Что такое водопоглощение влажность гигроскопичность водопроницаемость материала

Гидрофизические свойства строительных материалов (гигроскопичность, водопоглощение, водонепроницаемость, водостойкость, морозостойкость).

1) Гигроскопичность – это свойство капиллярно-пористого материала, заключающееся в его способности поглощать водяной пар из воздуха.

2) Водопоглощение – это свойство материалов, заключающееся в его способности поглощать и удерживать воду. (%).

а) Водопоглощение по массе – определяется отношением массы поглощённой и удержанной образцом воды к массе сухого образца. Wm=((mв-mc)/ mc)·100%

б) Водопоглощение по объёму – определяется как степень заполнения объёма материала водой.

3) Водонепроницаемость – это свойство материала не пропускать через себя воду под давлением.

4) Водостойкость – это способность материала сохранять в той или иной мере свои прочностные способности при увлажнении.

5) Морозостойкость – отражает способность насыщенного водой материала выдерживать попеременное замораживание и оттаивание.

4. Механические свойства строительных материалов (деформативность, прочность, твёрдость, истираемость).

1) Деформативность – характеризует способность материала к изменению формы и размеров без отклонения от величины его массы.

Главнейшие виды деформаций – растяжение, сжатие, сдвиг, кручение и изгиб.

Обратимые полностью исчезают при прекращении действия на материал факторов, их вызвавших.

Обратимые деформации, исчезающие мгновенно и полностью, называются упругими, исчезающие в течение некоторого времени – эластическими.

Необратимые деформации, или остаточные, называемые также пластическими, накапливаются в период действия вызвавших их факторов; после их снятия деформации сохраняются.

Деформации могут быть также сложными – упруго-пластическими или упруго-вязко-пластическими.

На характер и величину деформации влияет величина механического нагружения, скорость приложения этой нагрузки и температура материала.

2) а) Прочность – отражает способность материала сопротивляться разрушению под действием внутренних напряжений, вызванных какими-либо внешними воздействиями (механическая нагрузка, стеснённая усадка). (МПа).

в) Теоретическая прочность – определяется усилием, необходимым для разъединения двух смежных слоёв атомов. (МПа).Rтеор=(ЭЕ/а) 1/2 Э – поверхностная энергия

Е – модуль упругости а – межатомное расстояние

г) Удельная прочность – равна отношению показателя прочности R к относительной плотности. (МПа). Rу=R/d

3) Твёрдость – отражает способность материала сопротивляться проникновению в него другого более твёрдого материала.

4) Истираемость – характеризует способность материала сопротивляться воздействию внешней нагрузки, вызывающей его постепенное разрушение с поверхности из-за отрывания мелких частиц. (г/см 2 ).

Источник

Гидрофизические свойства (водопоглощение, влажность, гигроскопичность, водопроницаемость) строительных материалов и изделий.

Влажность – содержание влаги в материале, отнесенное к массе материала в сухом состоянии, измеряемое в процентах.

Сравнительно простой метод определения влажности связан с высушиванием образцов материала и определением разности масс образца до и после сушки.

Для оперативного контроля влажности материала пользуются кондуктометрическим методом, основанным на зависимости электропроводности от содержания влаги в материале, и более точным емкостным и нейтронным методами. При помощи электронного емкостного влагомера измеряют диэлектрическую проницаемость – электрическую емкость датчика, заполняемого материалом. Нейтронный метод основан на эффекте замещения нейтронов атомами водорода, содержащимися в воде.

Высокой можно считать влажность более 20%, низкой – менее 5%.

В зависимости от вида материала для определения гигроскопичности применяют образцы определенных размеров, которые помещают в эксикатор (сосуд с плотно притертой крышкой), где насыщенный раствор соли и вода создают определенную относительную влажность воздуха.

При прочих равных условиях гигроскопичность материала зависит от характеристик его структуры и, прежде всего, от количества и характера пор и капилляров. Материалы с и одинаковой пористостью, но имеющие более мелкие поры и капилляры, обладают, как правило, более высокой гигроскопичностью, чем крупнопористые.

Водопоглощение – способность материала при непосредственном контакте с водой впитывать ее и удерживать.

При определении водопоглощения образцы материалов помещают в сосуд, куда постепенно наливают воду, как правило, через определенные промежутки времени в зависимости от вида материала. Когда уровень воды будет выше верха образцов на 10-30 мм, их выдерживают некоторое время и периодически взвешивают. Насыщение образцов водой прекращают через 1, 24, 48 или 56 ч в зависимости от вида материала или после того как прекратится прирост массы.

Водопоглощение (по массе) в % вычисляют с погрешностью 0,1%. В зависимости от вида исседуемого материала образцы высушивают до постоянной массы до погружения в воду или после водонасыщения. Вm=((m1-m)/m)*100(m – масса в сухом сосоянии, m1 – в водонасыщенном)

Как и гидроскопичность, водопоглощение материалов зависит главным образом от характеристик его структуры. Если материал способен впитать более 20% воды по массе – это высокий показатель рассматриваемого свойства, менее 5 – низкий.

Водопоглощение материала как правило меньше его пористости, т.к. поры бывают закрытыми или очень мелкими и вода в них не проникает.

Примерное водопоглощение(по массе) древесины может достигать 150% и более, кирпича керамического – 12%, бетона тяжелого и линолеума – 3%, гранита – 0,5%. Материалы из стали и стекла воду не поглощают.

Водостойкость материала характеризуется коэффициэнтом размягчения Kр – отношением предела прочности при сжатии материала, насыщенного водой, у пределу прочности при сжатии материала в сухом состоянии.

Водопроницаемость – способность материала пропускать воду под давлением. Величина водопроницаемости характеризуется количеством воды, прошедшей в течение часа через 1см2 площади испытуемого материала при постоянном давлении.

При определении водонепроницаемости измеряется время, в течение которого образец не пропускает воду при постоянном давлении воды, или измеряется гидростатическое давление, которое выдерживает образец материала в течение определенного времени.

Степень водопроницаемости материала связана с характером его строения. Материалы особо плотные, у которых средняя плотность равна истинной плотности (стекло и металлы) – водонепроницаемы. Практически не пропускают воду под определенным давлением плотные материалы с замкнутыми мелкими порами.

Для специальных областей строительства может потребоваться материал, обладающий заданной степенью водопроницаемости. Особо важна водонепроницаемость для гидроизоляционных и кровельных материалов.

Вода обладает расклинивающим действием, она в 25 раз более теплопроводна, чем воздух, а при замерзании заметно увеличивается в объеме. Эти обстоятльства определяют большую значимость рассматриваемых свойств.

Увеличение влажности некоторых материалов сказывается отрицательно на их физико – механических характеристиках. Ряд материалов (древесина, бетон) увеличивают свой объем при увлажнении, а при последующем высыхании дают усадку. Систематическое увлажнение и высыхание может вызвать знакопеременные напряжения в материале и со временем привести к потере его прочности и разрушению. Насыщение материала водой приводит к заметному ухудшению его теплофизических характеристик, что особо нежелательно для материалов ограждающих конструкций, а также снижение его прочности и долговечности.

Источник

Гидрофизические свойства строительных материалов

Свойства, связанные с воздействием на материал воды, называются гидрофизическими.

Гигроскопичность — свойство пористо-капиллярного материала поглощать влагу из воздуха.
Степень поглощения зависит от температуры и относительной влажности воздуха. С увеличением относительной влажности и снижением температуры воздуха гигроскопичность повышается.
Гигроскопичность характеризуют отношением массы поглощенной материалом влаги при относительной влажности воздуха 100% и температуре +20 °С к массе сухого материала.

Гигроскопичность отрицательно сказывается на качестве строительных материалов. Так, цемент при хранении под влиянием влаги воздуха комкуется и снижает свою прочность. Весьма гигроскопична древесина, от влаги воздуха она разбухает, коробится, трескается.
Чтобы уменьшить гигроскопичность деревянных конструкций и предохранить их от разбухания, древесину покрывают масляными красками и лаками, пропитывают полимерами, которые препятствуют проникновению влаги в материал.

Капиллярное всасывание — свойство пористо-капиллярных материалов поднимать воду по капиллярам. Оно вызывается силами поверхностного натяжения, возникающими на границе раздела твердой и жидкой фаз.
Капиллярное всасывание характеризуют высотой поднятия уровня воды в капиллярах материала, количеством поглощенной воды и интенсивностью всасывания. Когда фундамент находится во влажном грунте, грунтовые воды могут подниматься по капиллярам и увлажнять низ стены здания.

Во избежание сырости в помещении устраивают слой гидроизоляции отделяющий фундамент от стены.
С увеличением капиллярного всасывания снижаются прочность, стойкость к химической и морозостойкость строительных материалов.

Водопоглощение — свойство материала при непосредственном соприкосновении с водой впитывать и удерживать ее в своих порах.
Водопоглощение выражают степенью заполнения объема материала водой (водопоглощение по объему Wо) или отношением количества поглощенной воды к массе сухого материала.

Водопоглощение различных материалов находится в широких пределах (% по массе):
гранита 0,02. 1;
плотного тяжелого бетона 2. 5;
керамического кирпича 8. 25;
асбестоцементных прессованных плоских листов — не более 18;
теплоизоляционных материалов 100 и более.

У высокопористых материалов водопоглощение по массе может превышать пористость, но водопоглощение по объему всегда меньше пористости, так как вода не проникает в очень мелкие поры, а в очень крупных не удерживается. Водопоглощение плотных материалов (сталь, стекло, битум) равно нулю.
Водопоглощение отрицательно сказывается на других свойствах материалов: понижаются прочность и морозостойкость, материал набухает, возрастает его теплопроводность и увеличивается плотность.

Влажность — отношение массы воды, находящейся в данный момент в материале, к массе (реже к объему) материала в сухом состоянии.
Вычисляется по тем же формулам, что и водопоглощение, и выражается в процентах. При этом массу материала берут в естественно влажном, а не в насыщенном водой состоянии.

При транспортировании, хранении и применении материалов имеют дело не с водопоглощением, а с их влажностью. Влажность меняется от 0 % (для абсолютно сухих материалов) до значения полного водопоглощения и зависит от пористости, гигроскопичности и других свойств материала, а также от окружающей среды — относительной влажности и температуры воздуха, контакта материала с водой и т. д.

Влагоотдача — свойство материала терять находящуюся в его Числовой характеристикой влагоотдачи является количеством воды (в%), испарившейся из образца в течение 1 суток при тнмпературе 20 °С и относительной влажности воздуха 60 %.
Влагоотдачу учитывают, например, при уходе за твердеющим бетоном, при сушке оштукатуренных известковым раствором стен и перегородок.
В первом случае желательна замедленная, а во втором — быстрая влагоотдача.

Водопроницаемость — свойство материала пропускать через себя воду под давлением.
Степень водопроницаемости в основном зависит от строения и пористости материала. Чем больше в материале открытых пор и пустот, тем больше его водопроницаемость.

Водопроницаемость характеризуют коэффициентом фильтрации (м/ч) — количеством воды (в м3), проходящей через материал площадью 1 м2, толщиной 1 м за 1 час при разности гидростатического давления на границах стенки 9,81 Па.
Чем ниже коэффициент фильтрации, тем выше марка материала по водонепроницаемости.
Водонепроницаемыми являются плотные материалы (гранит, металлы, стекло) и материалы с мелкими замкнутыми порами (пенопласты).

Для гидроизоляционных материалов важна оценка не водопроницаемости, а их водонепроницаемости, которая характеризуется или временем, по истечении которого появляется просачивание воды под определенным давлением через образец материала (мастика, гидроизол), или максимальным давлением воды, при котором она еще не проходит через образец материала за время испытания (специальные строительные растворы).

Воздухе-, газо- и паропроницаемость — свойства материала пропускать через свою толщу соответственно воздух, газ и пар.
Они зависят главным образом от строения материала, дефектов его структуры и влажности.

Количественно воздухо- и газопроницаемость характеризуются коэффициентами воздухо- и газопроницаемости, которые равны количеству воздуха (газа) (м3), проходящего в течение 1 ч через 1 м2 материала толщиной в 1 м при разности давлений на поверхность в 9,81 Па.
Воздухо- и газопроницаемость выше, если в материале больше сообщающихся пор; наличие воды в порах понижает эти свойства материала.

Паропроницаемость возникает при различном содержании и упругости пара по обе стороны поверхности, что зависит от темпертуры водяных паров и характеризуется коэффициентом паропроницаемости, который равен количеству водяного пара (в г), проникающего в течение 1 ч через 1 м2 материала толщиной 1 м при разности давлений пара на поверхностях 133,3 Па.

Стеновые и отделочные материалы должны обладать определенной проницаемостью, должны «дышать». Достаточные газо- и паропроницаемость стеновых материалов предотвращают разрушение стен снаружи от мороза и при последующем оттаивании.
Паронепроницаемые материалы располагают с той стороны ограждения, с которой содержание пара в воздухе больше.

Материалы, насыщенные водой, практически газонепроницаемы.
Лакокрасочные покрытия либо уменьшают, либо сохраняют паропроницаемость строительных материалов.
Чем меньше паропроницаемость лакокрасочной пленки, тем выше ее антикоррозионные свойства.

Морозостойкость — свойство материала в насыщенном водой состоянии выдерживать многократное число циклов попеременного замораживания и оттаивания без видимых признаков разрушения и без значительного снижения прочности и массы.

Морозостойкость — одно из основных свойств, характеризующих долговечность строительных материалов в конструкциях и сооружениях. При смене времен года некоторые материалы, подвергаясь периодическому замораживанию и оттаиванию в обычных атмосферных условиях, разрушаются. Это объясняется тем, что вода, находящаяся в порах материала, при замерзании увеличивается в объеме примерно на 9. 10%; только очень прочные материалы способны выдерживать это давление льда (200 МПа) на стенки пор.

Высокой морозостойкостью обладают плотные материалы, которые имеют малую пористость и закрытые поры.
Материалы пористые с открытыми порами и соответственно с большим водопоглощением часто оказываются не морозостойкими. Материалы у которых после установленных для них стандартом испытаний, состоящих из попеременного многократного замораживания (при температуре не выше —17 °С) и оттаивания (в воде), не появляются трещины, расслаивание, выкрашивание и которые теряют не более 25 % прочности и 5 % массы, считаются морозостойкими.

По морозостойкости, т. е. по числу выдерживаемых циклов замораживания и оттаивания, материалы подразделяют на марки:
Мрз; 15; 25; 35; 50; 100; 150; 200; 300; 400 и 500.
Так, марка по морозостойкости штукатурного раствора Мрз 50 означает, что раствор выдерживает не менее 50 циклов попеременного замораживания и оттаивания без потерь прочности и массы.

Важно понять, что для пористых материалов особенно опасно совместное действие воды и знакопеременных температур. Морозостойкость зависит от состава и структуры материала, она снижается с уменьшением коэффициента размягчения и увеличением открытой пористости.
Критерий морозостойкости материала — коэффициент морозостойкости Кмрз = Кмрз/Кнас — отношение предела прочности при сжатии материала после испытания к пределу прочности при сжатии водонасыщенных образцов, не подвергнутых испытанию, в эквивалентном возрасте.

Для морозостойких материалов мрз должен быть более 0,75. Принято также считать, что если коэффициент размягчения камня не ниже 0,9, то каменный материал морозостоек.

Источник

Влажность, водопоглощение, влагоотдача, гигроскопичность, определение, размерность

Акустические свойства: звукопроводность, звукопоглощение. Радиационная стойкость, определение

Акустические свойства материалов связаны с взаимодействием материала и звука; прежде всего, это — звукопроводность и звукопоглощение.

Звукопроводность — свойство материала проводить через свою толщу звук; она зависит от строения и массы материала. Тяжелые материалы (кирпич), а также пористые и волокнистые плохо проводят звук.

Звукопоглощение — свойство материала поглощать и отражать падающий на него звук. Оно зависит от пористости материала, его толщины, состояния поверхности, а также от частоты звукового тона, измеряемого количеством колебаний в секунду. За единицу звукопоглощения принимают поглощение звука 1 м2 открытого окна; при открытом окне звук поглощается полностью. Звукопоглощение всех строительных материалов меньше единицы. Звукопоглощение материала оценивают коэффициентом звукопоглощения, т. е. отношением энергии, поглощенной материалом, к общему количеству падающей энергии в единицу времени.

Звукопоглощение зависит от характера поверхности материала. Материалы с гладкой поверхностью хорошо отражают падающий на них звук, поэтому в помещениях с гладкими стенами создается постоянный шум.

Материалы с развитой открытой пористостью хорошо поглощают и не отражают падающий на них звук. Известно, что ковры, дорожки, мягкая мебель заглушают звук.

Специальная акустическая штукатурка с мелкими открытыми порами хорошо поглощает и заглушает звук. В принципе те строительные материалы, которые плохо пропускают через себя звук, хорошо его поглощают и не отражают, являются акустическими материалами.

Уменьшение шума в результате использования таких материалов сохраняет здоровье людей, создает для них определенные условия и способствует повышению производительности труда.

Радиационная стойкость — свойство материала сохранять свою структуру и физико-механические характеристики после воздействия ионизирующих излучений. Для защиты от радиоактивных излучений применяют особо тяжелые (р = 3000. 5000 кг/м3) и гидратные бетоны, имеющие повышенное содержание химически связанной воды, создающей хорошую защиту от нейтронного потока.

11. Коррозионная стойкость, растворимость, адгезия, токсичность, определения

Коррозионная стойкость — свойство материала сопротивляться коррозионному воздействию среды. Распространенной и благоприятной средой для развития химической коррозии является вода (пресная и морская). Агрессивность воды зависит от степени ее минерализации, жесткости, щелочности или кислотности. Химически агрессивной средой является также воздух, содержащий пары оксидов азота, хлора, сероводорода и т. д.

Растворимость — способность материала растворяться в воде, масле, бензине, скипидаре и других жидкостях-растворителях. Растворимость может быть и положительным, и отрицательным свойством. Например, если в процессе эксплуатации синтетический облицовочный материал разрушается под действием растворителя, растворимость материалов играет отрицательную роль.

Адгезия — свойство одного материала прилипать к поверхности другого. Она характеризуется прочностью сцепления между материалами. Зависит от их природы, состояния поверхностей. Это свойство имеет важное значение при изготовлении композиционных материалов, бетонов, клееных конструкций.

Токсичность — ядовитость, т. е. способность оказывать вредное воздействие на живой организм. Присутствие токсикантов т. е. химических веществ, обладающих свойствами токсичности, приводит к дестабилизации экосистем и к возможной гибели всего живого. Токсичность строительных материалов оценивают путем сравнения их состава с ПДК выделяющихся токсичных веществ и элементов. Первостепенное значение имеет класс опасности, состав вредных веществ и их количественное содержание. С точки зрения токсичности основным источником экологической опасности в жилых зданиях являются полимерные строительные материалы.

Подготовка сырьевых материалов в стекольном производстве

Для того чтобы качество сырьевых материалов привести в соответствие с требованиями ГОСТов и ТУ, сырьевые материалы обогащают на месте добычи, на обогатительных фабриках или непосредственно на стекольных заводах. Песок, обогащенный на месте добычи, поступает на завод затаренным в мешки или в вагонах, оклеенных изнутри бумагой. Перед подачей в производство песок подвергают контрольному просеву и при необходимости сушке. Необогащенный песок проходит на заводе следующие виды обработки: обогащение или усреднение, сушку, просеивание. В тех случаях, когда на стекольном заводе используют песок, не однородный по химическому составу и не прошедший обогащение, его целесообразно перемешивать крупными партиями — усреднять. Наилучший способ усреднения — послойный; в этом случае каждую вновь поступившую на завод партию песка равномерно рассыпают поверх ранее прибывшей, образуя таким образом многослойный штабель. Доломит, известняк, поступившие на завод в виде глыб, дробят, сушат, размалывают, просеивают и очищают с помощью магнитной сепарации. Кальцинированная сода поступает в виде мелких гранул, упакованной в бумажные мешки, или россыпью в специальных автомобилях или вагонах-содовозах. Соду, поступившую в мешках, разгружают и перевозят электропогрузчиками, затем на складе растаривают с помощью машин УРМ-1, проводят контрольный просев и направляют в расходный бункер. В тех случаях, когда сода поступает россыпью, ее разгружают и транспортируют с использованием пневмотранспортных установок нагнетающего или вакуумного действия. Просеивают соду на грохотах или виброситах с двойными сетками № 1,3 или № 1,4. Ввиду гигроскопичности сода при длительном хранении слеживается, образуя комки. В этом случае ее дополнительно измельчают на молотковых дробилках, а затем просеивают.

Пегматит и полевой шпат поступают размолотыми, в бумажных мешках. Их растаривают и просеивают через сито № 07. Для транспортирования материалов в расходные бункера используют преимущественно пневматический транспорт.

Токсичные материалы (оксиды мышьяка и др.) обрабатывают по специальным инструкциям.

Приготовление шихты

Шихтой называют однородную смесь предварительно подготовленных и отвешенных по заданному рецепту сырьевых материалов.
В зависимости от количества входящих в шихту сырьевых материалов различают одно-, двух-, трехкомпонентную и т. д. шихту. Большинство промышленных стекол получают из пяти- или шестикомпонентных шихт.
В подготовку шихты входят следующие операции: расчет состава шихты; взвешивание отдельных компонентов; смешивание компонентов; контроль качества шихты. Для того чтобы получить стекло заданного химического состава, шихты рассчитывают. При расчетах учитывают, что сырьевые материалы во время варки разлагаются, причем влага и газы улетучиваются. Шихту обычно рассчитывают на 100 масс. ч. стекла. Это дает возможность делать пересчеты на требуемое количество стекломассы. Для взвешивания компонентов применяют весы с ручным и с автоматическим управлением.

В качестве сырьевых материалов используют песок, доломит, мел, соду и технический глинозем. Расчет обычно начинают вести с компонентов, содержащих большое количество стеклообразующих окислов. Скорость варки стекла во многом зависит от вида сырьевых материалов, которые используются для составления шихты. Сульфатсодержащая шихта быстрее проваривается и лучше осветляется. Однако слишком большое содержание его в шихте приводит к тому, что часть сульфата не успевает разложиться при нагревании и он всплывает на поверхность стекломассы, образуя неоднородности. В производстве тарных стекол часто используют горные породы: трахиты, вулканический пепел, нефелиновые сиениты.

Для ввода окиси магния рекомендуется использовать главным образом доломит и доломитизированные известняки. Однако доломитизированные известняки не отличаются постоянством химического состава и при их применении следует проводить дополнительные химические анализы сырья.

Битум. Св-ва, применение

Битум – это асфальтоподобный материал, полученный искусственным образом. Является итоговым продуктом переработки натуральных битумов, остатков после обработки угля, нефти, сланцевых смол и торфяных экстрактов.

Битум — это продукт черного цвета с плотностью около единицы, с низкой тепло- и электропроводностью. Он прекрасно противостоит воздействию различных химических реагентов, водо- и газонепроницаем, устойчив к действию различных видов радиации и длительному тепловому воз действию. Именно такие ценные качества битумов в сочетании с низкой стоимостью и массовым производством сделали их незаменимыми во многих областях хозяйства. Битумы не растворимы в воде, полностью или частично растворимы в бензоле, хлороформе, сероуглероде и др. органических растворителях; плотностью 0,95—1,50 г/см3.

Применение битума как одного из наиболее известных инженерно-строительных материалов основано на его адгезионных и гидрофобных свойствах. Область применения битума достаточно широка: он применяется при производстве кровельных и гидроизоляционных материалов, в резиновой промышленности, в лакокрасочной и кабельной промышленности, при строительстве зданий и сооружений и т.д. Кровельные битумы применяют для производства кровельных материалов. Их разделяют на пропиточные и покровные (соответственно для пропитки основы и получения покровного слоя). Изоляционные битумы используют для изоляции трубопроводов с целью защиты их от коррозии. Главным же потребителем битума является дорожное строительство (около 90 %), в первую очередь, из-за того, что нефтяной битум является самым дешевым и наиболее универсальным материалом для применения в качестве вяжущего при устройстве дорожных покрытий.

Влажность, водопоглощение, влагоотдача, гигроскопичность, определение, размерность

Влажность W — содержание воды в материале в данный момент. Она определяется отношением воды, содержащейся в материале в момент взятия пробы для испытания, к массе сухого материала. Размерность — %. Вычисляется по формуле:

Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть картинку Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Картинка про Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала

где mвл, mc, — масса влажного и сухого материалов, г.

Водопоглощение — способность материала впитывать и удерживать в своих порах воду. Оно подразделяется на Водопоглощение по массе и объему. Водопоглощение по массе Wм, %, равно отношению массы поглощенной образцом воды к массе сухого образца. Водопоглощение по объему W0, равно отношению массы поглощенной образцом воды к объему образца. Размерность — %. Их определяют по следующим формулам:

Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть картинку Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Картинка про Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала

Влагоотдача — способность материала отдавать воду в окружающий воздух. Она характеризуется скоростью высыхания, которая определяется количеством воды, отдаваемой материалом в сутки, при относительной влажности воздуха 60% и температуре 20 °С. Размерность — %.

Гигроскопичность — способность материала поглощать воду из окружающего воздуха. Она выражается как отношение массы поглощенной материалом воды из воздуха к массе сухого материала при относительной влажности воздуха 100% и температуре 20 °С. Гигроскопичность зависит от природы материалов. Размерность — %.

3. Водостойкость, водопроницаемость, морозостойкость, коэффициент морозостойкости, определения, размерность

Водостойкость — способность материала сохранять свою прочность при насыщении водой: она оценивается коэффициентом размягчения КРАЗМ, который равен отношению предела прочности материала при сжатии в насыщенном водой состоянии RВ МПа, к пределу прочности сухого материала Rсух, МПа:

Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть картинку Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Картинка про Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала

Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть картинку Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Картинка про Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала

Морозостойкость — способность материала в водонасыщенном состоянии не разрушаться при многократном попеременном замораживании и оттаивании. Разрушение происходит из-за того, что объем воды при переходе в лед увеличивается на 9%. Давление льда на стенки пор вызывает растягивающие усилия в материале. Морозостойкость материалов зависит от их плотности и степени заполнения пор водой. В конечном итоге разрушения, вызванные замерзанием воды в микротрещинах, приводят к снижению прочности материала до некоего критического значения, после которого его эксплуатация становится невозможной. Но до этого материал способен выдержать определенное число циклов замерзания и, соответственно, оттаивания практически без потери своих прочностных характеристик. Это число принято называть морозостойкостью и обозначать с помощью коэффициента морозостойкости — F, значение которого находится (для бетона) в пределах от F50 до F500.

4. Теплопроводность, теплоёмкость, определения, размерность

Теплопроводность — способность материалов проводить тепло. Теплопередача происходит в результате перепада температур между поверхностями, ограничивающими материал. Теплопроводность зависит от коэффициента теплопроводности λ, Вт/(м*°С), который равен количеству тепла Q, Дж, проходящего через материал толщиной d = 1 м, площадью S = 1 м 2 за время t = 1 ч, при разности температур между поверхностями t2— t1 = 1 °С:

Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть картинку Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Картинка про Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала

Теплопроводность материалов зависит от их средней плотности, химического состава, структуры, характера пор, влажности. Наиболее существенное влияние на теплопроводность оказывает средняя плотность материалов.

Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть картинку Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Картинка про Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала

Теплоемкость учитывается при расчете теплоустойчивости стен и перекрытий отапливаемых зданий, подогрева материалов в зимний период.

5. Термическое расширение, термостойкость, огнестойкость, огнеупорность, определения, размерность

Термостойкость — способность материала выдерживать в заданном интервале резкие смены температур без появления признаков разрушения. Она характеризуется максимальной разностью температур, которую выдерживает испытуемый материал во время попеременного нагревания и резкого его охлаждения; зависит от многих факторов и, в частности, от величины коэффициента термического расширения. Чем меньше этот коэффициент, тем выше термостойкость вещества.

Огнестойкость — способность материала противостоять действию огня, т. е. не воспламеняться или воспламеняться с трудом при непосредственном соприкосновении с пламенем в условиях высоких температур. Огнестойкость характеризуется пределом огнестойкости – временем (в минутах) от начала теплового воздействия в условиях стандартных испытаний до наступления предельного состояния, зависящего от назначения конструкции.

Огнеупорность — свойство строительных материалов противостоять действию высоких температур, не размягчаясь и не превращаясь в жидкое состояние (не расплавляясь).

Показателем огнеупорности для многих тел является температура, при которой образец испытуемого материала, изготовленный в виде трехгранной пирамидки стандартных размеров, деформируется под собственным весом так, что вершина его, плавно изгибаясь, касается основания.

По огнеупорности материалы делят на легкоплавкие — с огнеупорностью ниже 1350° С, тугоплавкие — с огнеупорностью от 1350 до 1580° С и огнеупорные — с огнеупорностью выше 1580° С.

6. Прочность, упругость, пластичность, твёрдость, определения, размерность

Прочность — способность материалов сопротивляться разрушению и деформациям от внутренних напряжений, возникающих в результате воздействия внешних сил или других факторов, таких как неравномерная осадка, нагревание и т. п. Оценивается она пределам прочности (Размерность: МПа). Так называют напряжение, возникающее в материале от действия нагрузок, вызывающих его разрушение.

Упругостью твердого тела называют его свойство самопроиз­вольно восстанавливать первоначальную форму и размеры после прекращения действия внешней силы. Упругая деформация полно­стью исчезает после прекращения действия внешней силы, поэтому ее принято называть обратимой. Упругие свойства вещества характеризует модуль Юнга. Это постоянная величина, зависящая только от материала, его физического состояния. Единица измерения: Н/м.

Пластичностью твердого тела называют его свойство изменять форму или размеры под действием внешних сил, не разрушаясь, причем после прекращения действия силы тело не может самопро­извольно восстанавливать свои размеры и форму, и в теле остается некоторая остаточная деформация, называемая пластической де­формацией. Характеризуется относительным удлинением и относительным сужением (выражается в процентах).

Твердость — способность материала оказывать сопротивление проникновению в него более твердого материала. Число твердости записывается без единиц измерения, например 230 HV. Если число твердости выражают в МПа, то после него указывают единицу измерения, например HV=3200 МПа.

7. Предел прочности на сжатие, растяжение и изгиб, определения, размерность

Прочность строительных материалов характеризуется пределом прочности. Пределом прочности (Размерность: МПа) называют напряжение, соответствующее нагрузке, вызывающей разру­шение образца. Предел прочности различных строительных материалов колеблется от 0,5 до 1000 МПа и более. Предел прочности определяют опытным путем, используя при этом гидравлические прессы или разрывные машины и стандартные образцы материа­ла. Для некоторых материалов (бетон, кирпич и т. п.) предел прочности на растяжение определяют путем раскалывания цилиндров или призм. На разрыв испытывают образцы материалов в виде балочек, расположенных на двух опорах. У большинства материалов (кроме древесины, стали, полимерных материалов) предел прочности при растяжении и изгибе значительно ниже, чем при сжатии, поэтому их применяют главным образом в конструкциях, которые работают на сжатие.

Различают пределы прочности материалов при сжатии, растяжении, изгибе, срезе и пр. Они определяются испытанием стандартных образцов на испытательных машинах.

Предел прочности при сжатии и растяжении RСЖ(Р), МПа, вычисляется как отношение нагрузки, разрушающей материал Р, Н, к площади поперечного сечения F, мм 2 :

Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть картинку Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Картинка про Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала.

Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть картинку Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Картинка про Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала.

8. Твёрдость, истираемость, износ, определения, размерность

Твёрдость способность материала сопротивляться проникновению в него другого более твердого материала. Для определения твёрдости материалов получили распространение методы царапания, сверления, шлифования, а также вдавливания острия, сферы или цилиндра.

Твёрдость каменных материалов определяют методом царапания, оценивая показатель твёрдости по шкале Мооса при помощи 10 специально подобранных минералов (тальк, гипс, кальцит, флюорит, апатит, ортоклаз, кварц, топаз, корунд, алмаз), распо­ложенных в порядке возрастания твердости (более твердый царапает предыдущий), с условными показателями твердости от 1 до 10. Твёрдость древесины, металлов, бетона и некоторых других строительных материалов определяют методами Роквелла, Бринелля и Виккерса, вдавливая в них стальной шарик или твёрдый наконечник в виде конуса или пирамиды. В результате испытания вычисляют число твёрдости НВ (по Бринеллю), НR (по Роквеллу) или НV (по Виккерсу). От твердости материалов зависит их истираемость: чем больше твердость, тем меньше истираемость.

Истираемость свойство материала уменьшаться в объёме и массе под действием истирающих усилий.Истираемость Иm (г/см 2 ) оценивают потерей первоначальной массы об­разца материала, отнесенной к площади поверхности истирания F и вычисляют по формуле:

где т1 и т2 — масса образца до и после истирания.

Износом называют свойство материала сопротивляться одновременному воздействию истирания и ударов. Износ определяют на образцах материалов, которые испытывают во вращающемся барабане со стальными шарами или без них. Показателем износа служит потеря массы пробы материала в результате проведенно­го испытания (в % от первоначальной массы).

9. Структура строительных материалов (макро- и микроструктура), определения

Макроструктура – это видимая невооруженным глазом или при небольшом увеличении внутренняя или поверхностная часть материала. Макроструктура в целом характеризуется фазовым составом, т.е. наличием элементов структуры в виде твердого тела, жидкости и газовой среды. При визуальном осмотре изделия выявляют зоны и участки, различающиеся пористостью, окраской, зерновым составом и другими особенностями, а также различные дефекты структуры в виде трещин, каверн и пр. Макроструктуру строительных материалов делят на несколько групп: конгломератная, ячеистая, мелкопористая, волокнистая, слоистая, и рыхлозернистая (порошкообразная).

Микроструктура материала – строение, видимое в оптический микроскоп. На микроуровне твердая фаза материала может быть кристаллической и аморфной. Неодинаковое строение кристаллических и аморфных веществ определяет и различие в их свойствах. Аморфные обладают нерастраченной внутренней энергией кристаллизации, химически более активны, чем кристаллические того же состава (аморфные формы кремнезема – пемза, туфы, трепелы, диатомиты). Теплопроводность аморфных материалов ниже, чем кристаллических. Неодинаковые свойства могут наблюдаться у кристаллических материалов одного и того же состава, если они формируются в разных кристаллических формах, называемых модификациями. Изменением свойств материала путем преобразования кристаллической решетки пользуются при термической обработке металлов.

Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Смотреть картинку Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Картинка про Что такое водопоглощение влажность гигроскопичность водопроницаемость материала. Фото Что такое водопоглощение влажность гигроскопичность водопроницаемость материала

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *