Что такое верное неравенство 5 класс
Алгебра
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Сравнение чисел
Если выбрать любые два различных числа, то одно из них обязательно окажется больше другого. Например, 15 больше, чем 12. Для записи этого факта используются специальные знаки. Символ « », означает «больше». Помимо них для сравнения чисел используются символы «⩾» (больше или равно) и «⩽» (меньше или равно).
Выражения, содержащие знаки сравнения, называются неравенствами. Иногда в учебной литературе может использоваться сокращение: нер-во.
Сравнивать натуральные числа очень легко, однако при сравнении отрицательных, дробных, иррациональных чисел могут возникнуть проблемы. Существует универсальный способ сравнивать числа между собой, основанный на использовании координатной прямой.
Можно заметить, что чем больше число, тем правее оно располагается на координатной прямой. Это правило действует для всех действительных чисел.
Отметим на прямой два числа, а и b, а также расстояние между ними (буква c):
b располагается правее а, а потому
Расстояние между ними равно c, причем с – положительное число. Очевидно, что
Перенося слагаемые через знак равенства, можно получить
Получается, что при вычитании из большего меньшего получается положительное число. Если же уменьшаемое меньше вычитаемого, то их разность – отрицательное число. На этом факте основан один из способов сравнения чисел. Чтобы узнать, какое из двух чисел больше, надо лишь вычесть их друг из друга и проанализировать знак получившейся разности.
Пример. Сравните дроби 29/35 и 33/40
Получили положительное число. Значит, уменьшаемое больше вычитаемого.
Свойства неравенств
Рассмотрим основные свойства числовых неравенств, которые в дальнейшем помогут нам решать некоторые задачи.
Докажем это. Если а >b, то тогда и разность (a –b) является положительным числом:
умножив части равенства на (– 1), получим:
Так как разность (b– a)оказалась равна отрицательному числу (– с), тоb
Для доказательства этого очевидного факта используем координатную прямую:
Ясно, что если b>a, то оно располагается правее. Аналогично и с располагается правее b, так как с >b. Видно, что тогда сбудет находиться правее а, то есть оно больше.
Свойство транзитивности позволяет использовать так называемые двойные неравенства. Например, нам надо указать, что 25 меньше 48, а 48 меньше 94. Это можно записать в виде одного неравенства:
Следующее свойство неравенств позволяет их складывать:
Докажем эту теорему. Найдем разность чисел (а + c) и (b + d):
(а + c) – (b + d) = а + с – b – d = (a– b) + (b– d)
Получили сумму двух слагаемых, (a– b) и (b– d). Каждое из них является отрицательным числом, так как a 25
В одном стоит знак «меньше», а в другом «больше», поэтому сразу их складывать нельзя. Сначала «перевернем» второе неравенство
Пример. Пете надо купить 2 килограмма бананов и пакет молока. Он точно знает, что пакет молока стоит в разных магазинах от 65 до 80 рублей, а стоимость килограмма бананов колеблется от 54 до 69 рублей. Помогите Пете оценить, сколько денег он потратит в магазине.
Решение. Обозначим буквой h стоимость килограмма бананов, а через k – цену пакета молока. Затраты Пети составят 2h + k, при этом можно написать следующие оценки:
Решение. Запишем очевидно верное неравенство
Добавим к нему число 11:
Число 11 больше 5, поэтому можно записать:
Пример. Докажите, что неравенство
n 2 – 8n + 19> 0
справедливо для любого n.
В левой части стоит квадратный трехчлен, попытаемся преобразовать его с помощью формулы квадрата суммы:
n 2 – 8n + 19 = n 2 – 2•4n + 19 = n 2 – 2•4n +16 – 16 + 19 =
= (n 2 – 2•4n + 4 2 ) – 16 + 19 = (n– 4) 2 + 3
Величина (n – 4) 2 является неотрицательным числом, поэтому сумма (n – 4) 2 + 3 никак не меньше трех, то есть положительна.
Иногда для доказательства числового неравенства можно определить знак разности выражений, стоящих в правой и левой части.
Пример. Докажите, что при любом значении переменных выполняется условие
Решение. Запишем разность выражений, стоящих в неравенстве, а потом преобразуем ее:
2ut – (u 2 + t 2 ) = 2ut – u 2 – t 2 = – (u 2 – 2ut + t 2 ) = – (u – t) 2
Разность получилась неположительной. Значит, между уменьшаемым и вычитаемым можно поставить знак «⩽»:
Полученное выражение означает, что удвоенное произведение двух чисел не превосходит сумму их квадратов. Этот факт мы используем при решении следующего задания.
Пример. Докажите, что
d 2 + s 2 + m 2 ⩾ds + dm + sm
Решение. В предыдущем примере мы установили, что сумма квадратов чисел больше или равна их двойному произведению, поэтому можно записать:
Сложим полученные неравенства:
(d 2 + s 2 ) + (s 2 + m 2 ) + (d 2 + m 2 ) ⩾2ds + 2sm + 2dm
2d 2 + 2s 2 + 2m 2 ⩾2ds + 2sm + 2dm
Осталось поделить на два это неравенство:
d 2 + s 2 + 2m 2 ⩾ds + sm + dm
Решение неравенств с одной переменной
Очевидно, что не все неравенства справедливы при любом значении входящих в них переменных. Так, нер-во
справедливо для х = 3 (так как 3 – 2 > 0), но несправедливо при х = 1. Такие выражения называют неравенствами с одной переменной. Его решением называют значение переменной, при подстановке которого получается справедливое числовое неравенство.
Так, 3 – это одно из решений для нер-ва
ведь при его подстановке получается справедливое числовое нер-во
Чтобы решить нер-во, надо указать сразу ВСЕ решения для него. Однако стоит заметить, что почти всегда нер-во, в отличие от уравнения, имеет бесконечное количество решений. Так, решением для нер-ва
является не только число 3, но также числа 4, 5, 6, 7, 8, и т.д. Более того, подойдут и дробные числа, например, 2,5; 2,6; 2,61 и т.д. Поэтому для указания решения нер-в используются особые математические объекты – числовые промежутки.
Отметим на координатной прямой числа а и b, а также точку с, лежащую между ними. Все числа, расположенные между ними, образуют множество, которое называют числовым промежутком:
Числовой промежуток обозначается скобками, в которых указаны его граничные точки: (а;b). В данном случае скобки круглые, это означает, что сами числа a и b НЕ входят в это множество. По этой причине концы промежутка на рисунке показаны незакрашенными точками, которые ещё называют «выколотыми».
Если некоторое число c располагается между числами a и b, то говорят, что с принадлежит промежутку (а; b). Записывается это так:
Естественно, что с принадлежит промежутку в том случае, если выполняется неравенство
Отметим на числовой прямой число 20 и всё множество решений этого нер-ва:
Решением нер-ва будет промежуток (20; + ∞)
Введем понятие равносильных неравенств:
Более сложные нер-ва можно свести к более простым, но равносильным им, с помощью нескольких приемов:
Эти способы основаны на свойствах нер-в и очень сильно напоминают способы преобразований уравнений. Рассмотрим их использование на примере.
Пример. Найдите решение неравенства с одной переменной
х + 10 > 18
Перенесем слагаемое 10 вправо, изменив его знак на противоположный:
Получили нер-во, решением которого является интервал (8; + ∞):
Пример. Решите нер-во
5у ⩾ 20
Решение. Поделим обе части на число 5. Оно положительное, а потому знак нер-ва не меняется:
Решением этого нер-ва будет интервал [4; + ∞)
Пример. Найдите значения переменной, при которых верна запись
–6z > 42
Решение. Поделим нер-во на (– 6). Так как это число отрицательное, то знак неравенства изменится на противоположный:
Решение. Перенесем слагаемое 26 вправо:
Теперь поделим на 12 правую и левую часть:
Для нер-ваk> 10 решением является промежуток
Пример. Решите нер-во
9(h + 2) + 21 10 (штриховка сверху) и х 0
Первый шаг – заменим знак «>» на «=»:
Получили уравнение. Вспомним правило: произведение множителей равно нулю, если хоть один из них равен нулю. Поэтому
х – 5 = 0 или х – 7 = 0 или 4 – 2х = 0
Решим каждое из трех полученных линейных уравнений:
Получили корни 2, 5 и 7. Отметим их на координатной прямой:
Эти точки разбивают числовую прямую на 4 промежутка:
В исходном неравенстве слева стоит произведение (х – 5)(х – 7)(4 – 2х). Определим его знак на каждом из этих 4 интервалов. Для этого достаточно взять одно число из интервала и подставить его в выражение:
(х – 5)(х – 7)(4 – 2х) = (0 – 5)(0 – 7)(4 – 2•0) = (– 5)•(– 7)•4 = 140
Получили число, большее нуля: 140 > 0
(х – 5)(х – 7)(4 – 2х) = (3 – 5)(3 – 7)(4 – 2•3) = (– 2)•(– 4)•(– 2) = – 16
Получили отрицательное число.
(х – 5)(х – 7)(4 – 2х) = (6 – 5)(6 – 7)(4 – 2•6) = 1•(– 1)•(– 8) = 8
Получили положительное число
(х – 5)(х – 7)(4 – 2х) = (8 – 5)(8 – 7)(4 – 2•8) = 3•1•(– 12) = – 36
Теперь поставим на числовой прямой знаки, соответствующие каждому интервалу:
Так как в исходном неравенстве стоял знак «>», то в ответ надо записать объединение тех интервалов, на которых левая часть принимает положительные значения.
В этом примере можно заметить, что знаки в интервалах чередовались. Так и должно происходить в том случае, если каждый из множителей в левой части является многочленом первой степени. Напомним, что многочлен 1-ой степени – это выражение вида ах + с, например:
Пример. Определите, при каких значениях переменной полином
х 2 – 8х + 12
принимает отрицательные значения.
Решение. По сути, нам надо решить нер-во
х 2 – 8х + 12 2 – 8х + 12 = 0
D = (– 8) 2 – 4•1•12 = 64 – 48 = 16
Зная х1 и х2, можем записать, что
х 2 – 8х + 12 = (х – х1)(х – х2) = (х – 2)(х – 6)
Перепишем исходное нер-во:
К нему уже можно применить метод интервалов (так как в левой части стоит произведение):
х – 2 = 0 или х – 6 = 0
Естественно, что мы получили те же корни, что и при решении квадратного уравнения выше. Отметим корни на прямой и определим значение трехчлена на каждом из полученных интервалов:
На промежутке (– ∞; 2) при х = 1 имеем (1 – 2)(1 – 6) = (– 1)•(– 5) = 5
Промежуток (2; 6): при х = 3 получаем (3 – 2)(3 – 6) = 1• (– 3) = – 3
На промежутке (6; + ∞) при х = 7 получается (7 – 2)(7 – 6) = 5•1 = 5
В итоге трехчлен отрицателен тогда, когда х принадлежит интервалу (2; 6).
Понятие неравенства, связанные определения
Неравенство – обратная сторона равенства. Материал данной статьи дает определение неравенства и начальную информацию о нем в разрезе математики.
Определение неравенства
Понятие неравенства, как и понятие равенства, связывается с моментом сравнения двух объектов. В то время как равенство означает «одинаковы», то неравенство, напротив, свидетельствует о различиях объектов, которые сравниваются. К примеру, и
— одинаковые объекты или равные.
и
— объекты, отличающиеся друг от друга или неравные.
Неравенство объектов определяется по смысловой нагрузке такими словами, как выше – ниже (неравенство по признаку высоты); толще – тоньше (неравенство по признаку толщины); длиннее – короче (неравенство по признаку длины) и так далее.
Возможно рассуждать как о равенстве-неравенстве объектов в целом, так и о сравнении их отдельных характеристик. Допустим, заданы два объекта: и
. Без сомнений, эти объекты не являются одинаковыми, т.е. в целом они не равны: по признаку размера и цвета. Но, в то же время, мы можем утверждать, что равны их формы – оба объекта являются кругами.
В контексте математики смысловая нагрузка неравенства сохраняется. Однако, в этом случае речь идет о неравенстве математических объектов: чисел, значений выражений, значений величин (длина, площадь и т.д.), векторов, фигур и т.п.
Не равно, больше, меньше
В зависимости от целей поставленной задачи ценным можем являться уже просто факт выяснения неравенства объектов, но обычно вслед за установлением факта неравенства происходит выяснение того, какая все же величина больше, а какая – меньше.
Значение слов «больше» и «меньше» нам интуитивно знакомо с самого начала нашей жизни. Очевидным является навык определять превосходство объекта по размеру, количеству и т.д. Но в конечном счете любое сравнение приводит нас к сравнению чисел, которые определяют некоторые характеристики сравниваемых объектов. По сути, мы выясняем, какое число больше, а какое – меньше.
Утром температура воздуха составила 10 градусов по Цельсию; в два часа дня этот показатель составил 15 градусов. На основе сравнения натуральных чисел мы можем утверждать, что значение температуры утром было меньше, чем ее значение в два часа дня (или в два часа дня температура увеличилась, стала больше, чем была температура утром).
Запись неравенств с помощью знаков
Существуют общепринятые обозначения для записи неравенств:
Подробнее их смысл разберем ниже. Дадим определение неравенств по виду их записи.
Строгие и нестрогие неравенства
Знаки строгих неравенств – это знаки «больше» и «меньше»: > и Неравенства, составленные с их помощью – строгие неравенства.
Верные и неверные неравенства
Верное неравенство – то неравенство, которое соответствует указанному выше смыслу неравенства. В ином случае оно является неверным.
Приведем простые примеры для наглядности:
Неравенство 5 ≠ 5 является неверным, поскольку на самом деле числа 5 и 5 равны.
Или такое сравнение:
Аналогичными по смыслу термину «верное неравенство» являются фразы «справедливое неравенство», «имеет место неравенство» и т.д.
Свойства неравенств
Опишем свойства неравенств. Очевидный факт, что объект никак не может быть неравным самому себе, и это есть первое свойство неравенства. Второе свойство звучит так: если первый объект не равен второму, то и второй не равен первому.
Опишем свойства, соответствующие знакам «больше» или «меньше»:
Знакам нестрогих неравенств также присущи некоторые свойства:
Двойные, тройные и т.п. неравенства
Верные и неверные равенства и неравенства
Презентация к уроку
Планируемые результаты (универсальные учебные действия).
(96) Неявное сравнение. Выделение существенных признаков понятий “верное равенство”, “неверное равенство”.
(97) Составление новых объектов (свободное конструирование). Нахождение значений выражений.
(94) Сравнение текстов с целью подведения под понятие “задача”. Решение задачи.
1. Организационный момент.
Долгожданный дан звонок,
Начинается урок!
Начинаем мы опять:
Решать, отгадывать, считать!
Пожелаем всем удачи –
За работу, в добрый час!
Встанем, повернёмся, наклоном головы поприветствуем наших гостей.
Введение в тему урока.
Учитель.
— Ребята, чтобы в очередной раз нам попасть в страну математика, мы должны отгадать загадку:
Стоит трёхглавый великан
Он правила расскажет нам,
Кому куда идти и ехать,
Чтоб не создать затор, помехи.
Если загорелся красный,
Стой! Движение опасно!
Загорелся жёлтый свет,
Ожидай, движенья нет!
Свет зелёный на табло,
Движение разрешено.
— Что это? ( Светофор).
-Светофор задаёт вопрос: На какой свет разрешено переходить дорогу?
— Переходим, когда загорается зелёный свет, дорогу переходим аккуратно, особенно в зимний период. Зимой на дорогах очень скользко.
— Но загорелся красный свет, светофор не пропускает нас в страну математика, он хочет проверить, как мы знаем таблицу сложения, как мы умеем считать устно. Давайте покажем светофору. Готовы? Да.
2. Актуализация знаний. Повторение пройденного материала.
— В стране математика на небе появились тучки, они мешают нам познакомиться с новыми жителями страны. Чтобы их разогнать, нужно выполнить задание – найти значения выражений, а поможет вам знание таблицы сложения. Готовы? Да.
— Посмотрите ребята на доску, кто нас встречает в стране математика? Как называются эти знаки? (больше, меньше, равно)
— Как мы называем математические записи с такими знаками? (РАВЕНСТВА И НЕРАВЕНСТВА)
— Так какую математическую запись называем равенством или неравенством? (Математическую запись, в которой есть знаки = называем равенством или неравенством).
— Ребята, посмотрите, загорелся зелёный свет, мы верно выполнили задание, правильно ответили на вопросы. Смело отправляемся в страну математика.
— Все ваши умения пригодятся сегодня на уроке, а внимание – особенно. Скажите, какое сегодня число? ( 25 февраля)
— Вспомним всё, что знаем о числах 2 и 5.Какие это числа – однозначные или двузначные?
– Это числа однозначные, т.к. при их записи используется одна цифра.
— Какие это числа: натуральные или ненатуральные?
– Эти числа натуральные, т.к. стоят в натуральном ряду чисел.
— О каком числе мы говорим, что оно ненатуральное? Почему?
— Число 0 ненатуральное число. Число ноль ничего не обозначает.
— Правильно. В переводе с латинского слово “нулус” означало ничто, а в Древней Индии отсутствие чего-либо обозначали пустым кругом.
— Какие числа являются предшествующими для чисел 2 и 5? (1 и 4)
— Какие следующие за числами 2 и 5. (3 и 6)
— Какое из этих чисел (2 и 5) больше, и на сколько? (3)
— Как узнал? Как узнать на сколько одно число больше или меньше другого?
(Чтобы узнать, насколько одно число больше или меньше другого, нужно из большего числа вычесть меньшее.)
— Пропишем числа “в воздухе”.
— Молодцы! Закрываю презентацию, открываю доску.
– Запишем сначала предшествующие числа в соседних клеточках 1 4, запишем следующие числа 3 6 в соседних клеточках (показываю указкой всё на доске).
— Кому трудно, можно поработать фломастером на волшебной страничке.
— Запишите все числа, которые встретились нам в чистописании в порядке возрастания, на новой строчке, через клеточку.
— Что у вас получилось? Прочитай (Учитель записывает на доске). Можем мы назвать эту запись натуральным рядом чисел? Нет, почему? 0 – не натуральное число.
— Пойти к доске, составить с числами 2 и 5 равенства и неравенства. Где нужно вставь число два, где нужно, число 5!
— Какую математическую запись мы называем равенством или неравенством?
— Почему записи на доске мы не можем назвать выражением? Что такое выражение?
— Правильно. Выражение – запись, в которой числа соединены знаками действий. Знаков сравнения в выражениях нет. Садись, молодец.
ЗАКРЫВАЮ ДОСКУ, ОТКРЫВАЮ ПРЕЗЕНТАЦИЮ
Работа над новым материалом. Проблема: Неявное сравнение.
-Ребята, внимание на доску. Сегодня в страну математика с нами отправились Саша и Катя. Посмотрите на задания, которые они выполняли. Как называются такие математические записи?
— Равенства и неравенства.
— Верно, мы видим знаки сравнения. Прочитайте задание.
— Хочу обратить ваше внимание, вам было сделано предупреждение ещё в начале урока, чтобы вы были предельно внимательными. Катя и Саша выполняли ОДИНАКОВЫЕ задания, но знаки сравнения (показываю указкой на доске) в первой и второй строчках у них разные. Значения выражений не совпадают. Почему так произошло?
— Исправьте у себя на листочках Катину ошибку.
— Вторая строчка, кто допустил ошибку? (Ошибку допустил Саша, 8-5=3, а 3 больше двух)
— Исправим. Проверим. Слайд.
— Третья строчка, кто допустил ошибку? Ошибку допустила Катя. 7-2=5, а 5 больше четырёх на один. Исправим. Проверим. Слайд.
— Четвёртая строка – ошибку допустил Саша. 4+4=8, а 8 больше 7. Проверим.
— Посмотрите внимательно, что у нас получилось. Равенства и неравенства у нас остались? (да)
— Но какие-то из них верные, а какие-то нет! Выпишите в тетрадь ВЕРНЫЕ равенства и ВЕРНЫЕ неравенства – т.е. те, в которых ребята не допустили ошибок.
3. САМОСТОЯТЕЛЬНАЯ РАБОТА в тетрадях
СЛАЙД с выполненным заданием.
— Встаньте те, у кого запись совпадает с записью на доске. Какие равенства и неравенства вы выписывали? Верные.
— Без ошибок, без несоответствий, то есть ВЕРНЫЕ! А почему не записали остальные равенства и неравенства? Там есть ошибки.
— Т.е. мы не выписывали те, которые ребята выполнили неверно!
— Верные мы выписали, неверные нет (показываю на доске). Так какие бывают равенства и неравенства?
Вывод: Равенства и неравенства бывают верные и неверные.
— Правильно. Равенства и неравенства без ошибок, без несоответствий называют ВЕРНЫМИ, а равенства и неравенства, где левая часть не соответствует правой (или её значение), о таких неравенствах говорят, что это неравенства неверные.
Вы молодцы, вы хорошо поработали, давайте отдохнём.
4. ФИЗМИНУТКА (СЛАЙД).
5. Закрепление материала. Работа по учебнику:
— Ребята откройте учебники на странице 38, найдите номер 94 ( Сравнение текстов с целью подведения под понятие “задача”. Решение задачи.).
— Сравните тексты. Какой из них является задачей? Вспомним, какой текст мы называем задачей?
— Текст, в котором есть условие, вопрос, числовые данные для ответа на него, мы называем задачей.
— Так какой из текстов является задачей, докажи?
— Второй текст является задачей, так как в нём есть вопрос, есть числовые данные для ответа на него.
— Прочитай вслух ещё раз ЗАДАЧУ. (СЛАЙД С ЗАДАЧЕЙ)
— О чём говорится в задаче? (О игрушках на полке – куклах и мишках).
ЧИТАЕТ УЧЕНИК: Сколько игрушек на полке?
— Сможем ли мы ответить на вопрос в задаче? (да)
— Докажи. Что мы должны знать, чтобы ответить на вопрос в задаче?
(Количество мишек, количество кукол)
— Известно сколько плюшевых мишек стояло на полке? (да, 3)
— Известно сколько кукол стояло на полке? (да, 3)
— Нас просят решить задачу, записав выражение. После найти его значение.
— Какое действие запишем в выражении, чтобы узнать, сколько всего игрушек стояло на полке? (действие сложения)
— Выйди к доске и запиши выражение, с помощью которого мы ответим на вопрос в задаче.
ЗАКРЫВАЮ ПРЕЗЕНТАЦИЮ, ОТКРЫВАЮ ДОСКУ
ВЫХОД УЧЕНИКА К ДОСКЕ
— Эти числа обозначают количество мишек и количество кукол. Складываем эти числа. Действие сложения записываем с помощью знака +.
— Найдите значение этого выражения: 3+3=6.
— Что обозначает число 6? (количество всех игрушек, сколько игрушек всего)
— Давайте проверим себя, правильно ли мы ответили на вопрос в задаче – пересчитаем все игрушки на рисунке. Поставили пальчики в учебник – считаем. Мы решили верно. 6=6
— Запиши на доску, а вы ребята в тетрадь это равенство: 6=6.
— Ребята, посмотрите внимательно на нашу запись – там, где записано решение задачи. Мы записали выражение, нашли его значение, что у нас получилось? Как называется такая математическая запись? РАВЕНСТВО
— Какое это равенство? ВЕРНОЕ РАВЕНСТВО
ЗАКРЫВАЮ ДОСКУ И ОТКРЫВАЮ ПРЕЗЕНТАЦИЮ: 3+3=6
— Поменяйте значение выражения так, чтобы получилось неверное равенство. Перечислите свои неверные равенства ( дети называют с мест).
— Поменяйте знак сравнения так, чтобы получилось верное неравенство. Назовите своё неравенство. Сверим с доской:
— Так какие бывают равенства и неравенства? (Полный ответ: равенства и неравенства бывают верные и неверные.)
— Там, где есть несоответствия между сравниваемыми записями слева и справа, мы говорим о неверном сравнении – неверных равенствах и неравенствах.
— В нашей стране математика давно закончился дождь. А после дождя, что мы обычно видим на небе? Красивую радугу. Если будете внимательно следить за жителем страны Математика – Котёнком Квадратиком – глазками – вы увидите красивую радугу.
6. ФИЗМИНУТКА для глаз.
7. Составление новых объектов, свободное конструирование.
— Найдите в учебнике номер 97. СЛАЙД
— Кроме млекопитающих животных на рисунке изображены насекомые и птицы. Относим ли мы их к царству животных или мы их относим к царству растений или грибов?
— Да, мы их относим к царству животных. Значит все объекты на рисунке – это животные.
Читаю по учебнику задание: запиши столько сумм, сколько на рисунке животных обитающих в воде. Запиши столько разностей, сколько животных обитающих на суше. Мы разделимся, задание будем выполнять по вариантам.
— Первый вариант запишет столько сумм, сколько на рисунке животных, обитающих в воде. Второй вариант запишет столько разностей, сколько животных, обитающих на суше. Хочу обратить ваше внимание на животное – гусь. Где он может находиться? И в воде, и на суше. Значит и первый, и второй вариант будут его учитывать.
— Давайте определим, сколько животных, обитающих в воде?
Первый вариант?(4) Перечисли – МОРЖ, ДЕЛЬФИН, КИТ, ГУСЬ. Проверим! Слайд.
— Давайте определим, сколько животных, обитающих на суше? Второй вариант?(5) Перечисли – БЕЛКА, БАБОЧКА, ГУСЬ, ЁЖИК, ОСА. Проверим! Слайд.
— Следовательно первый вариант самостоятельно записывать 4 суммы, не находя их значение. Второй – 5 разностей, не вычисляя их. Помните, что вы записываете выражения, не находя их значений. Найдите на листочках номер 97 – подписан. Вставьте в окошки нужные числа, любые.
8. Оценка и самооценка.
— Обменяйтесь листочками, проверьте, правильно ли выполнил задание ваш сосед по парте. Найдите значения выражений вашего соседа, запишите их простым карандашом. Обменяйтесь, проверьте. Можно стереть ластиком, записать свой вариант ответа, если нашли ошибку.
— Прочитаем, что у вас получилось. Первый вариант. Второй вариант.
— Ребята, вы записали выражения, нашли их значения, что у вас получилось, как мы называем такие математические записи? РАВЕНСТВА
— Равенства, в которых мы не допустили ошибок, какие они – верные или неверные? ВЕРНЫЕ.
— Надеюсь, что неверных равенств у нас в этом задании нет, или если есть, то очень мало. Листочки вложите в тетрадь, а я проверю, как справились с заданием.
9. Итог урока: Вывод. Самооценка универсальных учебных умений, действий. Презентация.
— Ребята, какие математические записи называем равенством и неравенством? Записи, в которых есть знаки сравнения, называем равенствами и неравенствами.
— Какие бывают равенства и неравенства? Равенства и неравенства бывают верными и неверными.
— Какие равенства и неравенства называем неверными? Это математические записи, где знаки сравнения поставлены неверно.
— Ребята, у вас на партах у каждого есть по два билета. Вам нужно выбрать и один из них взять в руки. Возьмите в руки цветной билет, если вы поняли, что такое верные и неверные равенства и неравенства. С этим билетом вы можете смело дальше путешествовать по стране Математика. Если вы не поняли, как различить верные и неверные равенства и неравенства, возьмите в руки черно-белый билет. С этим билетом на следующих уроках математики нужно быть внимательнее. Поднимите, покажите, все ли у нас с билетами. Молодцы! Урок закончен, идите отдыхать.