Что такое вирусология в биологии кратко
Вирусология
Вирусология — раздел микробиологии, изучающий вирусы (от латинского слова virus — яд).
Впервые существование вируса (как нового типа возбудителя болезней) доказал в 1892 году русский учёный Д. И. Ивановский. После многолетних исследований заболеваний табачных растений, в работе, датированной 1892 годом, Д. И. Ивановский приходит к выводу, что мозаичная болезнь табака вызывается «бактериями, проходящими через фильтр Шамберлана, которые, однако, не способны расти на искусственных субстратах». На основании этих данных были определены критерии, по которым возбудителей заболеваний относили к этой новой группе: фильтруемость через «бактериальные» фильтры, неспособность расти на искусственных средах, воспроизведения картины заболевания фильтратом, освобождённым от бактерий и грибов. Возбудитель мозаичной болезни называется Д. И. Ивановским по-разному, термин «вирус» ещё не был введён, иносказательно их называли то «фильтрующимися бактериями», то просто «микроорганизмами».
Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно — ящура, был выделен аналогичный фильтрующийся микроорганизм. А в 1898 году, при воспроизведении опытов Д. Ивановского голландским ботаником М. Бейеринком, он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде это название и стало обозначать данную группу микроорганизмов.
В 1901 году было обнаружено первое вирусное заболевание человека — жёлтая лихорадка. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами.
В 1911 году Фрэнсис Раус доказал вирусную природу рака — саркомы Рауса (лишь в 1966 году, спустя 55 лет, ему была вручена за это открытие Нобелевская премия по физиологии и медицине).
Содержание
Природа вирусов
Вирусы обладают уникальными свойствами, которые позволяют выделить их из общей массы микроорганизмов:
Разделы вирусологии
Общая вирусология изучает основные принципы строения, размножения вирусов, их взаимодействие с клеткой-хозяином, происхождение и распространение вирусов в природе. Один из важнейших разделов общей вирусологии — молекулярная вирусология, изучающая структуру и функции вирусных нуклеиновых кислот, механизмы экспрессии вирусных генов, природу устойчивости организмов к вирусным заболеваниям, молекулярную эволюцию вирусов.
Частная вирусология исследует особенности определённых групп вирусов человека, животных и растений и разрабатывает меры борьбы с вызываемыми этими вирусами болезнями.
В 1962 г. вирусологи многих стран собрались на симпозиуме в США, чтобы подвести первые итоги развития молекулярной вирусологии. На этом симпозиуме звучали не совсем привычные для вирусологов термины: архитектура вирионов, нуклеокапсиды, капсомеры. Начался новый период в развитии вирусологии — период молекулярной вирусологии.
Молекулярная вирусология, или молекулярная биология вирусов, — составная часть общей молекулярной биологии и в то же время — раздел вирусологии. Это и неудивительно. Вирусы — наиболее простые формы жизни, и поэтому вполне естественно, что они стали и объектами изучения, и орудиями молекулярной биологии. На их примере можно изучать фундаментальные основы жизни и её проявления.
С конца 50-х годов, когда начала формироваться синтетическая область знаний, лежащая на границе неживого и живого и занимающаяся изучением живого, методы молекулярной биологии хлынули обильным потоком в вирусологию. Эти методы, основанные на биофизике и биохимии живого, позволили в короткие сроки изучить строение, химический состав и репродукцию вирусов.
Поскольку вирусы относятся к сверхмалым объектам, для их изучения нужны сверхчувствительные методы. С помощью электронного микроскопа удалось увидеть отдельные вирусные частицы, но определить их химический состав можно, только собрав воедино триллионы таких частиц. Для этого были разработаны методы ультрацентрифугирования. Современные ультрацентрифуги — это сложноустроенные приборы, главной частью которых являются роторы, вращающиеся со скоростью в десятки тысяч оборотов в секунду.
Здесь нет надобности рассказывать о других методах молекулярной вирусологии, тем более что они меняются и совершенствуются из года в год быстрыми темпами Если в 60-х годах основное внимание вирусологов было фиксировано на характеристике вирусных нуклеиновых кислот и белков, то к началу 80-х годов была расшифрована полная структура многих вирусных генов и геномов и установлена не только аминокислотная последовательность, но и третичная пространственная структура таких сложных белков, как гликопротеид гемагглютинина вируса гриппа. В настоящее время можно не только свя.
С 1974 года начала бурно развиваться новая отрасль биотехнологии и новый раздел молекулярной биологии — генная, или генетическая, инженерия. Она немедленно была поставлена на службу вирусологии.
Вирусы
Анастасия Шунаева
«Квантик» №10, 2013
Рис.1. Мумия Рамзеса V
Что нам в первую очередь приходит в голову, когда мы слышим про вирусы? Вы наверняка подумали о компьютерных вирусах — вредоносных программах, которые портят компьютер. Но ведь не просто так говорят заболевшему, скажем, гриппом: «Это вирусное, потому и температура 39!». Наверное, настоящие вирусы связаны с болезнями и эпидемиями, а компьютерные так назвали по аналогии. А вот кто такие эти настоящие — сейчас будем разбираться.
Кстати, первую вакцинацию провели именно против оспы, в 1796 году. Английский врач Эдвард Дженнер заметил, что доярки, переболевшие коровьей оспой (это не смертельное для человека заболевание), от чёрной оспы никогда не умирали. Тогда ему в голову пришло привить от этого смертельного заболевания восьмилетнего мальчика, Джеймса Фиппса, никогда не болевшего чёрной оспой (рис. 2). У заболевших коровьей оспой на коже образуются пустулы, или, по-другому, гнойные пузырьки. Дженнер внёс в ранку мальчика жидкость из пустул больной доярки. Пустулы появились и у Джеймса, но скоро исчезли. Тогда врач заразил мальчика чёрной оспой. «Смелый», надо сказать, поступок — результат был непредсказуем! Но Джеймс выжил и приобрёл иммунитет, а Эдвард Дженнер и термин «вакцинация» (от лат. «vacca», что означает «корова») вошли в историю.
Но и Дженнер не имел представления о том, что является причиной заболевания оспой. В XIX веке все болезнетворные организмы и вещества без разбора называли вирусами. Лишь благодаря опытам отечественного биолога Дмитрия Иосифовича Ивановского прекратилась эта путаница! Он пропускал экстракт заражённых табачной мозаикой 1 растений через бактериальные фильтры, сквозь которые не проходят даже самые мелкие бактерии. Выяснилось, что экстракт оставался по-прежнему заразным для других растений. Значит, возбудителями табачной мозаики были организмы, меньшие по размеру, чем бактерии; их назвали фильтрующимися вирусами. Вскоре бактерии перестали называть вирусами, а сами вирусы выделили в отдельное царство живых организмов. Дмитрий Ивановский же во всём мире по праву считается основателем вирусологии — науки о вирусах.
Рис. 2. Дженнер прививает Джеймса Фиппса от оспы
Но что мы пока поняли про вирусы? Только то, что они меньше бактерий. Чем же вирусы так не похожи на другие организмы? И почему понадобилось вдруг их выделять в отдельное царство? А вот почему. В отличие от других живых организмов, вирусы не имеют клеточного строения, а значит, и всех характерных для клетки структур. А ещё они единственные, кто не умеет самостоятельно производить белок, главный строительный материал всего живого. Поэтому их размножение невозможно вне заражённой клетки. Из-за этого многие учёные не без оснований считают вирусы внутриклеточными паразитами.
Жертвами различных вирусов становятся представители всех без исключения существующих царств живых организмов! Так, есть вирусы растений — вирус табачной мозаики (рис. 3, слева), вирус мозаики костра (это растение изображено на рисунке 3, справа), вирус желтухи свёклы, вызывающий иногда даже эпидемии. Кстати, в растение вирус просто так не проникнет. Заражение происходит при травмах растительных тканей. Типичный пример: тля пьёт сок из стебля и для этого протыкает покровные ткани — а вирус тут как тут.
Рис 3. Слева: листья табака, поражённые вирусом табачной мозаики. Справа: костёр (лат. Brómus) — род многолетних травянистых растений семейства Злаки. Если посмотреть на заросли костра в ветреную погоду, его крупные метёлки, склоняясь под ветром то в одну, то в другую сторону, отсвечивают красноватым светом в солнечных лучах, очень напоминая языки пламени. Отсюда, вероятно, и произошло русское название этого растения
Грибы тоже поражаются вирусами, вызывающими, например, побурение плодовых тел у шампиньонов или изменение окраски у зимнего опёнка. Причиной многих опасных заболеваний животных и человека тоже служат вирусы: вирус гриппа, ВИЧ (вирус иммунодефицита человека), вирус Эбола, вирус бешенства, герпеса, клещевого энцефалита и т. д.
Как же «живёт» вирус? В действительности, среди учёных до сих пор ведутся споры по поводу того, считать ли вирусы живыми организмами или нет. Сейчас поймём, почему. Вирус существует в двух формах. Вне хозяйской клетки все части вируса собраны в устойчивую конструкцию — вирион. Он не проявляет признаков жизни, однако «переживает» неблагоприятные условия среды, и довольно успешно. Если такой вирион проникает в клетку-мишень, то он там «раздевается». Раздевается — значит разваливается на части и эксплуатирует клетку для создания новых частиц — своего потомства. «Собранные» клеткой новые вирусные частицы затем покидают её в виде тех самых вирионов.
Рис. 4. Слева: вирус табачной мозаики. В центре: вирус мозаики костра похож на футбольный мяч (справа)
Рис. 5. Слева направо: вирус герпеса, аденовирус А человека, бактериофаг
Такая затейливая оболочка должна, наверно, служить защитой для чего-то? И правда, за ней скрывается наследственная информация вируса — её он передаёт потомству. Заражая клетку, некоторые вирусы не только размножаются там, но и безнадёжно её «портят». В итоге клетка или погибает, или ведёт себя неправильно. Пример такого неправильного поведения — раковая опухоль. Клетки в ней бесконтрольно делятся, тогда как нормальные клетки всегда способны вовремя остановиться. Вирусы могут служить причиной развития рака.
Рис. 6. Маленькие вирусы-спутники внутри гигантского мимивируса
Но не стоит думать, что вирусы причиняют исключительно вред другим организмам! Так, исследователи из Пенсильванского университета показали, что безвредный для человека вирус AAV2, встречающийся почти у всех людей, убивает самые разные виды раковых клеток. При этом здоровые клетки организма вирус не заражает.
А совсем недавно стало известно, что вирусы тоже болеют. Мимивирус, поражающий амёбу Acanthamoeba polyphaga, сам страдает от другого вируса-спутника (рис. 6). Он, кстати, так и называется — Спутник. Этот вирус-спутник использует механизмы воспроизводства мимивируса для собственного размножения, мешая ему нормально развиваться в клетке амёбы. По аналогии с бактериофагами, он был назван вирофагом, то есть пожирающим вирусы. Можно сказать, что присутствие вируса-спутника в амёбе обеспечивает ей больше шансов на выживание в борьбе с мимивирусом.
Уф. на этом месте предлагаю пока остановиться. Итак, узнав чуть больше про вирусы, мы, надеюсь, не станем судить их очень строго, понимая, что иногда они могут быть полезны, и не только нам! А вообще вирусология — молодая наука. Многое, конечно, уже известно, но сколько всего ещё предстоит узнать! Присоединяйтесь!
1 Распространённое вирусное заболевание растений табака.
2 Бактериофáги, или фáги (от др.-греч. φαγω — «пожираю») — вирусы, избирательно поражающие бактериальные клетки.