороде. Компания заявляет, что ее топливные элементы могут работать при более низких температурах, чем батареи. И они легче, что делает их более практичными для грузовиков и другой тяжелой техники. Nikola также утверждает, что дальность хода такого грузовика составит 900 миль на баке с водородом. Для сравнения: у Tesla Semi с батарейным питанием, который может быть запущен в производство в конце этого года или в 2022 году, заявленная дальность — 200—300 миль.
Также свои аналогичные модели транспорта представили компании Toyota, Honda и BMW.
Время заправки электромобиля на топливных элементах в среднем составляет менее четырех минут. При этом в отличие от батарей они не нуждаются в перезарядке. Поскольку они могут работать независимо от сети, то могут использоваться как запасные генераторы электричества или тепла.
Важный элемент перехода на водород — его применение в ЖКХ. Кроме пилотных проектов в Великобритании Лидс станет первым городом, энергоснабжение которого будет полностью водородным. Согласно плану, все газовые сети и транспортное оборудование переведут на него.
Запасы водорода практически безграничны. Так как он встречается почти всюду, его можно использовать там, где он производится. В отличие от батарей, которые не могут хранить большое количество электроэнергии в течение продолжительного времени, водород можно производить из избыточной возобновляемой энергии и хранить в больших количествах.
Энергоэффективность. Водород содержит почти в три раза больше энергии, чем ископаемое топливо, поэтому для выполнения какой-либо работы его требуется гораздо меньше. Например, по сравнению с электростанцией, работающей на сжигании топлива с КПД от 33 до 35%, водородные топливные элементы выполнят ту же функцию с КПД до 65%. Для примера, у солнечных элементов КПД — 20%, а у ветряных — 40%.
Весной 2020 года в городе Фукусима была запущена самая крупная в мире электростанция, работающая на водороде. Для питания электролизных установок на ней размещены солнечные батареи общей мощностью 20 МВт. Всего станция вырабатывает 1,2 тысячи кубических метров водорода в час.
В автомобилях топливные элементы используют 40—60% энергии топлива, а также обеспечивают сокращение его расхода на 50%.
Зеленый водород — отличная среда для хранения энергии. Например, у Германии существует проблема с энергосистемой. В ясные и ветреные дни солнечные экраны и ветряные турбины на севере производят больше электроэнергии, чем может потребить эта часть страны. Из-за этого Германия вынуждена продавать излишки электроэнергии соседним странам себе в убыток. Избыток электроэнергии из ВИЭ можно хранить в виде водорода, а затем сжигать для выработки электроэнергии, когда это необходимо.
Недостатки водородной энергетики
Стоимость зеленого водорода. Как уже говорилось выше, именно стоимость добычи самого чистого вида водорода ставит наиболее сильные препятствия в его развитии. По словам и прогнозам Минэнерго РФ, перспективы водородной энергетики связаны с удешевлением стоимости водорода, производимого электролизом воды. В качестве основных факторов обеспечения конкурентоспособности зеленого водорода рассматривается перспективное снижение капитальных затрат на электролизеры, а также стоимости электроэнергии из ВИЭ.
Как работает водородный двигатель и какие у него перспективы
С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.
Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.
История развития рынка водородных двигателей
Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.
Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.
В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.
В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.
Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].
Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.
В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.
В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.
Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.
Как работает водородный двигатель?
На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.
Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.
По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.
Где применяют водородное топливо?
Плюсы водородного двигателя
Минусы водородного двигателя
Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.
Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.
Водородный транспорт в России
В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.
В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.
Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.
Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».
В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.
Перспективы технологии
Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.
Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.
Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.
Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.
Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].
Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:
Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.
Водородное топливо
LH2 является самым экологически чистым видом моторного топлива, поэтому его перспективы очевидны
Водородное топливо
В Австралии на бурых углях в штате Виктория отрабатывается технология технология газификации угля с последующим выделением водорода, вернее удаления серы, ртути и двуокиси углерода (СО2).
Водород
Водород (H) является самым распространенным элементом на Земле, но в обычных условиях он не встречается ни в виде водорода H, ни в виде газообразного водорода (H2).
Благодаря своим характеристикам он легко вступает в реакцию с другими органическими соединениями с образованием, например, воды (H2O).
Во время этой реакции образования воды из водорода и воздуха выделяется энергия, которую можно использовать в качестве электричества.
Чтобы сделать эту реакцию полезной для промышленного производства электроэнергии, необходимо произвести водород, например из воды путем разделения атомов на кислород и водород посредством электролиза.
Есть другие технологии:
Реакция взаимодействия водорода с кислородом происходит с выделением тепла.
Если взять 1 моль H2 (2 г) и 0,5 моль O2 (16 г) при стандартных условиях и возбудить реакцию, то согласно уравнению
после завершения реакции образуется 1 моль H2O (18 г) с выделением энергии 285,8 кДж/моль.
1 м³ водорода весит 89,8 г (44,9 моль), поэтому для получения 1 м³ водорода будет затрачено 12832,4 кДж энергии.
1 кВт*ч = 3600 кДж, поэтому получим 3,56 кВт*ч электроэнергии.
Целесообразность перехода на водородное топливо можно оценить, сравнив имеющийся тариф на 1 кВт*ч электричества и, к примеру, стоимость 1 м³ газа или стоимость другого энергоносителя.
Получение водорода
2NaCl + 2H2O → H2↑ + 2NaOH + Cl2
Конверсия с водяным паром: CH4 + H2O ⇄ CO + 3H2 (1000 °C) Каталитическое окисление кислородом: 2CH4 + O2 ⇄ 2CO + 4H2
Физические свойства
Химические свойства
Молекулы водорода Н₂ довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:
Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:
С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении.
Он может «отнимать» кислород от некоторых оксидов, например:
Реакция восстановления противоположна реакции окисления.
Обе эти реакции всегда протекают одновременно как 1 процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.
С галогенами образует галогеноводороды:
F2 + H2 → 2 HF, реакция протекает со взрывом в темноте и при любой температуре, Cl2 + H2 → 2 HCl, реакция протекает со взрывом, только на свету.
С сажей взаимодействует при сильном нагревании:
Водородное топливо
Водород один из наиболее перспективных источников энергии. Его запасы на нашей планете практически безграничны. Кроме того, он содержит в единице веса почти в 3 раза больше тепловой энергии, чем, например, бензин.
1. Методы получения водорода и перспективы его использования в автомобилях
В настоящее время существует много различных методов получения водорода:
Для промышленного получения водорода основными видами сырья являются природные горючие газы, коксовый газ и газы нефтепереработки, а также продукты газификации твердых и жидких топлив (главным образом угля). Важнейшими способами производства водорода из природного газа являются каталитическое взаимодействие углеводородов, главным образом метана, с водяным паром (конверсия):
и неполное окисление углеводородов кислородом:
Образующаяся окись углерода также подвергается конверсии:
Водород, добываемый из природного газа, самый дешевый. Очень распространен способ производства водорода из водяного и паровоздушного газов, получаемых газификацией угля.
Получение водорода электролизом воды в настоящее время — процесс чрезвычайно дорогой. Однако в этом направлении ведутся постоянные исследования. Например, процесс разложения воды, используемый при производстве водорода, может быть ускорен за счет уникальных каталитических свойств углеродных нанотрубок. Кроме того, следует учитывать способ получения электроэнергии, необходимой для электролиза воды. Если электроэнергия вырабатывается на электростанциях, использующих в качестве топлива природный газ или уголь, то экологичность применения водорода в качестве моторного топлива во многом теряет свои преимущества. Логичнее в качестве источника энергии для получения водорода использовать возобновляемый источник. Таким источником может быть энергия ветра, солнца и т.п.
Мощности по производству водорода в мире оцениваются в 40 млн т в год. Практически весь вырабатываемый в настоящее время водород используется в различных процессах нефтепереработки и нефтехимии.
Водород (лат. hydrogenium), Н — химический элемент, первый по порядковому номеру в периодической системе Менделеева; атомная масса его составляет 1,00797. При обычных условиях водород — газ; не имеет цвета, запаха и вкуса. Водород — легчайшее из всех известных веществ (в 14,4 раза легче воздуха), плотность его составляет 0,0899 г/л при 0 °С и 1 атм. Водород кипит (сжижается) и плавится (затвердевает) соответственно при –252,6 °С и –259,1 °С (только гелий имеет более низкие температуры плавления и кипения). Удельная теплоемкость водорода при 0 °С и 1 атм равна 14,208 кДж/(кг · К). Водород малорастворим в воде (0,0182 мл/г при 20 °С и 1 атм), но хорошо — во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объемов Н на 1 объем Pd). Жидкий водород очень легок, его плотность при –253 °С равна 0,0708 г/см3.
Один из путей постепенного внедрения водорода на автотранспорте — применение двухтопливного двигателя внутреннего сгорания (водород — бензин, водород — метан).
Перспективность применения водорода для автомобильных двигателей определяется прежде всего экологической чистотой, неограниченностью и возобновляемостью сырьевых запасов, относительно низкими затратами на транспортировку и, наконец, уникальными моторными свойствами, что открывает возможности его широкого применения как в современных автомобильных двигателях без их коренной перестройки, так и в принципиально новых транспортных энергоустановках с прямым преобразованием энергии типа электрохимических генераторов тока.
Использование водорода в качестве топлива для автомобильных двигателей связано с довольно обширным кругом вопросов:
Использование водорода в качестве моторного топлива для автомобилей может осуществляться путем применения:
2. Применение водорода в топливных элементах
Большое значение для практического применения имеет преобразование химической энергии органического топлива в электрическую — создание топливных элементов. Распространены низкотемпературные (150 °С) топливные элементы с жидким электролитом (концентрированные растворы серной или фосфорной кислот и щелочей KОН). Топливом в элементах служит водород, окислителем — кислород из воздуха.
Образование электроэнергии в элементе — это процесс обмена электронами между горючим и окислителем с образованием нового соединения — продукта реакции (рис. 3).
Отличие реакции в элементе от реакции окисления при горении состоит в том, что в первом случае процессы протекают с точки зрения термодинамики обратимо, т.е. разность энергий электронов у исходных веществ и продуктов реакции непосредственно превращается в электроэнергию (упорядоченное движение электронов). При горении же химическая энергия переходит в энергию хаотического теплового движения атомов, молекул и их частей.
Рис. 3. Схема водородно-кислородного элемента: 1 – катод; 2 — электролит; 3 — анод
Основные преимущества топливных элементов:
Эксперты связывают «водородное будущее» автотранспорта прежде всего с топливными элементами. Водород и кислород соединяются в «ящике с мембраной» (так упрощенно можно представить топливный элемент) и получают водяной пар плюс электричество. В отличие от аккумуляторной батареи в топливном элементе обеспечивается непрерывный подвод реагирующих компонентов (горючего и окислителя) в зону электрохимической реакции, что позволяет преодолеть основной недостаток классического электромобиля (при сохранении всех достоинств) — недостаточную энергоемкость источника энергии. Удельная энергоемкость топливного элемента в 10 раз превышает этот параметр для лучших аккумуляторных батарей (порядка 1000 Вт · ч/кг вместо 100 Вт · ч/кг). При этом наблюдается полное отсутствие вредных выбросов, пробег определяется только запасом топлива на борту.
Рис. 4. Схема электрохимического генератора
Все это делает топливный элемент, работающий на водороде и воздухе, наиболее привлекательным источником энергии, особенно для городского транспорта. Однако серийный выпуск и массовые продажи машин на топливных элементах сдерживаются малым числом соответствующих заправочных станций. Да и стоимость топливных элементов пока велика.
3. Применение водорода в двигателях внутреннего сгорания
Для повышения экологической чистоты бензиновых двигателей внутреннего сгорания и их экономичности до уровня дизельных двигателей было предложено использовать водород в качестве основного моторного топлива или как добавки к бензину.
Интерес ученых в области двигателестроения всегда привлекали своеобразные физико-химические свойства водорода, главным достоинством которых является экологическая чистота рабочего процесса. Известный научно-технический опыт использования водорода в качестве топлива для двигателей внутреннего сгорания показывает, что водород совместим с существующей базовой конструкцией поршневого двигателя. При этом водород кардинально улучшает экологическую эксплуатационную характеристику и имеет широкую сырьевую базу. Организация рабочего процесса двигателя, работающего на водороде или с его добавкой к другим топливам, имеет особенности и требует разработки новых способов топливоподачи.
Использование водорода в качестве топлива для двигателей внутреннего сгорания представляет собой комплексную задачу, включающую широкий круг вопросов:
При сгорании водорода в двигателе образуется практически только вода, и в этом отношении двигатель на водородном топливе является наиболее экологически чистым. Также водород имеет высокие энергетические свойства — низшая теплота сгорания водорода составляет 120 МДж/кг (бензин — 41…44 МДж/кг, дизельное топливо — 42…43 МДж/кг).
При высокой массовой энергоплотности объемная энергоплотность водорода на 15…20 % ниже энергоплотности бензина. В смеси с воздухом водород устойчиво воспламеняется в широком диапазоне концентраций, вплоть до коэффициента избытка воздуха α = 10, что обеспечивает нормальную работу двигателя на всех скоростных режимах в широком диапазоне изменения состава смеси от α = 0,2 до α = 5. Критическая степень сжатия при стехиометрическом водородно-воздушном составе смеси не превышает 4,7, что соответствует октановому числу 46 по исследовательскому методу,
в то время как при α = 3,5 степень сжатия достигает 9,4 и октановое число равно 114. Таким образом, при достаточном обеднении смеси возможна бездетонационная работа водородного двигателя в широком диапазоне степеней сжатия.
Исследования в области применения водорода для двигателей внутреннего сгорания отличаются широким спектром вариантов использования водорода для двигателей внешнего и внутреннего смесеобразования: использование водорода в качестве присадки, частичное замещение топлива водородом и работа двигателя только на водороде.
Используют водород в двигателях, работающих на традиционном топливе нефтяного происхождения, а также в сочетании с альтернативным топливом, например со спиртами (этиловый, метиловый) или природным газом. Возможно использование водорода в сочетании с синтетическим топливом, мазутами и др.
Качественное влияние на рабочий процесс двигателя внутреннего сгорания определяется прежде всего свойствами водорода. Он обладает более высокой диффузионной способностью, большей скоростью сгорания, широкими пределами воспламенения. Энергия воспламенения водорода на порядок меньше, чем у углеводородных топлив. Реальный рабочий цикл определяет более высокую степень совершенства рабочего процесса двигателя внутреннего сгорания, лучшие показатели экономичности и токсичности.
Кроме того, перевод на водород обычных двигателей внутреннего сгорания не только делает их чистыми, но и повышает термический КПД и улучшает гибкость работы. Это происходит потому, что водород обладает намного более широким по сравнению с бензином диапазоном пропорций смешивания его с воздухом, при которых еще возможен поджог смеси, и сгорает водород полнее, даже вблизи стенок цилиндра, где в бензиновых двигателях обычно остается несгоревшая рабочая смесь.
Значительный эффект по повышению КПД традиционных автомобильных двигателей, особенно в области малых нагрузок, дает переход на топливные смеси с большим избытком воздуха. При этом уникальные моторные свойства водорода позволяют даже при относительно небольших его добавках к бензино-воздушной смеси реализовать такие степени обеднения смеси, которые недоступны любому другому способу.
Чтобы приспособить существующие конструкции двигателей к работе на водороде как основном топливе, необходимы определенные изменения, в первую очередь конструкции топливоподающей системы. Известно, что применение внешнего смесеобразования приводит к уменьшению наполнения двигателя свежим окислителем, а значит, и к снижению мощности до 40 % из-за низкой плотности и высокой летучести водорода. При использовании внутреннего смесеобразования энергоемкость заряда водородного дизеля может возрастать до 12 % или может быть обеспечена на уровне, соответствующем работе дизеля на традиционном углеводородном дизельном топливе. Особенности организации рабочего процесса водородного двигателя определяются свойствами водородно-воздушной смеси, а именно: пределами воспламенения, температурой и энергией воспламенения, скоростью распространения фронта пламени, расстоянием гашения пламени. Но в водородных двигателях внутреннего сгорания скорость распространения фронта пламени при сгорании водорода в 5–6 раз выше, чем при сгорании бензина. Это приводит к большим механическим и тепловым нагрузкам на детали кривошипно-шатунного механизма двигателя. Для современных конструкций двигателей наиболее эффективно использование водорода в качестве добавки к бензиновоздушной смеси. При этом не требуется серьезных изменений в конструкции топливной системы и системы двигателя в целом. С другой стороны, добавка водорода в широких пределах активизирует рабочий процесс в двигателе.
Практически во всех известных исследованиях рабочего процесса водородного двигателя отмечается трудноконтролируемое воспламенение водородно-воздушной смеси. Воздействие на преждевременное воспламенение путем подачи воды во впускной трубопровод или путем впрыска холодного водорода исследовано и дает положительные результаты.
Остаточные газы и горячие точки камеры сгорания интенсифицируют преждевременное воспламенение водородно-воздушной смеси. Это обстоятельство требует дополнительных мероприятий по предупреждению неконтролируемого воспламенения. В то же время низкая энергия воспламенения в широких пределах коэффициента избытка воздуха позволяет использовать существующие системы зажигания при переводе двигателей на водород.
Самовоспламенение водородно-воздушной смеси в цилиндре двигателя при степени сжатия, соответствующей дизелям, не происходит. Для самовоспламенения этой смеси необходимо обеспечить температуру конца сжатия не менее 1023 К. Возможно воспламенение воздушной смеси от запальной порции углеводородного топлива за счет увеличения температуры конца сжатия наддувом или подогревом на впуске воздушного заряда.
Водород в качестве топлива для дизелей характеризуется большой скоростью распространения фронта пламени. Эта скорость может превышать 200 м/с и вызывать возникновение волны давления, перемещающейся в камере сгорания со скоростью свыше 600 м/с. Высокая скорость сгорания водородно-воздушных смесей, с одной стороны, должна оказывать положительное влияние на повышение эффективности рабочего процесса, с другой стороны, этим предопределяются высокие значения максимального давления и температуры цикла, более высокая жесткость рабочего процесса водородного двигателя. Повышение максимального давления цикла влечет снижение моторесурса двигателя, а увеличение максимальной температуры приводит к интенсивному образованию окислов азота. Возможно снижение максимального давления за счет дефорсирования двигателя или сжигания водорода по мере его подачи в цилиндр на такте рабочего хода. Снижение эмиссии окислов азота до незначительного уровня возможно путем обеднения рабочей смеси или путем использования воды, подаваемой во впускной трубопровод. Так, при α 1,8 эмиссия окислов азота практически отсутствует. При подаче воды по массе в 8 раз больше, чем водорода, эмиссия окислов азота снижается в 8–10 раз.
В дизелях, работающих всегда при избытке воздуха в смеси, содержание в продуктах сгорания окиси углерода и углеводородов немного ниже по сравнению с бензиновыми двигателями, а уровень содержания окислов азота сравнительно близок. Дизели выбрасывают большое количество сажи, являющейся адсорбентом для полициклических ароматических углеводородов, часть которых обладает канцерогенными свойствами. Именно количество сажи является определяющим в общем уровне токсичности отработавших газов дизелей.
Благодаря снижению содержания углеводородного топлива при работе на водороде состав отработавших газов существенно отличается от традиционного. Однако даже при работе на чистом водороде из-за выгорания углеводородных смазок, попадающих в камеру сгорания, наблюдается незначительное количество углеводородных соединений. При использовании углеводородных топлив для воспламенения рабочей смеси количество углеводородных соединений зависит от количества запального углеводородного топлива.
При внутреннем смесеобразовании водородного двигателя продолжительность впрыска водорода оказывает влияние на содержание водорода в продуктах сгорания. Образование водородновоздушной смеси для дизелей влияет на показатели водородного двигателя внутреннего смесеобразования. Формирование рабочей смеси водородного дизеля должно обеспечивать гомогенность водородно-воздушного горючего тела. Этого можно достичь за счет оптимизации формы камеры сгорания и динамики развития струи водорода, подаваемого в цилиндр, с учетом движения свежего заряда воздуха в цилиндре.
Экспериментальные исследования по использованию водорода в качестве топлива для поршневого двигателя внутреннего сгорания показывают, что существует проблема детонационного сгорания. При этом авторы определяют различные пределы детонационной стойкости водородно-воздушной смеси в связи с разной ее оценкой. Так, оценка по стуку в двигателе дает результаты, почти в 2 раза отличающиеся от оценки по амплитуде высокочастотных колебаний на линии сгорания индикаторной диаграммы. Отдельные исследования свидетельствуют, что исчезновение стука наблюдается при степени сжатия 8, однако при этом колебания на линии сгорания имеются. Это значит, что оказывает влияние тепловое состояние двигателя, температура цикла в совокупности с качеством смесеобразования. Возможно использование антидетонационных свойств воды для исключения детонации водородного двигателя.
При использовании водорода для двигателей внешнего смесеобразования индикаторные и эффективные показатели ухудшаются. Чем больше процент добавки водорода, тем ниже индикаторный КПД и выше температура выпускных газов. Добавка водорода выше 30 % от суммарного подведенного тепла при α = 1,35 вызывает детонационноподобное сгорание, сопровождающееся появлением стуков и резким падением мощности двигателя. Кроме того, увеличивается объем водорода в выпускных газах и повышается количество окислов азота, содержание окиси углерода и углеводородов снижается.
Подача 5 % по массе пароводородной смеси на впуск дизеля позволяет улучшить параметры рабочего процесса и снизить дымность отработавших газов на 30 %, а содержание окислов азота в 2,4 раза. Большие добавки пароводородной смеси приводят к росту максимального давления цикла и скорости нарастания давления, т.е. снижается надежность дизеля.
В то же время согласно исследованиям ряда специалистов добавка 5 % водорода уменьшает требования к октановому числу на 10 %. Опытная эксплуатация автомобиля на бензино-водородной смеси показала, что индикаторный КПД двигателя с оптимальными добавками водорода увеличивается на 25 %, эксплуатационный расход топлива уменьшается на 25…40 %. При работе двигателя на холостом ходу практически исключается выброс токсичных веществ с отработавшими газами.
Итак, рабочий процесс водородного двигателя включает: жесткость сгорания, детонацию, неконтролируемое воспламенение, эмиссию окислов азота, формирование водородно-воздушной смеси. Одновременно известные исследования предлагают мероприятия, обеспечивающие нормальную работу двигателя на водороде в зависимости от поставленной технической цели, ее граничных условий.
Так, если целью является использование водорода в качестве основного топлива без потери мощности базового двигателя, то наиболее целесообразно внутреннее смесеобразование при воспламенении горючей смеси от запальной порции углеводородного топлива. В этом случае улучшаются экологические и экономические показатели дизеля. Индикаторный расход топлива снижается на 0,25 МДж/(кВт · ч) при 50%-ном замещении дизельного топлива водородом. Коэффициент избытка воздуха возрастает с 1,5 до 1,7, т.е. на частичных нагрузках смесь обедняется на 12 %, а на номинальном режиме — на 15 %. Это позволяет сохранить уровень окислов азота в отработавших газах и в 2 и более раза снизить содержание сажи на выпуске.
В зависимости от нагрузки для обеспечения нормальной работы двигателя без стука целесообразно на впуск подавать воду в соотношении 1:1 к подаваемому водороду, особенно на режиме полной нагрузки и близких к нему.
Предусматривается формирование водородно-воздушной смеси на такте сжатия в период после закрытия клапанов до подачи дизельного топлива. Газообразный водород, подаваемый в цилиндр клапаном-форсункой, поступает через отверстие, расположенное под углом 20…25° к тангенциальному направлению вращения заряда, усиливает вихревое движение заряда и способствует гомогенизации водородно-воздушной смеси. Если вершина струи водорода достигает противоположной стенки камеры сгорания, а энергия вихревого движения заряда достаточна, чтобы распределить водород по окружности, то можно считать, что водородновоздушная смесь гомофазная. Часть водорода направляется в зону струи углеводородного топлива, обеспечивая эффект торможения процесса сажеобразования.
Процесс конвертации дизеля на водород можно условно разделить на два основных, последовательно выполняемых этапа. Первый этап включает аккумулирование водорода в баллонах; приоритетное использование внутреннего смесеобразования и создание топливоподающей аппаратуры с подачей водорода на такте сжатия при давлении порядка 10 МПа; воспламенение горючей смеси от запальной порции углеводородного топлива; исследование процессов смесеобразования и управление ими; изучение термодинамических особенностей криогенного водорода как моторного топлива.
Второй этап включает создание криогенной системы хранения водорода; разработку адекватной системы управления всеми процессами, связанными с использованием водорода на транспорте; организацию рабочего процесса при работе на чистом водороде с принудительным воспламенением от свечи; исследование возможности подачи водорода в цилиндр вариантными способами.
Отсутствие углерода в водородном топливе приводит к тому, что в отработавших газах практически отсутствуют оксиды углерода (СО и СО2) и несгоревшие углеводороды (СnНm). Незначительные количества этих продуктов в отработавших газах обусловлены выгоранием смазочных материалов, попадающих в камеру сгорания. Выброс оксидов азота при стехиометрическом составе смеси за счет более высокой температуры горения водородно-воздушной смеси вдвое превышает выброс оксидов азота бензинового двигателя. Обеднение смеси приводит к быстрому снижению оксидов азота, а при α = 1,8 они в отработавших газах практически отсутствуют. Оксиды азота также легко обезвреживаются в каталитических нейтрализаторах. По этой причине водородное топливо для многих представляется идеальным инструментом для полного решения проблемы загрязнения окружающей среды.
Развитие водородной энергетики сдерживается экономическими соображениями. Стоимость киловатта установленной мощности (более 3…4 тыс. дол.) на порядок больше, чем в традиционной энергетике. Кроме того, цена водорода на порядок выше, чем обычного топлива. Тем не менее цена обычного топлива будет расти, а энергии, произведенной водородными устройствами, — падать. Поэтому водородная энергетика вполне перспективна.