Внутренний угол многоугольника — это угол, образованный двумя смежными сторонами многоугольника. Например, ∠ABC является внутренним углом.
Внешний угол многоугольника — это угол, образованный одной стороной многоугольника и продолжением другой стороны. Например, ∠LBC является внешним углом.
Количество углов многоугольника всегда равно количеству его сторон. Это относится и к внутренним углам и к внешним. Несмотря на то, что для каждой вершины многоугольника можно построить два равных внешних угла, из них всегда принимается во внимание только один. Следовательно, чтобы найти количество углов любого многоугольника, надо посчитать количество его сторон.
Сумма внутренних углов
Сумма внутренних углов выпуклого многоугольника равна произведению 180° и количеству сторон без двух.
где s — это сумма углов, 2d — два прямых угла (то есть 2 · 90 = 180°), а n — количество сторон.
Если мы проведём из вершины A многоугольника ABCDEF все возможные диагонали, то разделим его на треугольники, количество которых будет на два меньше, чем сторон многоугольника:
Следовательно, сумма углов многоугольника будет равна сумме углов всех получившихся треугольников. Так как сумма углов каждого треугольника равна 180° (2d), то сумма углов всех треугольников будет равна произведению 2d на их количество:
Из этой формулы следует, что сумма внутренних углов является постоянной величиной и зависит от количества сторон многоугольника.
Сумма внешних углов
Сумма внешних углов выпуклого многоугольника равна 360° (или 4d).
где s — это сумма внешних углов, 4d — четыре прямых угла (то есть 4 · 90 = 360°).
Сумма внешнего и внутреннего угла при каждой вершине многоугольника равна 180° (2d), так как они являются смежными углами. Например, ∠1 и ∠2:
Внешний угол треугольника (понятие и определение):
Внешний угол треугольника или многоугольника – это угол, смежный с каким-нибудь внутренним углом этого треугольника или многоугольника.
Внешним углом треугольника при данной вершине называется угол, смежный с внутренним углом треугольника при этой вершине.
Если внутренний угол при данной вершине треугольника образован двумя сторонами, выходящими из данной вершины, то внешний угол треугольника образован одной стороной, выходящей из данной вершины и продолжением другой стороны, выходящей из той же вершины.
Рис.1. Внешний угол треугольника
Внешний уголравен разности между 180° и внутренним углом, он может принимать значения от 0 до 180° не включительно.
При каждой вершине треугольника имеются два внешних угла. Таким образом, у каждого треугольника существует 6 внешних углов.
Рис.2. Внешние углы треугольника
Теорема о внешнем угле треугольника:
Внешний угол треугольника равен сумме двух оставшихся внутренних углов треугольника, не смежных с этим внешним углом.
Рис.3. Внешний угол треугольника
Доказательство теоремы о внешнем угле треугольника следует из теоремы о сумме углов треугольника, равной 180°:
Теорема о внешнем угле треугольника используется тогда, когда пытаются вычислить меры неизвестных углов в геометрии, в задачах с многоугольниками, где используются треугольники.
Теорема о внешнем угле треугольника применима только к плоским треугольникам и не применима ни в сферической геометрии, ни в связанной с ней эллиптической геометрии (геометрии Римана).
Доказательства теорем о свойствах углов многоугольника
Определение многоугольника
Рассмотрим n отрезков
причём таких, что два любых отрезка, имеющих общий конец, не лежат на одной прямой (рис.1).
В случае, когда точки A1 и An +1 совпадают, ломаную линию называют замкнутой ломаной линией (рис. 2), в противном случае её называют незамкнутой (рис.1).
Фигура
Рисунок
Описание
Диагональ многоугольника
Диагональю многоугольника называют отрезок, соединяющий две несоседние вершины многоугольника
Диагонали n – угольника, выходящие из одной вершины
Диагонали, выходящие из одной вершины n – угольника, делят n – угольник на n – 2 треугольника
Все диагонали n – угольника
Число диагоналей n – угольника равно
Диагональю многоугольника называют отрезок, соединяющий две несоседние вершины многоугольника
Диагонали n – угольника, выходящие из одной вершины
Диагонали, выходящие из одной вершины n – угольника, делят n – угольник на n – 2 треугольника
Все диагонали n – угольника
Число диагоналей n – угольника равно
Внешний угол многоугольника
Свойства углов треугольника
Фигура
Рисунок
Формулировка теоремы
Углы треугольника
Сумма углов треугольника равна 180°
Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним
Сумма углов треугольника равна 180°
Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним
Свойства углов многоугольника
Фигура
Рисунок
Формулировка теоремы
Углы n – угольника
Сумма углов многоугольника равна
Сумма внешних углов n – угольника, взятых по одному у каждой вершины, равна 360°
Сумма углов многоугольника равна
Внешние углы n – угольника
Сумма внешних углов n – угольника, взятых по одному у каждой вершины, равна 360°
Углы треугольника бывают внутренние и внешние. Что такое внешний угол треугольника? Как его найти?
Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине.
Как построить внешний угол треугольника? Нужно продлить сторону треугольника.
∠3 — внешний угол при вершине А,
∠2 — внешний угол при вершине С,
∠1 — внешний угол при вершине В.
Сколько внешних углов у треугольника?
При каждой вершине треугольника есть два внешних угла. Чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина. Таким образом получаем 6 внешних углов.
Внешние углы каждой пары при данной вершины равны между собой (как вертикальные):
Поэтому, когда говорят о внешнем угле треугольника, не важно, какую из сторон треугольника продлили.
Чему равен внешний угол?
Теорема (о внешнем угле треугольника)
Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
Дано : ∆АВС, ∠1 — внешний угол при вершине С.
∠1 и ∠С (∠АСВ) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠С=180º-(180º-(∠А+∠В))=180º-180º+(∠А+∠В)=∠А+∠В.
Смотреть что такое «Внешний угол» в других словарях:
ВНЕШНИЙ УГОЛ — треугольника (многоугольника) угол, образованный одной из его сторон и продолжением смежной стороны … Большой Энциклопедический словарь
внешний угол — треугольника (многоугольника), угол, образованный одной из его сторон и продолжением смежной стороны (например, BCD на рис.). * * * ВНЕШНИЙ УГОЛ ВНЕШНИЙ УГОЛ треугольника (многоугольника), угол, образованный одной из его сторон и продолжением… … Энциклопедический словарь
внешний угол — išorinis kampas statusas T sritis fizika atitikmenys: angl. exterior angle vok. Außenwinkel, m rus. внешний угол, m pranc. angle extérieur, m … Fizikos terminų žodynas
ВНЕШНИЙ УГОЛ — треугольника (многоугольника), угол, образованный одной из его сторон и продолжением смежной стороны (например, BCD на рис.) … Естествознание. Энциклопедический словарь
Внешний угол — Многоугольник это геометрическая фигура, определяется как замкнутая ломаная. Существуют три различных варианта определения: Плоские замкнутые ломаные; Плоские замкнутые ломаные без самопересечений; Части плоскости, ограниченные ломаными. Вершины… … Википедия
угол наклона средней линии зуба (впадины) — (βn) Острый угол между пересекающимися в данной точке средней линией зуба и образующей однотипного соосного конуса, которому принадлежит эта средняя линия зуба (впадины). Примечания 1. Различают внешний (βne), средний (βnm),… … Справочник технического переводчика
угол нормального профиля зуба плоского колеса — (αn) Острый угол между касательной к нормальному профилю зуба плоского колеса в данной точке и прямой, параллельной оси плоского колеса, проходящей через эту точку. Примечания 1. Различают углы нормального профиля зуба плоского колеса:… … Справочник технического переводчика
ВНЕШНИЙ — ВНЕШНИЙ, внешняя, внешнее (ант. внутренний). 1. Наружный, находящийся на виду, снаружи. Внешние признаки. Внешний вид. Внешнее сходство. || Поверхностный, неглубокий. Его доброта носит внешний характер. Внешний лоск. 2. Имеющий отношение к… … Толковый словарь Ушакова
УГОЛ ПОВОРОТА — внешний угол между направлениями прямых участков жел. дор. пути при поворотах трассы. У. п. равен центральному углу, вершина к рого находится в центре круговой кривой, а стороны проходят через тангенсы. Технический железнодорожный словарь. М.:… … Технический железнодорожный словарь
Угол нормального профиля зуба плоского колеса — 84. Угол нормального профиля зуба плоского колеса an Острый угол между касательной к нормальному профилю зуба плоского колеса в данной точке и прямой, параллельной оси плоского колеса, проходящей через эту точку. Примечания: 1. Различают углы… … Словарь-справочник терминов нормативно-технической документации