Что такое вертикальные связи
вертикальные связи
3.22 вертикальные связи: Связи между подчиненными и прямыми начальниками.
Смотреть что такое «вертикальные связи» в других словарях:
Связи покрытия — Связи покрытия – конструктивные элементы, обеспечивающие геометрическую неизменяемость диска покрытия здания: связи по верхним поясам ферм, связи по нижним поясам ферм, вертикальные связи, связи по фонарям. [Справочник проектировщика.… … Энциклопедия терминов, определений и пояснений строительных материалов
вертикальные ландшафтные связи — Связи между компонентами ландшафта, проявляющиеся во влиянии одного компонента на другой и в формировании ландшафта как целостной системы. [ГОСТ 17.8.1.01 86] Тематики ландшафты … Справочник технического переводчика
Вертикальные ландшафтные связи — 7. Вертикальные ландшафтные связи Связи между компонентами ландшафта, проявляющиеся во влиянии одного компонента на другой и в формировании ландшафта как целостной системы Источник: ГОСТ 17.8.1.01 86: Охрана природы. Ландшафты. Термины и… … Словарь-справочник терминов нормативно-технической документации
Связи — в строительных конструкциях, соединительные элементы, обеспечивающие устойчивость основных (несущих) конструкций Каркаса и пространственную жёсткость сооружения в целом. С. обеспечивают также перераспределение нагрузок, приложенных к… … Большая советская энциклопедия
ПРОИЗВОДСТВЕННО-ТЕРРИТОРИАЛЬНЫЕ СВЯЗИ — взаимное обеспечение сырьем, энергией, оборудованием, полуфабрикатами, готовой продукцией, услугами и т. д. предприятий и объединений в пределах территорий разного ранга. П. т. с. делятся на внутриотраслевые (поставка чугуна для выработки стали)… … Географическая энциклопедия
ДВИЖЕНИЯ ТЕКТОНИЧЕСКИЕ ВЕРТИКАЛЬНЫЕ — первые указания на Д. т. в. имеются у Страбона, Аристотеля, затем у Леонардо да Винчи, Стено (XVII в.) и др. Все они отмечали, что суша и море могут меняться местами в результате действия вертикально направленных сил. Так же думали в основном… … Геологическая энциклопедия
Линии электропередачи (ЛЭП) и воздушные линии связи и технических средств управления (ЛС) — 7.3.30. Линии электропередачи (ЛЭП) и воздушные линии связи и технических средств управления (ЛС) на незастроенных территориях распознаются по темным параллельным аэрофотоизображениям теней от опор*. Обычно на снимках хорошо видны и сами фермы,… … Словарь-справочник терминов нормативно-технической документации
СОЦИАЛЬНОЕ УПРАВЛЕНИЕ — основанное на достоверном знании систематическое воздействие субъекта управления (управляющей подсистемы) на социальный объект (управляемую подсистему), в качестве какового может выступать общество в целом и его отдельные сферы экономическая,… … Социология: Энциклопедия
НАКАНЭ — Тиэ (р. 1926) япон. социоантрополог. В 1950 окончила Токийский ун т (отделение истории стран Востока при филол. фак те). В 1970 проф., позднее директор Ин та вост. культур при Токийском ун те. С 1987 почетный проф. Токийского ун та. Н.… … Энциклопедия культурологии
СТО Газпром 7-2005: Структура управления. Полномочия и ответственность в системе менеджмента охраны окружающей среды — Терминология СТО Газпром 7 2005: Структура управления. Полномочия и ответственность в системе менеджмента охраны окружающей среды: 3.2 автоматизированная система управления: Совокупность математических методов, технических средств и… … Словарь-справочник терминов нормативно-технической документации
Что такое вертикальные связи
д.т.н., профессор Кирсанов Н.М.
ВВЕДЕНИЕ
Во-вторых, связи служат, чтобы обеспечивать устойчивость сжатых и сжато-изогнутых стержней верхних поясов ферм, колонн и др. Опасность потери устойчивости таких элементов объясняется тем, что стержни металлического каркаса имеют большие длины и относительно небольшие компактные поперечные размеры. Связи раскрепляют сжатые элементы в промежуточных точках, уменьшая расчетные длины элементов в направлении этих раскреплений.
Различают следующие основные виды связей, применяемых в металлическом каркасе промышленного здания
I. ПОПЕРЕЧНЫЕ СВЯЗИ МЕЖДУ ВЕРХНИМИ ПОЯСАМИ ФЕРМ
1.1. Верхний пояс фермы, как любой сжатый стержень, может потерять устойчивость, если усилие в нем достигнет критического значения. Потеря устойчивости в таком случае произойдет в одной из двух плоскостей:
Рис.2. Расчетная длина верхнего пояса в плоскости фермы, (пунктир)
Обратим внимание на ошибку, которая может быть допущена при определении расчетной длины верхнего пояса из плоскости фермы. На рис.3в прогон пересекает диагональ связей в точке «f». Создается впечатление, что прогон прикреплен к диагонали связей, и расчетную длину верхнего пояса из плоскости фермы казалось бы, можно брать равной панели. Однако это неверно: прогоны и связи расположены в разных уровнях, между ними «f» имеется зазор (рис. 7)
1.2. В зданиях с фонарем (рис.4) верхний пояс не раскреплен из плоскости ферма на большом участке, т.к. под фонарем нет прогонов. Если считать, что конструкций стенового ограждения фонаря вместе с прогоном фиксируют точку «Б», то расчётная длина верхнего пояса из плоскости «Б
В качестве распорки используется верхний пояс вертикальных связей (раздел 2), но могут быть применены специально предназначенные для этой,цели парные уголки или другие профили,
1.3. В последнее время с целью экономии металла принято функции связей по верхним поясам возлагать на кровельный настил, который при его надежном прикреплении к фермам может обеспечивать устойчивость верхних поясов из плоскости ферм.
Так в беспрогонных покрытиях с железобетонным настилом устойчивость верхних поясов из плоскости ферм обеспечивается приваркой закладных частей настила к верхним поясам. В таком случае расчетная длина верхнего пояса из. плоскости фермы может быть принята равной длине одной панели фермы. 0 приварке настила к поясам ферм должна быть сделаны указания, в примечании на чертеже.
Во время возведения здания эти прикрепления плит к поясам должны контролироваться. При этом требуется составлять акт на скрытые работы. Профилированный настил также может выполнять роль связей по верхним поясам, если его прикрепить е помощью дюбелей к прогонам.
При экономических преимуществах замены связей настилом, прикрепленным к поясам, покрытия оказываются лишенными одной немаловажной функции, выполняемой связями. Связи по верхним поясам кроме того, что обеспечивают устойчивость ферм, являются также фиксаторами правильного взаимного положения ферм во время монтажа. Поэтому при монтаже покрытия без связей рекомендуется предусматривать использование временных (съемных) инвентарных связей, т.е. монтажных кондукторов.
При наличии фонарей в покрытиях, где настил служит в качества связей по верхнему поясу, под фонарем для обеспечения устойчивости пояса устраиваются связи в виде диагоналей при шаге ферм 6 м или в виде неполных диагоналей при шаге ферм 12 м (рис.6). При этом расчетная длина верхнего пояса ферм при проверке устойчивости из плоскости принимается равной двум панелям.
Рис.6. Обеспечение устойчивости верхних поясов ферм под фонарями в покрытиях, где функции связей выполняет ; настил t а) шаг ферм б м, б) шаг ферм 12 м
1.4. В покрытиях с шагом ферм 12 м и с прогонами пролетом 12 м связевая ферма принимается шириной 6 м. В этом случае вводится дополнительный промежуточный пояс из соответствующих профилей (рис.4, в) и конструируются связи так же, как, если бы шаг ферм был 6 м.
1.5. Расстояние по длина здания между стержневыми связями по верхнему поясу ферм не должно превышать 144 м. Поэтому в длинных зданиях связи ставятся не только в крайних панелях блока каркаса но и в середине или третях длины блока (рис. I).
Эти требования объясняются тем, что устойчивость ферм, рай-положенных далеко о,т связей, не всегда может быть надежно обеспечена, т.к, прогоны или распорки, прикрепляющие фермы к связевым блокам, допускают в узлах известную смещаемость вследствие разности диаметров болтов и отверстий. С увеличением числа узлов, т.е. с удаленнем связей, эта смешаемость суммируется и увеличивается, что уменьшает надежность обеспечения устойчивости ферм, расположенных далеко от связей.
Конструкции некоторых узлов связей, выполненных из уголковых и гнутосварных профилей, и их прикрепление к фермам показано на рис, 7, 8.
Итак, связи, расположенные в плоскости верхних поясов ферм, имеют следующее основное назначение: при загружении покрытия предотвращают потерю устойчивости этих поясов из плоскости ферм, то есть уменьшают расчетную длину верхних поясов при проверке устойчивости их из плоскости ферм.
2. ВЕРТИКАЛЬНЫЕ СВЯЗИ МЕЖДУ ФЕРМАМИ
Вертикальные связи в виде цепочки распорок и ферм ставят по длине здания между стойками стропильных ферм. Связевые фермы для экономии металла соединяют между собой верхними и нижними распорками (рис.10). Таким образом, фермы вертикальных связей являются дисками, а прикрепленные к ним стержни-распорки обеспечивают промежуточные стропильные фермы или ригели рам от опрокидывания (рис.9б). Решетка связевых ферм, как правило, может быть произвольной (рис.9в) и выполняется из одиночных уголков или из прямоугольных гнуто-сварных труб. В покрытиях с шагом ферм 12 м, со шпренгельными прогонами или с настилом, усиленным шпренгелями, верхний пояс фермы вертикальных связей может иметь вид, показанный на рис.9г.
Вертикальные связи по ширине пролета располагаются на опорах (между колоннами) и в пролете между стойками.ферм не реже, чем через 15 м, т.е. при пролете здания 36 м они будут расположены в плоскостях двух стоек.
Рис.7. Прикрепление связей к верхним поясам ферм
Рис.8. Узлы покрытия и связей при шаге ферм 12 м (см. рис. 6);
а) Прикрепление связей, выполненных из замкнутых профилей к фермам с поясами из широкополочных двутавров
б) Узел Б
Рис.9. Вертикальные связи между фермами:
а) положение центра тяжести,
б) фермы-диски и распорки,
в) схемы решеток ферм,
г) связи в покрытиях с шагом ферм 12 м и со шпренгельыми прогонами
Связи могут прикрепляться также к специальныо предусмотренным для этогй цели вертикальным фасонкам [2, с.234]. В составе блока при крупноблочном монтаже вертикальные связи являются необходимыми элементами, обеспечивающими неизменяемость блока.
Рис.10. Узел прикрепления верхнего пояса фермы вертикальных связей к стойке стропильной фермы. Аналогично выполняется нижний узел
ПРОДОЛЬНЫЕ ГОРИЗОНТАЛЬНЫЕ СВЯЗИ ПО НИЖНИМ ПОЯСАМ РИГЕЛЕЙ
Контур связей, расположенных в плоскости нижних сквозных ригелей, можно расчленить на продольные и поперечные связи (рис.11). Назначение продольных связей сводится к следующему:
3.1. Продольные связи воспринимают поперечные горизонтальные крановые воздействия, т.е воспринимают внецентренное приложение вертикального давления крана на колонну, вызывающее горизонтальное смещение рамы, а также поперечное торможение крана, приложенное к одной раме (рис.12а) и передает эти воздействия на соседние рамы, менее нагруженные (рис.12б). Таким образом обеспечивается пространственность каркаса при работе его на местные нагрузки, вызывающие горизонтальные смещения ригеля рамы.
Рис.11. Связи по нижним поясам ригелей рам
Рис.12. Схема воспринятая поперечных горизонтальных нагрузок продольными связями по нижним поясам :
а) смешение рам от вертикального внецентренного приложения крановой нагрузки и от торможения;
б) передача поперечных нагрузок на связи
3.2. Отметим, что боковая нагрузка от ветра передается одинаково на все рамы, вызывая одинаковое смешение их. Поперечных сил между рамами в этом случае не возникает и поэтому в каркасах с шагом рам 6 м продольные связи не воспринимают ветровой нагрузки,
При шаге колонн 12 м и более в каркасах, имеющих стойки фахверка (стенового каркаса), продольные связи работают на эту нагрузи; Они являются верхними горизонтальными опорами стоек фахверка. Таким образом, в этом случае продольные связи передают усилия от ветровых нагрузок со стоек фахверка на соседние рамы (рис.13) и связи нагружены усилиями от ветровой нагрузки по длине шага рам.
Рис.13. Передача ветровой нагрузки со стоек фахверка на продольные связи
3.3. В крайних, панелях ригеля вследствие того, что жестко защемленный ригель на опоре испытывает изгибающие моменты противоположного знака по отношению к знаку момента в пролете, дается сжатие нижнего пояса (рис.14).
Рис.14. Сжатие в нижнем поясе ригеля вблизи опор
Закрепить нижний пояс от потери устойчивости из плоскости ригеля здесь можно лишь с помощью продольных связей (точка «f» рис.14). Устойчивость нижнего пояса в плоскости ригеля обеспечивается либо развитием момента инерции сечения пояса (в этой панели он может быть принят из двух неравнобоких уголков, составленных большими полками), либо введением дополнительной подвески.
3.4. В многопролетных зданиях с кранами тяжелого режима работы (7К, 8К) продольные связи в виде горизонтальных ферм ставятся друг от друга на расстояние не более двух пролетов (рис.15)
Рис.15. Связи по нижним поясам ригелей в многопролетном каркасе с кранами тяжелого режима работы (7К, 8К)
4. ПОПЕРЕЧНЫЕ СВЯЗИ В ПЛОСКОСТИ НИЖНИХ ПОЯСОВ РИГЕЛЕЙ
4.1. Эти связи служат для передачи усилий от ветровых нагрузок, направленных в торец здания, со стоек торцевого фахверка на вертикальные связи между колоннами (рис.17) (передача давления показана стрелками).
Рис.17. Схема передачи ветровых нагрузок с торца здания на связи
4.2. Вместе с продольными связями они образуют замкнутый контур, увеличивающий общую жесткость каркаса здания.
Поперечные связи, как правило, ставятся под связями по верхним поясам, создавая с ними пространственные поперечные блоки, к которым с помощью прогонов, распорок вертикальных связей и продольных связей крепятся промежуточные фермы (ригели).
На рис.18, 19 показаны узлы крепления горизонтальных связей, выполненных из уголков и прямоугольных гнуто-сварных труб к поясам ферм. Следует отметить, что в каркасах с тяжелым режимом работы кранов 7К, 8К и при больших крановых нагрузках связи прикрепляются к фермам с помощью сварки (т.е. болтовые узлы должны быть обварены) либо с помощью высокопрочных болтов.
Рис.18. Конструкции уголковых связей по нижним пояс
5. ВЕРТИКАЛЬНЫЕ СВЯЗИ МЕЖДУ КОЛОННАМИ
Различают верхний ярус вертикальных связей между колоннами (связи, расположенные выше подкрановых балок) и нижний я ниже балок (рис.20).
Рис.19. Узел связей по нижнему поясу из прямоугольных гнуто-сварных профилей
Рис.20. Схема вертикальных связей между колоннами
5.2. Вертикальные связи нижнего яруса
На связи нижнего яруса возлагается функции:
а) передавать ветровые усилия от связей верхнего яруса и от продольного торможения кранов (рис.20);
б) обеспечивать устойчивость подкрановой части колонии из плоскости рамы;
Схемы вертикальных связей могут быть различными в зависимости от шага колонн, от необходимости использования проема между колоннами и т.п. (рис.21б).
Рис.21. Схемы вертикальных связей нижнего яруса:
а) дополнительная распорка для уменьшения расчетной длины колонны из плоскости рамы;
б) варианты связей между колоннами
6. РАСЧЕТ СВЯЗЕЙ
В большинстве видов связей затруднительно точно определить величины усилий, которые будут ими восприниматься. Поэтому сечения элементов связей, как правило, подбираются по предельной гибкости [1]. Для элементов, о которых заранее известно, что они будут испытывать сжатие, рекомендуется принимать предельную гибкость 200.
По известным усилиям рассчитывается вертикальные, связи между колоннами, а также поперечные связи по нижнему поясу ригеля и продольные горизонтальные связи (в случае учета пространственной работы каркаса).
Связи между колоннами
Элементы каркаса, соединяющие между собой поперечные рамы, называют связями. Они воспринимают различные нагрузки, обеспечивая пространственную жесткость каркаса.
По характеру расположения связи бывают горизонтальные, установленные в плоскости ферм, и вертикальные, установленные между колоннами или фермами в вертикальной плоскости.
Вертикальные связи между колоннами продольных рядов устанавливают в середине температурного блока в каждом ряду. За температурный блок принимается длина здания 60 м, 72 м, 84 м. При шаге колонн 6 м ставят крестовые связи, при шаге 12 м – портальные.
В зданиях без мостовых кранов или с подвесными кранами связи ставят, когда высота помещения больше 10,8 м.
В зданиях с мостовыми кранами связи устанавливаются в подкрановой части начиная с высоты здания 8,4 м, а для зданий высотой 12 м; 13,2 м; 14,4 м предусматриваются и в надкрановой части здания.
Горизонтальные крестовые связи в уровне нижнего пояса балок или ферм устанавливают в зданиях с мостовыми кранами во втором шаге в начале здания и в предпоследнем шаге в конце здания.
Роль горизонтальных связей также выполняют плиты покрытия, подстропильные фермы или балки, подкрановые и обвязочные балки, стеновые панели.
Связи выполняют из стальных прокатных парных уголков или швеллеров и приваривают к закладным деталям колонн.
Тип связей и их конструкция предусматривается серией 1.424.1-5
Крестообразная 6 м связь весит ≈ 600-800 кг,
Портальная 6 м связь ≈ 100-1500 кг.
Стальной каркас
1. Основные типы колонн, опираемые на фундамент.
2. Стальные подкрановые балки.
3. Главные элементы покрытия из стали.
4. Детали и узлы стального каркаса
— соединение подкрановой балки с консолями и между собой
— крепление подкранового рельса с подкрановой балкой.
— соединение главных элементов покрытия с колоннами
Стальной каркас одноэтажного промышленного здания состоит из тех же конструктивных элементов, что и сборный ж/б каркас.
Стальные каркасы применяются в зданиях с повышенной этажностью, при укрупненной сетке колонн, а также при мостовых кранах большой грузоподъемности. Применение стального каркаса должно быть экономически обосновано.
Отсеки стальных каркасов по длине через 230 и 200 м и при ширине соответственно через 150 и 120 м разделяют деформационными швами.
Стальные каркасы допускаются в следующих случаях:
— при высоте одноэтажных зданий более 14,4 м;
— при грузоподъемности кранов 50 т и более;
— при пролетах здания 30 м и более.
Стальные колонны по конструкции бывают сплошные и сквозные.
Поперечное сечение сплошных колонн состоит из прокатных профилей (металлических уголков, швеллеров, двутавров, двутавра и швеллера) или листов, сваренных между собой по высоте. Сквозные колонны состоят из двух отдельных ветвей выполненных из сварных двутавров, соединенных планками или решетками, а надкрановая часть колонны выполняется из двутавра.
Колонны постоянного сечения устанавливают в бескрановых зданиях или в зданиях с мостовыми кранами высотой 8,4 и 9,6 м.
Колонны сквозного сечения устанавливают в зданиях с высотой этажа 10,8 – 18 м, с мостовыми кранами грузоподъемностью до 125 т.
При выполнении стального каркаса фундаменты под колонны устраиваются, как и при сборном ж/б каркасе из монолитного ж/б с некоторыми изменениями.
В нижней части колонны имеются башмаки – конструктивный элемент крепления колонны к фундаменту. Основная часть каждого башмака – стальная плита (опорный лист) толщиной 30-60 мм, которая может быть усилена ребрами, приваренными к опорной плите и стволу колонны. На нее опирается ветвь колонны, башмак крепят к фундаменту анкерными болтами. Опирание башмака осуществляется через слой цементно-песчаного раствора.
Для связи башмака с фундаментом в нем, во время бетонирования устанавливаются деревянные пробки пирамидальной формы с большим основанием вверху. Деревянные пробки оборачиваются с наружной стороны толью или рубероидом, чтобы после бетонирования и схватывания бетона пробка легко вынималась.
Глубина заложения пробки вычисляется расчетом. В фундаменте образуются отверстия, в которые устанавливаются анкера (стержни). Нижний конец должен быть с крюком. После тщательной выверки (проверки) расстояний между осями стержней, отверстия бетонируются. Количество устанавливаемых стержней, их диаметр и длина – величины расчетные. Через эти болты происходит соединение башмака с фундаментом. Соединение выполняется двумя гайками и шайбой.
Подкрановые балки выполняются в виде сварных двутавров со стенками, укрепленными ребрами жесткости для шага колонн 6 и 12 м. Балки предусматриваются высотой 700, 900,1050 мм для шага колонн 6 м и 1100, 1300, 1450 мм для шага колонн 12 м.
Между собой подкрановые балки соединяются при помощи болтов.
С консолью колонны подкрановые балки соединяются также при помощи болтов через опорную пластину.
Крепление рельса к стальным подкрановым балкам осуществляется при помощи прижимных лапок (как и при ж/б подкрановых балках), а также при помощи крюков.
Вид крепления зависит от режима работы мостового крана. По режиму работы мостовые краны делятся на легкие, средние и тяжелого режима. Чем больше во времени работает кран (2,3 смены), тем выше режим работы.
Крюками рельсы крепятся к металлическим подкрановым балкам при среднем и тяжелом режиме работы, а при легком режиме работы – при помощи прижимных лапок.
В качестве главных элементов покрытия в стальных каркасах применяются стальные стропильные и подстропильные фермы с различным профилем: треугольные, прямоугольные.
Пояса и решетку стропильных и подстропильных ферм выполняют из парных уголков или труб и соединяют между собой сваркой при помощи фасонок из листовой стали. Стропильные конструкции крепят к колоннам при помощи анкерных болтов.
Соединение главных элементов покрытия с колоннами каркаса.
Связи, установленные между стропильными фермами и колоннами обеспечивают пространственную жесткость стального каркаса.
В уровне верхнего пояса ферм закрепляют горизонтальные крестовые связи и распорки.
В уровне нижнего пояса ферм закрепляют поперечные и продольные связевые фермы и ставят растяжки из уголков.
Между стропильными фермами закрепляют вертикальные крестовые связи или фермочки с параллельными поясами.
Вертикальные связи между колоннами устанавливают в каждом продольном ряду колонн (в средине температурного блока).
Вертикальные связи в надкрановой части колонн располагают в местах расположения вертикальных связей между фермами покрытия.
Все типы связей выполняются из прокатных профилей металла и закрепляют болтами или сваркой к элементам каркаса.