Что такое верное числовое равенство
Числовые равенства, свойства числовых равенств
Получив общее представление о равенствах в математике, можно переходить к более детальному изучению этого вопроса. В этой статье мы, во-первых, разъясним, что такое числовые равенства, а, во-вторых, изучим свойства числовых равенств.
Навигация по странице.
Что такое числовое равенство?
Равенствам указанного вида на этом этапе придается количественный или порядковый смысл, который вкладывается в натуральные числа. К примеру, числовое равенство 3=3 отвечало картинке, на которой изображены две ветки дерева, на каждой из которых сидят по 3 птицы. Или когда в двух очередях третьими по порядку стоят наши товарищи Петя и Коля.
Итак, достаточно ходить вокруг да около, пора уже дать определение числового равенства:
Числовое равенство – это равенство, в обеих частях которого находятся числа и/или числовые выражения.
Свойства числовых равенств
Принципы работы с числовыми равенствами определяются их свойствами. А на свойствах числовых равенств в математике завязано очень многое: от свойств решения уравнений и некоторых методов решения систем уравнений до правил работы с формулами, связывающими различные величины. Этим объясняется необходимость подробного изучения свойства числовых равенств.
Свойства числовых равенств полностью согласуются с тем, как определены действия с числами, а также находятся в согласии с определением равных чисел через разность: число a равно числу b тогда и только тогда, когда разность a−b равна нулю. Ниже при описании каждого свойства мы будем прослеживать эту связь.
Основные свойства числовых равенств
Другие важные свойства
Из основных свойств числовых равенств, разобранных в предыдущем пункте, вытекает еще ряд свойств, имеющих ощутимую практическую ценность. Давайте разберем их.
И остановимся еще на двух свойствах, позволяющих складывать и умножать соответствующие части верных числовых равенств.
Заметим, что можно почленно складывать не только два верных числовых равенства, но и три, и четыре, и любое конечное их число.
В заключение этой статьи запишем все разобранные свойства числовых равенств в таблицу:
Числовые равенства, свойства числовых равенств
После получения общих сведений о равенствах в математике переходим к более узким темам. Материал этой статьи даст представление о свойствах числовых равенств.
Что такое числовое равенство
Числовое равенство – это равенство, обе части которого состоят из чисел и/или числовых выражений.
Свойства числовых равенств
Сложно переоценить значимость свойств числовых равенств в математике: они являются опорой многому, определяют принцип работы с числовыми равенствами, методы решений, правила работы с формулами и многое другое.Очевидно, что существует необходимость детального изучения свойств числовых равенств.
Свойства числовых равенств абсолютно согласованы с тем, как определяются действия с числами, а также с определением равных чисел через разность: число a равно числу b только в тех случаях, когда разность a − b есть нуль. Далее в описании каждого свойства мы проследим эту связь.
Основные свойства числовых равенств
Изучать свойства числовых равенств начнем с трех базовых свойств, которые присущи всем равенствам. Перечислим основные свойства числовых равенств:
Прочие важные свойства числовых равенств
Основные свойства числовых равенств, рассмотренные выше, являются базисом для ряда дополнительных свойств, довольно ценных в разрезе практики. Перечислим их:
Укажем еще на пару свойств, которые позволяют осуществлять сложение и умножение соответствующих частей верных числовых равенств:
Необходимо уточнить, что почленно можно сложить не только два верных числовых равенства, но и три, и более;
Завершим данную статью, собрав для наглядности все рассмотренные свойства:
Понятие равенства, знак равенства, связанные определения.
В этой статье собрана информация, формирующая представление о равенстве в контексте математики. Здесь мы выясним, что такое равенство с математической точки зрения, и какие они бывают. Также поговорим о записи равенств и знаке равно. Наконец, перечислим основные свойства равенств и для наглядности приведем примеры.
Навигация по странице.
Что такое равенство?
Понятие равенства неразрывно связано со сравнением – сопоставлением свойств и признаков с целью выявлением схожих черт. А сравнение в свою очередь предполагает наличие двух предметов или объектов, один из которых сравнивается с другим. Если, конечно, не проводить сравнение предмета с самим собой, и то, это можно рассматривать как частный случай сравнения двух предметов: самого предмета и его «точной копии».
Из приведенных рассуждений понятно, что равенство не может существовать без наличия, по крайней мере, двух объектов, иначе нам просто нечего будет сравнивать. Понятно, что можно взять три, четыре и большее число объектов для сравнения. Но оно естественным образом сводится к сравнению всевозможных пар, составленных из этих объектов. Иными словами, оно сводится к сравнению двух объектов. Итак, равенство требует два объекта.
Суть понятия равенства в самом общем смысле наиболее отчетливо передается словом «одинаковые». Если взять два одинаковых объекта, то о них можно сказать, что они равные. В качестве примера приведем два равных квадрата и
. Отличающиеся объекты, в свою очередь, называют неравными.
Из предыдущего примера для себя отметим, что нужно наперед знать, о равенстве чего именно мы говорим.
Все приведенные рассуждения применяются и к равенствам в математике, только здесь равенство относится к математическим объектам. То есть, изучая математику, мы будем говорить о равенстве чисел, равенстве значений выражений, равенстве каких-либо величин, например, длин, площадей, температур, производительностей труда и т.п.
Запись равенств, знак равно
Пришло время остановиться на правилах записи равенств. Для этого используется знак равно (его также называют знаком равенства), который имеет вид =, то есть, представляет собой две одинаковые черточки, расположенные горизонтально одна над другой. Знак равно = считается общепринятым.
Стоит отметить, что в математике рассмотренные записи равенств часто используют как определение равенства.
Записи, в которых используется знак равно, разделяющий два математических объекта (два числа, выражения и т.п.), называют равенствами.
Верные и неверные равенства
Записанные равенства могут отвечать смыслу понятия равенства, а могут и противоречить ему. В зависимости от этого равенства подразделяются на верные равенства и неверные равенства. Разберемся с этим на примерах.
Свойства равенств
Отдельно стоит отметить заслугу второго и третьего свойств равенств – свойств симметричности и транзитивности – в том, что они позволяют говорить о равенстве трех и большего числа объектов через их попарное равенство.
Двойные, тройные равенства и т.д.
В виде таких цепочек равенств удобно оформлять пошаговое решение примеров и задач, при этом решение выглядит кратко и видны промежуточные этапы преобразования исходного выражения.
Равенства и неравенства. 3-й класс
Класс: 3
Презентация к уроку
Тип урока: открытие новых знаний.
Технология: технология развития критического мышления через чтение и письмо, игровая технология.
Цели: Расширить знания учащихся о равенствах и неравенствах, познакомить с понятием верных и неверных равенств и неравенств.
Дидактическая задача: Организовать совместную, самостоятельную деятельность учащихся по изучению нового материала.
Задачи урока:
Оборудование:
Ход урока
I. Организационный момент.
И так, друзья, внимание.
Ведь прозвенел звонок
Садитесь поудобнее,
Начнем скорей урок!
II. Устный счет.
– Сегодня мы отправимся с вами в гости. Прослушав стихотворение, вы сможете назвать имя хозяйки. (Чтение стихотворение ученицей)
В веках математика овеяна славой,
Светило всех земных светил.
Ее царицей величавой
Недаром Гаусс окрестил.
Мы славим разум человека,
Дела его волшебных рук,
Надежду нынешнего века,
Царицу всех земных наук.
– И так, нас ждет Математика. В её царстве много княжеств, но сегодня мы посетим одно из них (слайд 4)
– Название княжества вы узнаете, решив примеры и расставив ответы в порядке возрастания. (Высказывание)
7200 : 90 = 80 | С | 280 : 70 = 4 | И |
5400 : 9 = 600 | Ы | 3500 : 70 = 50 | З |
2700 : 300 = 9 | В | 4900 : 700 = 7 | А |
4800 : 80 = 60 | А | 1600 : 40 = 40 | Ы |
560 : 8 = 70 | К | 1800 : 600 = 3 | Е |
4200 : 6 = 700 | В | 350 : 70 = 5 | Н |
– Давайте вспомним, что такое высказывание? (Утверждение)
– Каким может быть высказывание? (Верным или неверным)
– Мы сегодня с вами будем работать с математическими высказываниями. Что к ним относится? (выражение, равенства, неравенства, уравнения)
III. Стадия 1. ВЫЗОВ. Подготовка к изучению нового.
(слайд 5 см. примечание)
– Княжна Высказывание предлагае вам первое испытание.
– Перед вами карточки. Найдите лишнюю карточку, покажите (а + 6 – 45 * 2).
– Почему она лишняя? (Выражение)
– Является ли выражение законченным утверждением? (Нет, не является, т.к. оно не доведено до логического завершения)
7 * 9 = 63 | а + 8 = 27 | 100 : 4 + а = 90 |
а + 6 > 45 * 2 | а + 6 – 45 * 2 | 95 4 |
– Разложите оставшиеся карточки на группы. (Равенства и неравенства)
7 * 9 = 63 | а + 6 > 45 * 2 |
а + 8 = 27 | 95 4 |
– А что такое равенство и неравенство, можно ли их назвать высказыванием?
– Назовите верные равенства.
– Как по-другому назвать верные равенства? (истинные)
– О каких равенствах нельзя сказать, что они истинные? (с переменной)
– Математика постоянно учит нас доказывать истинность или ложность наших высказываний.
IV. Сообщение цели урока.
– И сегодня мы должны узнать, что такое равенство и неравенство и научиться определять их истинность и ложность.
– Перед вами высказывания. Прочитайте их внимательно. Если вы считаете, его верным, то поставьте в первом столбике «+», если нет – «–».
До чтения | После чтения |
Равенства – это два выражения, соединенных знаком «=» | |
Выражения могут быть числовыми и буквенными. | |
Если два выражения числовые, то равенство является высказыванием. | |
Числовые равенства могут быть истинными или ложными. | |
6 * 3 = 18 – верное числовое равенство | |
16 : 3 = 8 – неверное числовое равенство | |
Два выражения, соединенных знаком «>» или « b | |
8 + 12 + 20 | а – b |
8 + 12 > 20 | а + b = с |
20 = 8 + 12 | а + b * с |
– Сколько равенств подчеркнули? Проверим.
– Что помогло выполнить задание? (знаки «=», «>», « 20.05.2012
Свойства истинных числовых равенств
КП 28.05.2020,29.05.2020
Практическое занятие. «Планирование фрагмента учебного занятия по математике для начальной школы по теме «Равенство. Неравенство».
Цель:планирование учебного процесса по математике, составление конспекта фрагмента урока математики по заданной теме.
Задание 1. Составить фрагмент урока, открытие новых знаний «Равенство. Неравенство», 2 класс» (все этапы, фрагмент на 15 минут).
Тема урока |
Цель |
Задачи |
Этап урока. Задача этапа | Деятельность учителя | Деятельность обучающихся | Планируемые результаты |
Тема: Понятие числового равенства и неравенства. Основные свойства истинных числовых равенств и неравенств.
Цель: изучение методических особенностей введения понятия числового равенства и неравенства. Основные свойства истинных числовых равенств и неравенств.
Задание 1. Изучите теоретический материал. Составьте тест из 10 вопросов, правильный ответ выделите курсивом. Тест для проверки знаний по теме «Понятие числового равенства и неравенства. Основные свойства истинных числовых равенств и неравенств» студентов.
Числовые равенства и неравенства. Методика изучения числовых равенств и неравенств.
Возьмём два числовых выражения 32-20 и 144 : 12.
Получим высказывание, которое называется числовым равенством.
Это высказывание истинно.
14 + 4 • 8 = 4 • 9 (л), т. к. 46≠ 36
Определение 1.Два числа или два числовых выражения, соединённые знаком равенства, называются числовым равенством.
Определение 2.Высказывание вида a = b, где а и в числовые выражения, называется числовым равенством.
Символически числовое равенство записывается так: a = b.
Если знаком равенства соединены 2 числовых выражения, значения которых равны, то получится истинное числовое равенство, если не равны, то ложное.
Числовое равенство истинно, если значения числовых выражений, стоящих в левой и правой частях равенства, совпадают.
Свойства истинных числовых равенств
1) Если к обеим частям истинного числового равенства прибавить одно и то же число с, или числовое выражение, имеющее смысл, то получится истинное числовое равенство.
Если a = b (и), то a +c = b + c тоже истинно.
2) Если обе части истинного числового равенства умножить на одно и то же число с, или числовое выражение, имеющее смысл, то получится истинное числовое равенство.
Если a = b (и), то a• c = b•c тоже истинно.
Работа над неравенствами ведется с I класса, органически сочетаясь с изучением арифметического материала. Программа по математике для I-III классов ставит задачу выполнять сравнение чисел, а также сравнение выражений с целью установления отношений «больше», «меньше», «равно»; научить записывать результаты сравнения с помощью знаков и читать полученные неравенства.
Числовые неравенства, учащиеся получают в результате сравнения заданных чисел или арифметических выражений. Поэтому знаками соединяются не любые два числа, не любые два выражения, а лишь те, между которыми существуют указанные отношения. Если одно число больше (меньше) другого или одно выражение имеет значение больше (меньше), чем другое выражение, то, соединенные соответствующим знаком, они образуют неравенство. Таким образом, первоначально у младших школьников формируются понятия только о верных неравенствах.
Если два числовых выражения соединить знаком «>» или « » или « », то получим истинное числовое неравенство 6 + 2 > 13-7.
Однако в процессе работы над уравнениями, выражениями и неравенствами с переменной учащиеся, подставляя различные значения переменной, накапливают наблюдения и убеждаются в том, что равенства и неравенства бывают как верные, так и неверные. Такой подход к раскрытию понятий определяет соответствующую методику работы над равенствами, неравенствами, уравнениями.
Ознакомление с неравенствами в начальных классах непосредственно связывается с изучением нумерации и арифметических действий.
Сравнение осуществляется сначала на основе сравнения множеств, которое выполняется, как известно, с помощью установления взаимно однозначного соответствия. Этому способу сравнения множеств учат детей в подготовительный период и в начале изучения нумерации чисел первого десятка. Попутно выполняется счет элементов множеств и сравнение полученных чисел (кружков 7, треугольников 5, кружков больше, чем треугольников, 7 больше, чем 5). В дальнейшем при сравнении чисел учащиеся опираются на их место в натуральном ряду: 9 меньше, чем 10, потому что при счете число 9 называют перед числом 10; 5 больше, чем 4, потому что при счете число 5 называют после числа 4.
Установленные отношения записываются с помощью знаков, учащиеся упражняются в чтении и записи неравенств.
Впоследствии при изучении нумерации чисел в пределах 100, 1000, а также нумерации многозначных чисел сравнение чисел осуществляется либо на основе сопоставления их по месту в натуральном ряду, либо на основе разложения чисел по десятичному составу и сравнения соответствующих разрядных чисел, начиная с высшего разряда (75>48, так как 7 десятков больше, чем 4 десятка; 75>73, так как десятков поровну, а единиц в первом числе больше, чем во втором).
Сравнение величин сначала выполняется с опорой на сравнение самих предметов по данному свойству, а потом осуществляется на основе сравнения числовых значений величин, для чего заданные величины выражаются в одинаковых единицах измерения. Сравнение величин вызывает трудности у учащихся, поэтому, чтобы научить этой операции, надо систематически в I-III классах предлагать разнообразные упражнения, например:
Подобные упражнения помогают детям усвоить не только понятия равных и неравных величин, но и отношения единиц измерения.
Рассматривая во II классе, например, неравенство х+3