Что такое ведущее звено передачи ведомое
Передачи, их виды: фрикционные, ременные, цепные, зубчатые, червячные
материал предоставил СИДОРОВ Александр Владимирович
Механическая передача – механизм, превращающий кинематические и энергетические параметры двигателя в необходимые параметры движения рабочих органов машин и предназначенный для согласования режима работы двигателя с режимом работы исполнительных органов. [1]
Типы механических передач:
В зависимости от соотношения параметров входного и выходного валов передачи разделяют на:
Зубчатая передача – это механизм или часть механизма механической передачи, в состав которого входят зубчатые колёса. При этом усилие от одного элемента к другому передаётся с помощью зубьев. [2]
Зубчатые передачи предназначены для:
Зубчатое колесо передачи с меньшим числом зубьев называется шестернёй, второе колесо с большим числом зубьев называется колесом.
Зубчатые передачи классифицируют по расположению валов:
Цилиндрические зубчатые передачи (рисунок 1) бывают с внешним и внутренним зацеплением. В зависимости от угла наклона зубьев выполняют прямозубые и косозубые колёса. С увеличением угла повышается прочность косозубых передач (за счёт наклона увеличивается площадь контакта зубьев, уменьшаются габариты передачи). Однако в косозубых передачах появляется дополнительная осевая сила, направленная вдоль оси вала и создающая дополнительную нагрузку на опоры. Для уменьшения этой силы угол наклона ограничивают 8-20°. Этот недостаток исключён в шевронной передаче.
Рисунок 1 – Основные виды цилиндрических зубчатых передач
Конические зубчатые передачи (рисунок 2) применяют в тех случаях, когда оси валов пересекаются под некоторым углом, чаще всего 90°. Конические передачи более сложны в изготовлении и монтаже, чем цилиндрические. Нагрузочная способность конической прямозубой передачи составляет приблизительно 85% цилиндрической. Для повышения нагрузочной способности конических колёс применяют колёса с непрямыми (тангенциальными, круговыми) зубьями.
Рисунок 2 – Конические зубчатые передачи
Достоинства зубчатых передач:
Недостатки зубчатых передач:
Червячные передачи (рисунок 3) применяют для передачи движения между перекрещивающимися осями, угол между которыми, как правило, составляет 90°. Движение в червячных передачах передается по принципу винтовой пары.
Рисунок 3 – Червячная передача
В отличие от большинства разновидностей зубчатых в червячной передаче окружные скорости на червяке и на колесе не совпадают. Они направлены под углом и отличаются по значению. При относительном движении начальные цилиндры скользят. Большое скольжение является причиной низкого КПД, повышенного износа и заедания. Для снижения износа применяют специальные антифрикционные пары материалов: червяк – сталь, венец червячного колеса – бронза (реже – латунь, чугун).
Достоинства червячных передач:
Недостатки червячных передач:
Для передачи движения между сравнительно далеко расположенными друг от друга валами применяют механизмы, в которых усилие от ведущего звена к ведомому передаётся с помощью гибких звеньев. В качестве гибких звеньев применяются: ремни, шнуры, канаты разных профилей, провода, стальную ленту, цепи различных конструкций.
Передачи с гибкими звеньями могут обеспечивать постоянное и переменное передаточное отношения со ступенчатым или плавным изменением его величины.
Для сохранности постоянства натяжения гибких звеньев в механизмах применяются натяжные устройства: ролики, пружины, противовесы и т.п.
Различают следующие разновидности передач с гибкими звеньями:
Ременная передача (рисунок 4) состоит из двух шкивов, закреплённых на валах, и ремня, охватывающего эти шкивы. Нагрузки передается за счёт сил трения, возникающих между шкивами и ремнём вследствие натяжения последнего.
В зависимости от формы поперечного перереза ремня различают передачи:
Рисунок 4 – Ременная передача
Наибольшие преимущества наблюдаются в передачах с зубчатыми (поликлиновыми) ремнями.
Достоинства ременных передач:
Недостатки ременных передач:
Цепная передача (рисунок 5) основана на принципе зацепления цепи и звёздочек. Цепная передача состоит из:
Рисунок 5 – Цепные передачи: а) с роликовой цепью; б) с зубчатой пластинчатой цепью
Область применения цепных передач:
По типу применяемых цепей бывают:
Достоинства цепных передач (по сравнению с ременной передачей):
Недостатки цепных передач связаны с тем, что звенья располагаются на звёздочке не по окружности, а по многоугольнику, что влечёт:
Фрикционная передача – кинематическая пара, использующая силу трения для передачи механической энергии (рисунок 6). [3]
Рисунок 6 – Фрикционные передачи
Трение между элементами может быть сухое, граничное, жидкостное. Жидкостное трение наиболее предпочтительно, так как значительно увеличивает долговечность фрикционной передачи.
Фрикционные передачи делятся:
5) Снятие стружки на станках осуществляется рабочими (или основными) движениями, к которым относится главное движение и движение подачи.
Движение, которое определяет скорость резания, называется главным движением, а движение, по скорости которого определяется величина подачи, называется движением подачи.
1 для чего служат в машине двигатель, передаточный и исполнительный механизмы?
1 для чего служат в машине двигатель, передаточный и исполнительный механизмы?
2 : из каких звеньев состоит зубчатая передача?
3 : из каких звеньев состоит цепная передача?
Назовите основные части токарного станка для обработки древесины?
Назовите основные части токарного станка для обработки древесины.
Что такое передняя бабка в токарном станке?
Что такое передняя бабка в токарном станке.
Предмет тех?
Выбрать правильный ответ :
Реечной зубчатой передачи ;
Горизонтальное расположение шпинделя.
2. Для каких типов фрезерных станков характерны следующие движения при обработке заготовки : вращение фрезы, вертикальное, продольное и поперечное перемещение заготовки?
Какие станки предназначены для обработки деталей сложной формы небольшой длины из прутка с применением нескольких последовательно или параллельно работающих инструментов в условиях серийного и массового производства?
4. Какие формообразующие движения не требуются для обработки червячного колеса на зубофрезерном станке методом радиальной подачи?
А. главное движение – вращение фрезы ;
Вертикальная подача фрезы ;
Взаимосвязанное движение вращения фрезы и заготовки ;
Радиальная подача заготовки.
5. Основными параметрами, характеризующими станки сверлильной группы являются :
Наибольший диаметр обрабатываемой детали ;
Наибольший диаметр обрабатываемого отверстия ;
Наибольший ход шпинделя ;
Размер конуса шпинделя ;
Наибольшая ширина обрабатываемого изделия.
6. Какая из перечисленных конструктивных особенностей не является характерной для токарных станков с ЧПУ?
А. разнообразная компоновка (традиционная горизонтальная, вертикальная или крутонаклонная) ;
Наличие револьверной головки или магазина инструментов ;
Кинематическая связь приводов подачи со шпинделем станка ;
Наличие датчика резьбонарезания для нарезания резьбы резцом.
7. Какая конструкция приводов подач не используется в станках с ЧПУ?
1. электродвигатель постоянного тока + ШВП ;
Электродвигатель постоянного тока + беззазорный редуктор + ШВП ;
Асинхронный электродвигатель + многоступенчатая коробка подач + ШВП ;
Электрогидравлический привод (ШД + ГУ) + беззазорный редуктор + ШВП.
8. К какому типу станков по классификации ЭНИМС относится станок модели 5М32?
1. зубодолбежных для цилиндрических колес ;
Зубофрезерных для цилиндрических колес ;
Зубофрезерных для конических колес ;
9. Буква после последней цифры в обозначении модели станка :
2. Механические передачи
Механической передачей называют устройство для передачи механического движения от двигателя к исполнительным органам машины. Может осуществляться с изменением значения и направления скорости движения, с преобразованием вида движения. Необходимость применения таких устройств обусловлена нецелесообразностью, а иногда и невозможностью непосредственного соединения рабочего органа машины с валом двигателя. Механизмы вращательного движения позволяют осуществить непрерывное и равномерное движение с наименьшими потерями энергии на преодоление трения и наименьшими инерционными нагрузками.
Механические передачи вращательного движения делятся:
— по способу передачи движения от ведущего звена к ведомому на передачи трением (фрикционные, ременные) и зацеплением (цепные, зубчатые, червячные);
— по соотношению скоростей ведущего и ведомого звеньев на замедляющие (редукторы) и ускоряющие (мультипликаторы);
— по взаимному расположению осей ведущего и ведомого валов на передачи с параллельными, пресекающимися и перекрещивающимися осями валов.
Замедляющие передачи получили большее распространение по сравнению с ускоряющими. Это объясняется тем, что скорости вращения валов двигателей различного вида, как правило, значительно выше скоростей валов рабочих машин. Более быстроходные двигатели имеют меньшие размеры по сравнению с тихоходными двигателями той же мощности, так как с увеличением частоты вращения уменьшаются силы и моменты, действующие на детали двигателя. Например, передавать вращение от быстроходной газовой турбины на вал несущего винта вертолета через специальную замедляющую зубчатую передачу (редуктор) значительно выгоднее, чем применять имеющий большие габаритные размеры и массу тихоходный двигатель, вал которого соединялся бы непосредственно с винтом. Из всех типов передач наиболее распространенными являются зубчатые.
В каждой передаче различают два основных вала: входной и выходной, или ведущий и ведомый. Между этими валами в многоступенчатых передачах располагаются промежуточные валы.
Основные характеристики передач:
мощность Р1 на входе и Р2 на выходе, Вт; мощность может быть выражена через окружную силу Ft (Н) и окружную скорость V (м/с) колеса, шкива, барабана и т.п.:
передаточное отношение – отношение угловой скорости ведущего звена к угловой скорости ведомого звена:
,
при u , или
,
где Рr – мощность, потерянная в передаче.
Одноступенчатые передачи имеют следующие КПД: фрикционные – 0,85…0,9; ременные – 0,90…0,95; зубчатые – 0,95…0,99; червячные – 0,7…0,9; цепные – 0,92…0,95;
,
или
,
где ω1 = .
Связь между вращающими моментами на ведущем Т1 и ведомом Т2 валах выражается через передаточное отношение u и КПД η:
2.1. Зубчатые передачи
Зубчатой передачей называется трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, или колесо и рейка с зубьями, образующими с неподвижным звеном (корпусом) вращательную или поступательную пару.
Зубчатая передача состоит из двух колес, посредством которых они сцепляются между собой. Зубчатое колесо с меньшим числом зубьев называют шестерней, с большим числом зубьев – колесом.
Термин «зубчатое колесо» является общим. Параметрам шестерни приписывают индекс 1, а параметрам колеса – 2.
Основными преимуществами зубчатых передач являются:
— постоянство передаточного числа (отсутствие проскальзывания);
— компактность по сравнению с фрикционными и ременными передачами;
— высокий КПД (до 0,97…0,98 в одной ступени);
— большая долговечность и надежность в работе (например, для редукторов общего применения установлен ресурс
— возможность применения в широком диапазоне скоростей (до 150 м/с), мощностей (до десятков тысяч кВт).
— шум при высоких скоростях;
— невозможность бесступенчатого изменения передаточного числа;
— необходимость высокой точности изготовления и монтажа;
— незащищенность от перегрузок;
— наличие вибраций, которые возникают в результате неточного изготовления и неточной сборки передач.
Классификация зубчатых передач. По расположению осей валов различают передачи с параллельными (рис. 2.1, а – в, з), с пересекающимися (рис. 2.1, г, д) и перекрещивающимися (рис. 2.1, е, ж) геометрическими осями.
По форме могут быть цилиндрические (рис. 2.1, а – в, з), конические (рис. 2.1, г, д, ж), эллиптические, фигурные зубчатые колеса и колеса с неполным числом зубьев (секторные).
По форме профилей зубьев различают эвольвентные и круговые передачи, а по форме и расположению зубьев – прямые (рис. 2.1, а, г, е, з), косые (рис. 2.1, б), шевронные (рис. 2.1, в) и круговые (рис. 2.1, д, ж).
В зависимости от относительного расположения зубчатых колес передачи могут быть с внешним (рис. 2.1, а) или внутренним (рис. 2.1, з) их зацеплением. Для преобразования вращательного движения в возвратно поступательное и наоборот служит реечная передача (рис. 2.1, е).
Зубчатые передачи эвольвентного профиля широко распространены во всех отраслях машиностроения и приборостроения. Они применяются в исключительно широком диапазоне условий работы. Мощности, передаваемые зубчатыми передачами, изменяются от ничтожно малых (приборы, часовые механизмы) до многих тысяч кВт (редукторы авиационных двигателей). Наибольшее распространение имеют передачи с цилиндрическими колесами, как наиболее простые в изготовлении и эксплуатации, надежные и малогабаритные. Конические, винтовые и червячные передачи применяют лишь в тех случаях, когда это необходимо по условиям компоновки машины.
Рис. 2.1. Зубчатые передачи
2.2. Планетарные передачи
Планетарными называются передачи, содержащие зубчатые колеса с перемещающимися осями (рис. 2.6). Передача состоит из центрального колеса 1 с наружными зубьями, центрального колеса 3 с внутренними зубьями, водила Н и сателлитов 2. Сателлиты вращаются вокруг своих осей и вместе с осью вокруг центрального колеса, т.е. совершают движение, подобное движению планет.
При неподвижном колесе 3 движение может передаваться от 1 к Н или от Н к 1; при неподвижном водиле Н – от 1 к 3 или от 3 к 1. При всех свободных звеньях одно движение можно раскладывать на два (от 3 к 1 и Н) или два соединять в одно (от 1 и Н к 3). В этом случае передачу называют дифференциальной.
Рис. 2.6. Планетарный механизм
Планетарные передачи имеют существенные преимущества:
— нагрузка в планетарных передачах передается одновременно несколькими сателлитами, следовательно, силы, действующие на зубья колес, соответственно уменьшаются, что позволяет использовать колеса меньших габаритных размеров и массы;
— в планетарных передачах рационально используются колеса внутреннего зацепления, обладающие большой (по сравнению с колесами наружного зацепления) нагрузочной способностью;
— равномерное распределение сателлитов по окружности приводит к уравновешиванию радиальных сил, действующих на колеса, и, следовательно, к разгрузке подшипников центральных колес и водила;
— применение планетарного механизма позволяет легко осуществить компактную конструкцию соосного редуктора, т.е. такого редуктора, у которого оси ведущего и ведомого валов совпадают. Это имеет важное значение для поршневых и турбовинтовых авиационных двигателей. Например, при помощи так называемого дифференциального планетарного редуктора можно от одного двигателя приводить во вращение два соосных винта, скорости вращения которых будут изменяться в полете в соответствии с изменением шага винта.
К недостаткам планетарных передач относятся повышенные требования к точности изготовления и монтажа.
2.3. Червячные передачи
Червячная передача применяется для передачи вращения от одного вала к другому, когда оси валов перекрещиваются. Угол перекрещивания в большинстве случаев равен 90º. Наиболее распространенная червячная передача (рис. 2.10) состоит из так называемого архимедова червяка, т.е. винта, имеющего трапецеидальную резьбу с углом профиля в осевом сечении, равным двойному углу зацепления (2α = 40 ° ), и червячного колеса.
Рис. 2.10. Червячная передача
Червяки различают по следующим признакам: по форме поверхности, на которой образуется резьба, – цилиндрические (рис. 2.12, а) и глобоидные (рис. 2.12, б); по форме профиля резьбы – архимедовы и эвольвентные цилиндрические червяки.
Архимедов червяк имеет трапецеидальный профиль резьбы в осевом сечении, в торцевом сечении витки резьбы очерчены архимедовой спиралью.
Рис. 2.11. Геометрия червячных передач
Рис. 2.12. Схемы червяков
Эвольвентный червяк представляет собой косозубое зубчатое колесо с малым числом зубьев и большим углом их наклона. Профиль витка в торцевом сечении очерчен эвольвентой.
Наибольшее применение в машиностроении находят архимедовы червяки, так как технология их производства проста и наиболее отработана. Архимедовы червяки обычно не шлифуют. Их используют, когда требуемая твердость материала червяка не превышает 350 НВ. При твердости 45 Н RC и малой шероховатости рабочих поверхностей витков червяки делают эвольвентными, так как после термообработки шлифование их рабочих поверхностей по сравнению с архимедовыми червяками проще.
Профиль зубьев червячных колес в передачах эвольвентный. Поэтому зацепление в червячной передаче представляет собой эвольвентное зацепление зубчатого колеса с зубчатой рейкой. Угол наклона линии зуба червячного колеса β равен углу подъема γ линии витка червяка. Минимальное число зубьев колеса из условия отсутствия подрезания z 2 = 24. Число витков (заходов) червяка определяется количеством ниток нарезки, отстоящих друг от друга на расстояние, называемое шагом, и начинающихся на торцах нарезной части червяка. Направление витков может быть правым или левым. Чаще применяется правая нарезка с числом заходов z 1 = 1…4. Рекомендуют z 1 = 4 при передаточном отношении u = 8…15; z 1 = 2 при u = 15…30; z 1 = 1 при u > 30.
2.4. Волновые механические передачи
Волновая передача основана на принципе преобразования параметров движения за счет волнового деформирования гибкого звена механизма. Впервые такая передача была запатентована в США инженером Массером. [3]
Волновые зубчатые передачи (рис. 2.14) являются разновидностью планетарных передач, у которых одно из колес гибкое.
Рис. 2.14. Волновая зубчатая передача
Гибкое зубчатое колесо представляет собой гибкий цилиндр, один конец которого соединен с валом и сохраняет цилиндрическую форму, а другой конец имеет зубья. Генератор волн служит для образования и движения волны деформации на гибком зубчатом колесе.
Генераторы волн бывают механические, пневматические, гидравлические, электромагнитные. Механические генераторы могут быть двухроликовыми, четырехроликовыми, дисковыми, кольцевыми и кулачковыми. Генератор волн может располагаться внутри гибкого колеса или вне его. Число волн – любое.
К основным достоинствам волновых передач по сравнению с зубчатыми передачами следует отнести:
— их меньшие массу и габариты;
— высокую демпфирующую способность;
— обеспечение больших передаточных отношений в одной ступени (50…300);
— возможность передачи движения в герметизированное пространство без применения уплотнений.
— ограничение скорости вращения ведущего вала генератора волн при больших диаметрах колес;
— повышенные потери мощности на трение и на деформацию гибкого колеса (КПД составляет 0,7-0,85 при U = 80-250).
Волновые передачи применяют в приводах для передачи движения в герметизированное пространство в химической, атомной и космической технике; в силовых и кинематических приводах общего назначения с большим передаточным отношением; в исполнительных малоинерционных быстродействующих механизмах систем автоматического регулирования и управления; в механизмах отсчетных устройств повышенной кинематической точности.
2.5. Фрикционные передачи
Передачи, работа которых основана на использовании сил трения, возникающих между рабочими поверхностями двух прижатых друг к другу тел вращения, называют фрикционными передачами.
где Fn – сила прижатия катков;
f – коэффициент трения.
Нарушение условия (2.42) приводит к буксованию и быстрому износу катков.
В зависимости от назначения фрикционные передачи можно разделить на две основные группы: передачи с нерегулируемым передаточным отношением (рис. 2.15, а); регулируемые передачи, называемые вариаторами, позволяющими плавно (бесступенчато) изменять передаточное отношение.
Рис. 2.15. Схемы фрикционных передач
Различают передачи с параллельными и пересекающимися осями валов; с цилиндрической, конической, шаровой или торовой поверхностью рабочих катков; с постоянным или автоматически регулируемым прижатием катков, с промежуточным фрикционным элементом или без него и т.д.
Схема простейшей нерегулируемой передачи изображена на рис. 2.15, а. Она состоит из двух катков с гладкой цилиндрической поверхностью, закрепленных на параллельных валах.
У лобового вариатора (рис. 2.15, б) ведущий каток А может перемещаться вдоль своей оси. При этом передаточное отношение плавно изменяется в соответствии с изменением рабочего диаметра d 2 ведомого диска Б. При переходе катка А на левую сторону направление вращения диска Б изменяется – вариатор обладает свойством реверсивности.
Область применения. Фрикционные передачи с постоянным передаточным отношением применяют сравнительно редко. Их область ограничивается преимущественно кинематическими цепями приборов, от которых требуется плавность движения, бесшумность работы, безударное включение на ходу и т.п.
Фрикционные вариаторы применяют достаточно широко для обеспечения бесступенчатого регулирования скорости в станкостроении, текстильных, бумагоделательных и других машинах и приборах. В авиастроении фрикционные передачи не применяются. Диапазон передаваемых мощностей обычно находится в пределах до 10 кВт, так как при больших мощностях трудно обеспечить необходимое усилие прижатия катков.
Способы прижатия катков. Существует два вида прижатия катков: с постоянной силой, которую определяют по максимальной нагрузке передачи; с регулируемой силой, которая автоматически изменяется с изменением нагрузки. Лучшие показатели получают при саморегулируемом прижатии.
Способ прижатия катков оказывает большое влияние на качественные характеристики передачи: КПД, постоянство передаточного отношения, контактную прочность и износ катков.
Скольжение в передаче. Различают три вида скольжения: буксование, упругое скольжение и геометрическое скольжение.
Буксование наступает при перегрузках элементов передачи. При этом ведомый каток останавливается, а ведущий скользит по нему, что приводит к интенсивному местному изнашиванию или задиру на ведомом катке.
Упругое скольжение характерно для нормально работающей передачи. Участки поверхности ведущего катка подходят к площадке контакта сжатыми, а отходят растянутыми. На ведомом катке наблюдается обратная картина. Касание сжатых и растянутых волокон катков приводит к их упругому скольжению, что вызывает отставание ведомого катка от ведущего.
Геометрическое скольжение связано с тем, что окружные скорости вращения ведущего и ведомого катков на площадке их контакта различны. Например, в лобовом вариаторе (см. рис. 2.15, б) окружная скорость V2 меняется с изменением R, а скорость V1 на этой площадке постоянна. Геометрическое скольжение является основной причиной изнашивания рабочих поверхностей элементов фрикционных передач.
2.6. Ременные передачи
Ременная передача состоит из двух шкивов, закрепленных на валах, и охватывающего их ремня. Ремень надет на шкивы с определенным натяжением, обеспечивающим трение между ремнем и шкивами, достаточное для передачи мощности от ведущего шкива к ведомому.
В зависимости от формы поперечного сечения ремня различают: плоскоременную, клиноременную и круглоременную (рис. 2.16, а – в) передачи.
Рис. 2.16. Ременные передачи
Сравнивая ременную передачу с зубчатой можно отметить следующие преимущества:
— возможность передачи движения на значительное расстояние (до 15 м и более);
— плавность и бесшумность работы, обусловленные эластичностью ремня и позволяющие работать при высоких скоростях;
— способность выдерживать перегрузки (до 300 %) благодаря увеличению скольжения ремня;
— простота обслуживания и ремонта.
Основными недостатками ременной передачи являются:
— непостоянство передаточного отношения из-за скольжения ремня на шкивах;
— значительные габаритные размеры при больших мощностях (для одинаковых условий диаметры шкивов примерно в 5 раз больше диаметров зубчатых колес);
— большое давление на шкивы в результате натяжения ремня;
— низкая долговечность ремней (от 1000 до 5000 ч).
Ременные передачи применяют преимущественно в тех случаях, когда по условиям конструкции валы расположены на значительных расстояниях. Мощность современных передач не превышает 50 кВт.
В многоступенчатых приводах ременную передачу применяют обычно в качестве быстроходной ступени, устанавливая ведущий шкив на валу двигателя. В таком случае габариты и масса передачи будут наименьшими.
Критерии работоспособности и расчета. Опыт эксплуатации передач в различных машинах и механизмах показал, что работоспособность передач ограничивается преимущественно тяговой способностью, определяемой силой трения между ремнем и шкивом, долговечностью ремня, которая в условиях нормальной эксплуатации ограничивается разрушением ремня от усталости.
2.7. Цепные передачи
Цепная передача состоит из двух колес с зубьями (звездочек) и охватывающей их цепи. Наиболее распространены передачи с втулочно-роликовой цепью (рис. 2.19, а) и зубчатой цепью (рис. 2.19, б). Цепные передачи применяются для передачи средних мощностей (не более 150 кВт) между параллельными валами в случаях, когда межосевые расстояния велики для зубчатых передач.
Преимуществами цепных передач являются:
— достаточная быстроходность (20-30 м/с);
— сравнительно большое передаточное число (7 и более);
— возможность передачи движения от одной цепи нескольким звездочкам;
— небольшая нагрузка на валы, т.к. цепная передача не нуждается в предварительном натяжении цепи необходимом для ременной передачи.